/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License */ CCL_NAMESPACE_BEGIN /* Events for probalistic scattering */ typedef enum VolumeIntegrateResult { VOLUME_PATH_SCATTERED = 0, VOLUME_PATH_ATTENUATED = 1, VOLUME_PATH_MISSED = 2 } VolumeIntegrateResult; /* Volume shader properties * * extinction coefficient = absorption coefficient + scattering coefficient * sigma_t = sigma_a + sigma_s */ typedef struct VolumeShaderCoefficients { float3 sigma_a; float3 sigma_s; float3 emission; } VolumeShaderCoefficients; /* evaluate shader to get extinction coefficient at P */ ccl_device bool volume_shader_extinction_sample(KernelGlobals *kg, ShaderData *sd, PathState *state, float3 P, float3 *extinction) { sd->P = P; shader_eval_volume(kg, sd, state->volume_stack, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW); if(!(sd->flag & (SD_ABSORPTION|SD_SCATTER))) return false; float3 sigma_t = make_float3(0.0f, 0.0f, 0.0f); for(int i = 0; i < sd->num_closure; i++) { const ShaderClosure *sc = &sd->closure[i]; if(CLOSURE_IS_VOLUME(sc->type)) sigma_t += sc->weight; } *extinction = sigma_t; return true; } /* evaluate shader to get absorption, scattering and emission at P */ ccl_device bool volume_shader_sample(KernelGlobals *kg, ShaderData *sd, PathState *state, float3 P, VolumeShaderCoefficients *coeff) { sd->P = P; shader_eval_volume(kg, sd, state->volume_stack, state->flag, SHADER_CONTEXT_VOLUME); if(!(sd->flag & (SD_ABSORPTION|SD_SCATTER|SD_EMISSION))) return false; coeff->sigma_a = make_float3(0.0f, 0.0f, 0.0f); coeff->sigma_s = make_float3(0.0f, 0.0f, 0.0f); coeff->emission = make_float3(0.0f, 0.0f, 0.0f); for(int i = 0; i < sd->num_closure; i++) { const ShaderClosure *sc = &sd->closure[i]; if(sc->type == CLOSURE_VOLUME_ABSORPTION_ID) coeff->sigma_a += sc->weight; else if(sc->type == CLOSURE_EMISSION_ID) coeff->emission += sc->weight; else if(CLOSURE_IS_VOLUME(sc->type)) coeff->sigma_s += sc->weight; } /* when at the max number of bounces, treat scattering as absorption */ if(sd->flag & SD_SCATTER) { if(state->volume_bounce >= kernel_data.integrator.max_volume_bounce) { coeff->sigma_a += coeff->sigma_s; coeff->sigma_s = make_float3(0.0f, 0.0f, 0.0f); sd->flag &= ~SD_SCATTER; sd->flag |= SD_ABSORPTION; } } return true; } ccl_device float3 volume_color_transmittance(float3 sigma, float t) { return make_float3(expf(-sigma.x * t), expf(-sigma.y * t), expf(-sigma.z * t)); } ccl_device float kernel_volume_channel_get(float3 value, int channel) { return (channel == 0)? value.x: ((channel == 1)? value.y: value.z); } ccl_device bool volume_stack_is_heterogeneous(KernelGlobals *kg, VolumeStack *stack) { for(int i = 0; stack[i].shader != SHADER_NONE; i++) { int shader_flag = kernel_tex_fetch(__shader_flag, (stack[i].shader & SHADER_MASK)*2); if(shader_flag & SD_HETEROGENEOUS_VOLUME) return true; } return false; } ccl_device int volume_stack_sampling_method(KernelGlobals *kg, VolumeStack *stack) { if(kernel_data.integrator.num_all_lights == 0) return 0; int method = -1; for(int i = 0; stack[i].shader != SHADER_NONE; i++) { int shader_flag = kernel_tex_fetch(__shader_flag, (stack[i].shader & SHADER_MASK)*2); if(shader_flag & SD_VOLUME_MIS) { return SD_VOLUME_MIS; } else if(shader_flag & SD_VOLUME_EQUIANGULAR) { if(method == 0) return SD_VOLUME_MIS; method = SD_VOLUME_EQUIANGULAR; } else { if(method == SD_VOLUME_EQUIANGULAR) return SD_VOLUME_MIS; method = 0; } } return method; } /* Volume Shadows * * These functions are used to attenuate shadow rays to lights. Both absorption * and scattering will block light, represented by the extinction coefficient. */ /* homogeneous volume: assume shader evaluation at the starts gives * the extinction coefficient for the entire line segment */ ccl_device void kernel_volume_shadow_homogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, float3 *throughput) { float3 sigma_t; if(volume_shader_extinction_sample(kg, sd, state, ray->P, &sigma_t)) *throughput *= volume_color_transmittance(sigma_t, ray->t); } /* heterogeneous volume: integrate stepping through the volume until we * reach the end, get absorbed entirely, or run out of iterations */ ccl_device void kernel_volume_shadow_heterogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, float3 *throughput) { float3 tp = *throughput; const float tp_eps = 1e-6f; /* todo: this is likely not the right value */ /* prepare for stepping */ int max_steps = kernel_data.integrator.volume_max_steps; float step = kernel_data.integrator.volume_step_size; float random_jitter_offset = lcg_step_float(&state->rng_congruential) * step; /* compute extinction at the start */ float t = 0.0f; float3 sum = make_float3(0.0f, 0.0f, 0.0f); for(int i = 0; i < max_steps; i++) { /* advance to new position */ float new_t = min(ray->t, (i+1) * step); float dt = new_t - t; /* use random position inside this segment to sample shader */ if(new_t == ray->t) random_jitter_offset = lcg_step_float(&state->rng_congruential) * dt; float3 new_P = ray->P + ray->D * (t + random_jitter_offset); float3 sigma_t; /* compute attenuation over segment */ if(volume_shader_extinction_sample(kg, sd, state, new_P, &sigma_t)) { /* Compute expf() only for every Nth step, to save some calculations * because exp(a)*exp(b) = exp(a+b), also do a quick tp_eps check then. */ sum += (-sigma_t * (new_t - t)); if((i & 0x07) == 0) { /* ToDo: Other interval? */ tp = *throughput * make_float3(expf(sum.x), expf(sum.y), expf(sum.z)); /* stop if nearly all light is blocked */ if(tp.x < tp_eps && tp.y < tp_eps && tp.z < tp_eps) break; } } /* stop if at the end of the volume */ t = new_t; if(t == ray->t) { /* Update throughput in case we haven't done it above */ tp = *throughput * make_float3(expf(sum.x), expf(sum.y), expf(sum.z)); break; } } *throughput = tp; } /* get the volume attenuation over line segment defined by ray, with the * assumption that there are no surfaces blocking light between the endpoints */ ccl_device_noinline void kernel_volume_shadow(KernelGlobals *kg, PathState *state, Ray *ray, float3 *throughput) { ShaderData sd; shader_setup_from_volume(kg, &sd, ray, state->bounce, state->transparent_bounce); if(volume_stack_is_heterogeneous(kg, state->volume_stack)) kernel_volume_shadow_heterogeneous(kg, state, ray, &sd, throughput); else kernel_volume_shadow_homogeneous(kg, state, ray, &sd, throughput); } /* Equi-angular sampling as in: * "Importance Sampling Techniques for Path Tracing in Participating Media" */ ccl_device float kernel_volume_equiangular_sample(Ray *ray, float3 light_P, float xi, float *pdf) { float t = ray->t; float delta = dot((light_P - ray->P) , ray->D); float D = sqrtf(len_squared(light_P - ray->P) - delta * delta); float theta_a = -atan2f(delta, D); float theta_b = atan2f(t - delta, D); float t_ = D * tanf((xi * theta_b) + (1 - xi) * theta_a); *pdf = D / ((theta_b - theta_a) * (D * D + t_ * t_)); return min(t, delta + t_); /* min is only for float precision errors */ } ccl_device float kernel_volume_equiangular_pdf(Ray *ray, float3 light_P, float sample_t) { float delta = dot((light_P - ray->P) , ray->D); float D = sqrtf(len_squared(light_P - ray->P) - delta * delta); float t = ray->t; float t_ = sample_t - delta; float theta_a = -atan2f(delta, D); float theta_b = atan2f(t - delta, D); float pdf = D / ((theta_b - theta_a) * (D * D + t_ * t_)); return pdf; } /* Distance sampling */ ccl_device float kernel_volume_distance_sample(float max_t, float3 sigma_t, int channel, float xi, float3 *transmittance, float3 *pdf) { /* xi is [0, 1[ so log(0) should never happen, division by zero is * avoided because sample_sigma_t > 0 when SD_SCATTER is set */ float sample_sigma_t = kernel_volume_channel_get(sigma_t, channel); float3 full_transmittance = volume_color_transmittance(sigma_t, max_t); float sample_transmittance = kernel_volume_channel_get(full_transmittance, channel); float sample_t = min(max_t, -logf(1.0f - xi*(1.0f - sample_transmittance))/sample_sigma_t); *transmittance = volume_color_transmittance(sigma_t, sample_t); *pdf = (sigma_t * *transmittance)/(make_float3(1.0f, 1.0f, 1.0f) - full_transmittance); /* todo: optimization: when taken together with hit/miss decision, * the full_transmittance cancels out drops out and xi does not * need to be remapped */ return sample_t; } ccl_device float3 kernel_volume_distance_pdf(float max_t, float3 sigma_t, float sample_t) { float3 full_transmittance = volume_color_transmittance(sigma_t, max_t); float3 transmittance = volume_color_transmittance(sigma_t, sample_t); return (sigma_t * transmittance)/(make_float3(1.0f, 1.0f, 1.0f) - full_transmittance); } /* Emission */ ccl_device float3 kernel_volume_emission_integrate(VolumeShaderCoefficients *coeff, int closure_flag, float3 transmittance, float t) { /* integral E * exp(-sigma_t * t) from 0 to t = E * (1 - exp(-sigma_t * t))/sigma_t * this goes to E * t as sigma_t goes to zero * * todo: we should use an epsilon to avoid precision issues near zero sigma_t */ float3 emission = coeff->emission; if(closure_flag & SD_ABSORPTION) { float3 sigma_t = coeff->sigma_a + coeff->sigma_s; emission.x *= (sigma_t.x > 0.0f)? (1.0f - transmittance.x)/sigma_t.x: t; emission.y *= (sigma_t.y > 0.0f)? (1.0f - transmittance.y)/sigma_t.y: t; emission.z *= (sigma_t.z > 0.0f)? (1.0f - transmittance.z)/sigma_t.z: t; } else emission *= t; return emission; } /* Volume Path */ /* homogeneous volume: assume shader evaluation at the start gives * the volume shading coefficient for the entire line segment */ ccl_device VolumeIntegrateResult kernel_volume_integrate_homogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, PathRadiance *L, float3 *throughput, RNG *rng, bool probalistic_scatter) { VolumeShaderCoefficients coeff; if(!volume_shader_sample(kg, sd, state, ray->P, &coeff)) return VOLUME_PATH_MISSED; int closure_flag = sd->flag; float t = ray->t; float3 new_tp; #ifdef __VOLUME_SCATTER__ /* randomly scatter, and if we do t is shortened */ if(closure_flag & SD_SCATTER) { /* extinction coefficient */ float3 sigma_t = coeff.sigma_a + coeff.sigma_s; /* pick random color channel, we use the Veach one-sample * model with balance heuristic for the channels */ float rphase = path_state_rng_1D_for_decision(kg, rng, state, PRNG_PHASE); int channel = (int)(rphase*3.0f); sd->randb_closure = rphase*3.0f - channel; /* decide if we will hit or miss */ bool scatter = true; float xi = path_state_rng_1D_for_decision(kg, rng, state, PRNG_SCATTER_DISTANCE); if(probalistic_scatter) { float sample_sigma_t = kernel_volume_channel_get(sigma_t, channel); float sample_transmittance = expf(-sample_sigma_t * t); if(1.0f - xi >= sample_transmittance) { scatter = true; /* rescale random number so we can reuse it */ xi = 1.0f - (1.0f - xi - sample_transmittance)/(1.0f - sample_transmittance); } else scatter = false; } if(scatter) { /* scattering */ float3 pdf; float3 transmittance; float sample_t; /* distance sampling */ sample_t = kernel_volume_distance_sample(ray->t, sigma_t, channel, xi, &transmittance, &pdf); /* modifiy pdf for hit/miss decision */ if(probalistic_scatter) pdf *= make_float3(1.0f, 1.0f, 1.0f) - volume_color_transmittance(sigma_t, t); new_tp = *throughput * coeff.sigma_s * transmittance / average(pdf); t = sample_t; } else { /* no scattering */ float3 transmittance = volume_color_transmittance(sigma_t, t); float pdf = average(transmittance); new_tp = *throughput * transmittance / pdf; } } else #endif if(closure_flag & SD_ABSORPTION) { /* absorption only, no sampling needed */ float3 transmittance = volume_color_transmittance(coeff.sigma_a, t); new_tp = *throughput * transmittance; } /* integrate emission attenuated by extinction */ if(L && (closure_flag & SD_EMISSION)) { float3 sigma_t = coeff.sigma_a + coeff.sigma_s; float3 transmittance = volume_color_transmittance(sigma_t, ray->t); float3 emission = kernel_volume_emission_integrate(&coeff, closure_flag, transmittance, ray->t); path_radiance_accum_emission(L, *throughput, emission, state->bounce); } /* modify throughput */ if(closure_flag & (SD_ABSORPTION|SD_SCATTER)) { *throughput = new_tp; /* prepare to scatter to new direction */ if(t < ray->t) { /* adjust throughput and move to new location */ sd->P = ray->P + t*ray->D; return VOLUME_PATH_SCATTERED; } } return VOLUME_PATH_ATTENUATED; } /* heterogeneous volume distance sampling: integrate stepping through the * volume until we reach the end, get absorbed entirely, or run out of * iterations. this does probalistically scatter or get transmitted through * for path tracing where we don't want to branch. */ ccl_device VolumeIntegrateResult kernel_volume_integrate_heterogeneous_distance(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, PathRadiance *L, float3 *throughput, RNG *rng) { float3 tp = *throughput; const float tp_eps = 1e-6f; /* todo: this is likely not the right value */ /* prepare for stepping */ int max_steps = kernel_data.integrator.volume_max_steps; float step_size = kernel_data.integrator.volume_step_size; float random_jitter_offset = lcg_step_float(&state->rng_congruential) * step_size; /* compute coefficients at the start */ float t = 0.0f; float3 accum_transmittance = make_float3(1.0f, 1.0f, 1.0f); /* pick random color channel, we use the Veach one-sample * model with balance heuristic for the channels */ float xi = path_state_rng_1D_for_decision(kg, rng, state, PRNG_SCATTER_DISTANCE); float rphase = path_state_rng_1D_for_decision(kg, rng, state, PRNG_PHASE); int channel = (int)(rphase*3.0f); sd->randb_closure = rphase*3.0f - channel; bool has_scatter = false; for(int i = 0; i < max_steps; i++) { /* advance to new position */ float new_t = min(ray->t, (i+1) * step_size); float dt = new_t - t; /* use random position inside this segment to sample shader */ if(new_t == ray->t) random_jitter_offset = lcg_step_float(&state->rng_congruential) * dt; float3 new_P = ray->P + ray->D * (t + random_jitter_offset); VolumeShaderCoefficients coeff; /* compute segment */ if(volume_shader_sample(kg, sd, state, new_P, &coeff)) { int closure_flag = sd->flag; float3 new_tp; float3 transmittance; bool scatter = false; /* distance sampling */ #ifdef __VOLUME_SCATTER__ if((closure_flag & SD_SCATTER) || (has_scatter && (closure_flag & SD_ABSORPTION))) { has_scatter = true; float3 sigma_t = coeff.sigma_a + coeff.sigma_s; float3 sigma_s = coeff.sigma_s; /* compute transmittance over full step */ transmittance = volume_color_transmittance(sigma_t, dt); /* decide if we will scatter or continue */ float sample_transmittance = kernel_volume_channel_get(transmittance, channel); if(1.0f - xi >= sample_transmittance) { /* compute sampling distance */ float sample_sigma_t = kernel_volume_channel_get(sigma_t, channel); float new_dt = -logf(1.0f - xi)/sample_sigma_t; new_t = t + new_dt; /* transmittance and pdf */ float3 new_transmittance = volume_color_transmittance(sigma_t, new_dt); float3 pdf = sigma_t * new_transmittance; /* throughput */ new_tp = tp * sigma_s * new_transmittance / average(pdf); scatter = true; } else { /* throughput */ float pdf = average(transmittance); new_tp = tp * transmittance / pdf; /* remap xi so we can reuse it and keep thing stratified */ xi = 1.0f - (1.0f - xi)/sample_transmittance; } } else #endif if(closure_flag & SD_ABSORPTION) { /* absorption only, no sampling needed */ float3 sigma_a = coeff.sigma_a; transmittance = volume_color_transmittance(sigma_a, dt); new_tp = tp * transmittance; } /* integrate emission attenuated by absorption */ if(L && (closure_flag & SD_EMISSION)) { float3 emission = kernel_volume_emission_integrate(&coeff, closure_flag, transmittance, dt); path_radiance_accum_emission(L, tp, emission, state->bounce); } /* modify throughput */ if(closure_flag & (SD_ABSORPTION|SD_SCATTER)) { tp = new_tp; /* stop if nearly all light blocked */ if(tp.x < tp_eps && tp.y < tp_eps && tp.z < tp_eps) { tp = make_float3(0.0f, 0.0f, 0.0f); break; } } /* prepare to scatter to new direction */ if(scatter) { /* adjust throughput and move to new location */ sd->P = ray->P + new_t*ray->D; *throughput = tp; return VOLUME_PATH_SCATTERED; } else { /* accumulate transmittance */ accum_transmittance *= transmittance; } } /* stop if at the end of the volume */ t = new_t; if(t == ray->t) break; } *throughput = tp; return VOLUME_PATH_ATTENUATED; } /* get the volume attenuation and emission over line segment defined by * ray, with the assumption that there are no surfaces blocking light * between the endpoints. distance sampling is used to decide if we will * scatter or not. */ ccl_device_noinline VolumeIntegrateResult kernel_volume_integrate(KernelGlobals *kg, PathState *state, ShaderData *sd, Ray *ray, PathRadiance *L, float3 *throughput, RNG *rng, bool heterogeneous) { /* workaround to fix correlation bug in T38710, can find better solution * in random number generator later, for now this is done here to not impact * performance of rendering without volumes */ RNG tmp_rng = cmj_hash(*rng, state->rng_offset); shader_setup_from_volume(kg, sd, ray, state->bounce, state->transparent_bounce); if(heterogeneous) return kernel_volume_integrate_heterogeneous_distance(kg, state, ray, sd, L, throughput, &tmp_rng); else return kernel_volume_integrate_homogeneous(kg, state, ray, sd, L, throughput, &tmp_rng, true); } /* Decoupled Volume Sampling * * VolumeSegment is list of coefficients and transmittance stored at all steps * through a volume. This can then latter be used for decoupled sampling as in: * "Importance Sampling Techniques for Path Tracing in Participating Media" * * On the GPU this is only supported for homogeneous volumes (1 step), due to * no support for malloc/free and too much stack usage with a fix size array. */ typedef struct VolumeStep { float3 sigma_s; /* scatter coefficient */ float3 sigma_t; /* extinction coefficient */ float3 accum_transmittance; /* accumulated transmittance including this step */ float3 cdf_distance; /* cumulative density function for distance sampling */ float t; /* distance at end of this step */ float shade_t; /* jittered distance where shading was done in step */ int closure_flag; /* shader evaluation closure flags */ } VolumeStep; typedef struct VolumeSegment { VolumeStep *steps; /* recorded steps */ int numsteps; /* number of steps */ int closure_flag; /* accumulated closure flags from all steps */ float3 accum_emission; /* accumulated emission at end of segment */ float3 accum_transmittance; /* accumulated transmittance at end of segment */ int sampling_method; /* volume sampling method */ } VolumeSegment; /* record volume steps to the end of the volume. * * it would be nice if we could only record up to the point that we need to scatter, * but the entire segment is needed to do always scattering, rather than probalistically * hitting or missing the volume. if we don't know the transmittance at the end of the * volume we can't generate stratified distance samples up to that transmittance */ ccl_device void kernel_volume_decoupled_record(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, VolumeSegment *segment, bool heterogeneous) { const float tp_eps = 1e-6f; /* todo: this is likely not the right value */ /* prepare for volume stepping */ int max_steps; float step_size, random_jitter_offset; if(heterogeneous) { max_steps = kernel_data.integrator.volume_max_steps; step_size = kernel_data.integrator.volume_step_size; random_jitter_offset = lcg_step_float(&state->rng_congruential) * step_size; /* compute exact steps in advance for malloc */ max_steps = max((int)ceilf(ray->t/step_size), 1); } else { max_steps = 1; step_size = ray->t; random_jitter_offset = 0.0f; } /* init accumulation variables */ float3 accum_emission = make_float3(0.0f, 0.0f, 0.0f); float3 accum_transmittance = make_float3(1.0f, 1.0f, 1.0f); float3 cdf_distance = make_float3(0.0f, 0.0f, 0.0f); float t = 0.0f; segment->closure_flag = 0; segment->numsteps = 0; segment->steps = (VolumeStep*)malloc(sizeof(VolumeStep)*max_steps); VolumeStep *step = segment->steps; for(int i = 0; i < max_steps; i++, step++) { /* advance to new position */ float new_t = min(ray->t, (i+1) * step_size); float dt = new_t - t; /* use random position inside this segment to sample shader */ if(heterogeneous && new_t == ray->t) random_jitter_offset = lcg_step_float(&state->rng_congruential) * dt; float3 new_P = ray->P + ray->D * (t + random_jitter_offset); VolumeShaderCoefficients coeff; /* compute segment */ if(volume_shader_sample(kg, sd, state, new_P, &coeff)) { int closure_flag = sd->flag; float3 sigma_t = coeff.sigma_a + coeff.sigma_s; /* compute accumulated transmittance */ float3 transmittance = volume_color_transmittance(sigma_t, dt); /* compute emission attenuated by absorption */ if(closure_flag & SD_EMISSION) { float3 emission = kernel_volume_emission_integrate(&coeff, closure_flag, transmittance, dt); accum_emission += accum_transmittance * emission; } accum_transmittance *= transmittance; /* compute pdf for distance sampling */ float3 pdf_distance = dt * accum_transmittance * coeff.sigma_s; cdf_distance = cdf_distance + pdf_distance; /* write step data */ step->sigma_t = sigma_t; step->sigma_s = coeff.sigma_s; step->closure_flag = closure_flag; segment->closure_flag |= closure_flag; } else { /* store empty step (todo: skip consecutive empty steps) */ step->sigma_t = make_float3(0.0f, 0.0f, 0.0f); step->sigma_s = make_float3(0.0f, 0.0f, 0.0f); step->closure_flag = 0; } step->accum_transmittance = accum_transmittance; step->cdf_distance = cdf_distance; step->t = new_t; step->shade_t = t + random_jitter_offset; segment->numsteps++; /* stop if at the end of the volume */ t = new_t; if(t == ray->t) break; /* stop if nearly all light blocked */ if(accum_transmittance.x < tp_eps && accum_transmittance.y < tp_eps && accum_transmittance.z < tp_eps) break; } /* store total emission and transmittance */ segment->accum_emission = accum_emission; segment->accum_transmittance = accum_transmittance; /* normalize cumulative density function for distance sampling */ VolumeStep *last_step = segment->steps + segment->numsteps - 1; if(!is_zero(last_step->cdf_distance)) { VolumeStep *step = &segment->steps[0]; int numsteps = segment->numsteps; float3 inv_cdf_distance_sum = safe_invert_color(last_step->cdf_distance); for(int i = 0; i < numsteps; i++, step++) step->cdf_distance *= inv_cdf_distance_sum; } } ccl_device void kernel_volume_decoupled_free(KernelGlobals *kg, VolumeSegment *segment) { free(segment->steps); } /* scattering for homogeneous and heterogeneous volumes, using decoupled ray * marching. unlike the non-decoupled functions, these do not do probalistic * scattering, they always scatter if there is any non-zero scattering * coefficient. * * these also do not do emission or modify throughput. * * function is expected to return VOLUME_PATH_SCATTERED when probalistic_scatter is false */ ccl_device VolumeIntegrateResult kernel_volume_decoupled_scatter( KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, float3 *throughput, float rphase, float rscatter, const VolumeSegment *segment, const float3 *light_P, bool probalistic_scatter) { kernel_assert(segment->closure_flag & SD_SCATTER); /* pick random color channel, we use the Veach one-sample * model with balance heuristic for the channels */ int channel = (int)(rphase*3.0f); sd->randb_closure = rphase*3.0f - channel; float xi = rscatter; /* probalistic scattering decision based on transmittance */ if(probalistic_scatter) { float sample_transmittance = kernel_volume_channel_get(segment->accum_transmittance, channel); if(1.0f - xi >= sample_transmittance) { /* rescale random number so we can reuse it */ xi = 1.0f - (1.0f - xi - sample_transmittance)/(1.0f - sample_transmittance); } else { *throughput /= sample_transmittance; return VOLUME_PATH_MISSED; } } VolumeStep *step; float3 transmittance; float pdf, sample_t; float mis_weight = 1.0f; bool distance_sample = true; bool use_mis = false; if(segment->sampling_method && light_P) { if(segment->sampling_method == SD_VOLUME_MIS) { /* multiple importance sample: randomly pick between * equiangular and distance sampling strategy */ if(xi < 0.5f) { xi *= 2.0f; } else { xi = (xi - 0.5f)*2.0f; distance_sample = false; } use_mis = true; } else { /* only equiangular sampling */ distance_sample = false; } } /* distance sampling */ if(distance_sample) { /* find step in cdf */ step = segment->steps; float prev_t = 0.0f; float3 step_pdf_distance = make_float3(1.0f, 1.0f, 1.0f); if(segment->numsteps > 1) { float prev_cdf = 0.0f; float step_cdf = 1.0f; float3 prev_cdf_distance = make_float3(0.0f, 0.0f, 0.0f); for(int i = 0; ; i++, step++) { /* todo: optimize using binary search */ step_cdf = kernel_volume_channel_get(step->cdf_distance, channel); if(xi < step_cdf || i == segment->numsteps-1) break; prev_cdf = step_cdf; prev_t = step->t; prev_cdf_distance = step->cdf_distance; } /* remap xi so we can reuse it */ xi = (xi - prev_cdf)/(step_cdf - prev_cdf); /* pdf for picking step */ step_pdf_distance = step->cdf_distance - prev_cdf_distance; } /* determine range in which we will sample */ float step_t = step->t - prev_t; /* sample distance and compute transmittance */ float3 distance_pdf; sample_t = prev_t + kernel_volume_distance_sample(step_t, step->sigma_t, channel, xi, &transmittance, &distance_pdf); /* modifiy pdf for hit/miss decision */ if(probalistic_scatter) distance_pdf *= make_float3(1.0f, 1.0f, 1.0f) - segment->accum_transmittance; pdf = average(distance_pdf * step_pdf_distance); /* multiple importance sampling */ if(use_mis) { float equi_pdf = kernel_volume_equiangular_pdf(ray, *light_P, sample_t); mis_weight = 2.0f*power_heuristic(pdf, equi_pdf); } } /* equi-angular sampling */ else { /* sample distance */ sample_t = kernel_volume_equiangular_sample(ray, *light_P, xi, &pdf); /* find step in which sampled distance is located */ step = segment->steps; float prev_t = 0.0f; float3 step_pdf_distance = make_float3(1.0f, 1.0f, 1.0f); if(segment->numsteps > 1) { float3 prev_cdf_distance = make_float3(0.0f, 0.0f, 0.0f); int numsteps = segment->numsteps; int high = numsteps - 1; int low = 0; int mid; while(low < high) { mid = (low + high) >> 1; if(sample_t < step[mid].t) high = mid; else if(sample_t >= step[mid + 1].t) low = mid + 1; else { /* found our interval in step[mid] .. step[mid+1] */ prev_t = step[mid].t; prev_cdf_distance = step[mid].cdf_distance; step += mid+1; break; } } if(low >= numsteps - 1) { prev_t = step[numsteps - 1].t; prev_cdf_distance = step[numsteps-1].cdf_distance; step += numsteps - 1; } /* pdf for picking step with distance sampling */ step_pdf_distance = step->cdf_distance - prev_cdf_distance; } /* determine range in which we will sample */ float step_t = step->t - prev_t; float step_sample_t = sample_t - prev_t; /* compute transmittance */ transmittance = volume_color_transmittance(step->sigma_t, step_sample_t); /* multiple importance sampling */ if(use_mis) { float3 distance_pdf3 = kernel_volume_distance_pdf(step_t, step->sigma_t, step_sample_t); float distance_pdf = average(distance_pdf3 * step_pdf_distance); mis_weight = 2.0f*power_heuristic(pdf, distance_pdf); } } /* compute transmittance up to this step */ if(step != segment->steps) transmittance *= (step-1)->accum_transmittance; /* modify throughput */ *throughput *= step->sigma_s * transmittance * (mis_weight / pdf); /* evaluate shader to create closures at shading point */ if(segment->numsteps > 1) { sd->P = ray->P + step->shade_t*ray->D; VolumeShaderCoefficients coeff; volume_shader_sample(kg, sd, state, sd->P, &coeff); } /* move to new position */ sd->P = ray->P + sample_t*ray->D; return VOLUME_PATH_SCATTERED; } /* decide if we need to use decoupled or not */ ccl_device bool kernel_volume_use_decoupled(KernelGlobals *kg, bool heterogeneous, bool direct, int sampling_method) { /* decoupled ray marching for heterogenous volumes not supported on the GPU, * which also means equiangular and multiple importance sampling is not * support for that case */ #ifdef __KERNEL_GPU__ if(heterogeneous) return false; #endif /* equiangular and multiple importance sampling only implemented for decoupled */ if(sampling_method != 0) return true; /* for all light sampling use decoupled, reusing shader evaluations is * typically faster in that case */ if(direct) return kernel_data.integrator.sample_all_lights_direct; else return kernel_data.integrator.sample_all_lights_indirect; } /* Volume Stack * * This is an array of object/shared ID's that the current segment of the path * is inside of. */ ccl_device void kernel_volume_stack_init(KernelGlobals *kg, Ray *ray, VolumeStack *stack) { /* NULL ray happens in the baker, does it need proper initializetion of * camera in volume? */ if(!kernel_data.cam.is_inside_volume || ray == NULL) { /* Camera is guaranteed to be in the air, only take background volume * into account in this case. */ if(kernel_data.background.volume_shader != SHADER_NONE) { stack[0].shader = kernel_data.background.volume_shader; stack[0].object = PRIM_NONE; stack[1].shader = SHADER_NONE; } else { stack[0].shader = SHADER_NONE; } return; } Ray volume_ray = *ray; volume_ray.t = FLT_MAX; int stack_index = 0, enclosed_index = 0; int enclosed_volumes[VOLUME_STACK_SIZE]; while(stack_index < VOLUME_STACK_SIZE - 1 && enclosed_index < VOLUME_STACK_SIZE - 1) { Intersection isect; if(!scene_intersect_volume(kg, &volume_ray, &isect)) { break; } ShaderData sd; shader_setup_from_ray(kg, &sd, &isect, &volume_ray, 0, 0); if(sd.flag & SD_HAS_VOLUME) { if(sd.flag & SD_BACKFACING) { /* If ray exited the volume and never entered to that volume * it means that camera is inside such a volume. */ bool is_enclosed = false; for(int i = 0; i < enclosed_index; ++i) { if(enclosed_volumes[i] == sd.object) { is_enclosed = true; break; } } if(is_enclosed == false) { stack[stack_index].object = sd.object; stack[stack_index].shader = sd.shader; ++stack_index; } } else { /* If ray from camera enters the volume, this volume shouldn't * be added to the stak on exit. */ enclosed_volumes[enclosed_index++] = sd.object; } } /* Move ray forward. */ volume_ray.P = ray_offset(sd.P, -sd.Ng); } /* stack_index of 0 means quick checks outside of the kernel gave false * positive, nothing to worry about, just we've wasted quite a few of * ticks just to come into conclusion that camera is in the air. * * In this case we're doing the same above -- check whether background has * volume. */ if(stack_index == 0 && kernel_data.background.volume_shader == SHADER_NONE) { stack[0].shader = kernel_data.background.volume_shader; stack[0].object = PRIM_NONE; stack[1].shader = SHADER_NONE; } else { stack[stack_index].shader = SHADER_NONE; } } ccl_device void kernel_volume_stack_enter_exit(KernelGlobals *kg, ShaderData *sd, VolumeStack *stack) { /* todo: we should have some way for objects to indicate if they want the * world shader to work inside them. excluding it by default is problematic * because non-volume objects can't be assumed to be closed manifolds */ if(!(sd->flag & SD_HAS_VOLUME)) return; if(sd->flag & SD_BACKFACING) { /* exit volume object: remove from stack */ for(int i = 0; stack[i].shader != SHADER_NONE; i++) { if(stack[i].object == sd->object) { /* shift back next stack entries */ do { stack[i] = stack[i+1]; i++; } while(stack[i].shader != SHADER_NONE); return; } } } else { /* enter volume object: add to stack */ int i; for(i = 0; stack[i].shader != SHADER_NONE; i++) { /* already in the stack? then we have nothing to do */ if(stack[i].object == sd->object) return; } /* if we exceed the stack limit, ignore */ if(i >= VOLUME_STACK_SIZE-1) return; /* add to the end of the stack */ stack[i].shader = sd->shader; stack[i].object = sd->object; stack[i+1].shader = SHADER_NONE; } } CCL_NAMESPACE_END