/* SPDX-License-Identifier: Apache-2.0 * Copyright 2011-2022 Blender Foundation */ #pragma once #include "kernel/light/common.h" CCL_NAMESPACE_BEGIN /* Importance sampling. * * An Area-Preserving Parametrization for Spherical Rectangles. * Carlos Urena et al. * * NOTE: light_p is modified when sample_coord is true. */ ccl_device_inline float area_light_rect_sample(float3 P, ccl_private float3 *light_p, float3 extentu, float3 extentv, float randu, float randv, bool sample_coord) { /* In our name system we're using P for the center, which is o in the paper. */ float3 corner = *light_p - extentu * 0.5f - extentv * 0.5f; float extentu_len, extentv_len; /* Compute local reference system R. */ float3 x = normalize_len(extentu, &extentu_len); float3 y = normalize_len(extentv, &extentv_len); float3 z = cross(x, y); /* Compute rectangle coords in local reference system. */ float3 dir = corner - P; float z0 = dot(dir, z); /* Flip 'z' to make it point against Q. */ if (z0 > 0.0f) { z *= -1.0f; z0 *= -1.0f; } float x0 = dot(dir, x); float y0 = dot(dir, y); float x1 = x0 + extentu_len; float y1 = y0 + extentv_len; /* Compute internal angles (gamma_i). */ float4 diff = make_float4(x0, y1, x1, y0) - make_float4(x1, y0, x0, y1); float4 nz = make_float4(y0, x1, y1, x0) * diff; nz = nz / sqrt(z0 * z0 * diff * diff + nz * nz); float g0 = safe_acosf(-nz.x * nz.y); float g1 = safe_acosf(-nz.y * nz.z); float g2 = safe_acosf(-nz.z * nz.w); float g3 = safe_acosf(-nz.w * nz.x); /* Compute predefined constants. */ float b0 = nz.x; float b1 = nz.z; float b0sq = b0 * b0; float k = M_2PI_F - g2 - g3; /* Compute solid angle from internal angles. */ float S = g0 + g1 - k; if (sample_coord) { /* Compute cu. */ float au = randu * S + k; float fu = (cosf(au) * b0 - b1) / sinf(au); float cu = 1.0f / sqrtf(fu * fu + b0sq) * (fu > 0.0f ? 1.0f : -1.0f); cu = clamp(cu, -1.0f, 1.0f); /* Compute xu. */ float xu = -(cu * z0) / max(sqrtf(1.0f - cu * cu), 1e-7f); xu = clamp(xu, x0, x1); /* Compute yv. */ float z0sq = z0 * z0; float y0sq = y0 * y0; float y1sq = y1 * y1; float d = sqrtf(xu * xu + z0sq); float h0 = y0 / sqrtf(d * d + y0sq); float h1 = y1 / sqrtf(d * d + y1sq); float hv = h0 + randv * (h1 - h0), hv2 = hv * hv; float yv = (hv2 < 1.0f - 1e-6f) ? (hv * d) / sqrtf(1.0f - hv2) : y1; /* Transform (xu, yv, z0) to world coords. */ *light_p = P + xu * x + yv * y + z0 * z; } /* return pdf */ if (S != 0.0f) return 1.0f / S; else return 0.0f; } /* Light spread. */ ccl_device float area_light_spread_attenuation(const float3 D, const float3 lightNg, const float tan_spread, const float normalize_spread) { /* Model a soft-box grid, computing the ratio of light not hidden by the * slats of the grid at a given angle. (see D10594). */ const float cos_a = -dot(D, lightNg); const float sin_a = safe_sqrtf(1.0f - sqr(cos_a)); const float tan_a = sin_a / cos_a; return max((1.0f - (tan_spread * tan_a)) * normalize_spread, 0.0f); } /* Compute subset of area light that actually has an influence on the shading point, to * reduce noise with low spread. */ ccl_device bool area_light_spread_clamp_area_light(const float3 P, const float3 lightNg, ccl_private float3 *lightP, ccl_private float3 *extentu, ccl_private float3 *extentv, const float tan_spread) { /* Closest point in area light plane and distance to that plane. */ const float3 closest_P = P - dot(lightNg, P - *lightP) * lightNg; const float t = len(closest_P - P); /* Radius of circle on area light that actually affects the shading point. */ const float radius = t / tan_spread; /* TODO: would be faster to store as normalized vector + length, also in area_light_rect_sample. */ float len_u, len_v; const float3 u = normalize_len(*extentu, &len_u); const float3 v = normalize_len(*extentv, &len_v); /* Local uv coordinates of closest point. */ const float closest_u = dot(u, closest_P - *lightP); const float closest_v = dot(v, closest_P - *lightP); /* Compute rectangle encompassing the circle that affects the shading point, * clamped to the bounds of the area light. */ const float min_u = max(closest_u - radius, -len_u * 0.5f); const float max_u = min(closest_u + radius, len_u * 0.5f); const float min_v = max(closest_v - radius, -len_v * 0.5f); const float max_v = min(closest_v + radius, len_v * 0.5f); /* Skip if rectangle is empty. */ if (min_u >= max_u || min_v >= max_v) { return false; } /* Compute new area light center position and axes from rectangle in local * uv coordinates. */ const float new_center_u = 0.5f * (min_u + max_u); const float new_center_v = 0.5f * (min_v + max_v); const float new_len_u = max_u - min_u; const float new_len_v = max_v - min_v; *lightP = *lightP + new_center_u * u + new_center_v * v; *extentu = u * new_len_u; *extentv = v * new_len_v; return true; } /* Common API. */ template ccl_device_inline bool area_light_sample(const ccl_global KernelLight *klight, const float randu, const float randv, const float3 P, ccl_private LightSample *ls) { ls->P = make_float3(klight->co[0], klight->co[1], klight->co[2]); float3 extentu = make_float3( klight->area.extentu[0], klight->area.extentu[1], klight->area.extentu[2]); float3 extentv = make_float3( klight->area.extentv[0], klight->area.extentv[1], klight->area.extentv[2]); float3 Ng = make_float3(klight->area.dir[0], klight->area.dir[1], klight->area.dir[2]); float invarea = fabsf(klight->area.invarea); bool is_round = (klight->area.invarea < 0.0f); if (!in_volume_segment) { if (dot(ls->P - P, Ng) > 0.0f) { return false; } } float3 inplane; if (is_round || in_volume_segment) { inplane = ellipse_sample(extentu * 0.5f, extentv * 0.5f, randu, randv); ls->P += inplane; ls->pdf = invarea; } else { inplane = ls->P; float3 sample_extentu = extentu; float3 sample_extentv = extentv; if (!in_volume_segment && klight->area.tan_spread > 0.0f) { if (!area_light_spread_clamp_area_light( P, Ng, &ls->P, &sample_extentu, &sample_extentv, klight->area.tan_spread)) { return false; } } ls->pdf = area_light_rect_sample( P, &ls->P, sample_extentu, sample_extentv, randu, randv, true); inplane = ls->P - inplane; } const float light_u = dot(inplane, extentu) * (1.0f / dot(extentu, extentu)); const float light_v = dot(inplane, extentv) * (1.0f / dot(extentv, extentv)); /* NOTE: Return barycentric coordinates in the same notation as Embree and OptiX. */ ls->u = light_v + 0.5f; ls->v = -light_u - light_v; ls->Ng = Ng; ls->D = normalize_len(ls->P - P, &ls->t); ls->eval_fac = 0.25f * invarea; if (klight->area.tan_spread > 0.0f) { /* Area Light spread angle attenuation */ ls->eval_fac *= area_light_spread_attenuation( ls->D, ls->Ng, klight->area.tan_spread, klight->area.normalize_spread); } if (is_round) { ls->pdf *= lamp_light_pdf(Ng, -ls->D, ls->t); } return true; } ccl_device_forceinline void area_light_update_position(const ccl_global KernelLight *klight, ccl_private LightSample *ls, const float3 P) { const float invarea = fabsf(klight->area.invarea); ls->D = normalize_len(ls->P - P, &ls->t); ls->pdf = invarea; if (klight->area.tan_spread > 0.f) { ls->eval_fac = 0.25f * invarea; ls->eval_fac *= area_light_spread_attenuation( ls->D, ls->Ng, klight->area.tan_spread, klight->area.normalize_spread); } } ccl_device_inline bool area_light_intersect(const ccl_global KernelLight *klight, const ccl_private Ray *ccl_restrict ray, ccl_private float *t, ccl_private float *u, ccl_private float *v) { /* Area light. */ const float invarea = fabsf(klight->area.invarea); const bool is_round = (klight->area.invarea < 0.0f); if (invarea == 0.0f) { return false; } const float3 extentu = make_float3( klight->area.extentu[0], klight->area.extentu[1], klight->area.extentu[2]); const float3 extentv = make_float3( klight->area.extentv[0], klight->area.extentv[1], klight->area.extentv[2]); const float3 Ng = make_float3(klight->area.dir[0], klight->area.dir[1], klight->area.dir[2]); /* One sided. */ if (dot(ray->D, Ng) >= 0.0f) { return false; } const float3 light_P = make_float3(klight->co[0], klight->co[1], klight->co[2]); float3 P; return ray_quad_intersect( ray->P, ray->D, ray->tmin, ray->tmax, light_P, extentu, extentv, Ng, &P, t, u, v, is_round); } ccl_device_inline bool area_light_sample_from_intersection( const ccl_global KernelLight *klight, ccl_private const Intersection *ccl_restrict isect, const float3 ray_P, const float3 ray_D, ccl_private LightSample *ccl_restrict ls) { /* area light */ float invarea = fabsf(klight->area.invarea); float3 extentu = make_float3( klight->area.extentu[0], klight->area.extentu[1], klight->area.extentu[2]); float3 extentv = make_float3( klight->area.extentv[0], klight->area.extentv[1], klight->area.extentv[2]); float3 Ng = make_float3(klight->area.dir[0], klight->area.dir[1], klight->area.dir[2]); float3 light_P = make_float3(klight->co[0], klight->co[1], klight->co[2]); ls->u = isect->u; ls->v = isect->v; ls->D = ray_D; ls->Ng = Ng; const bool is_round = (klight->area.invarea < 0.0f); if (is_round) { ls->pdf = invarea * lamp_light_pdf(Ng, -ray_D, ls->t); } else { float3 sample_extentu = extentu; float3 sample_extentv = extentv; if (klight->area.tan_spread > 0.0f) { if (!area_light_spread_clamp_area_light( ray_P, Ng, &light_P, &sample_extentu, &sample_extentv, klight->area.tan_spread)) { return false; } } ls->pdf = area_light_rect_sample(ray_P, &light_P, sample_extentu, sample_extentv, 0, 0, false); } ls->eval_fac = 0.25f * invarea; if (klight->area.tan_spread > 0.0f) { /* Area Light spread angle attenuation */ ls->eval_fac *= area_light_spread_attenuation( ls->D, ls->Ng, klight->area.tan_spread, klight->area.normalize_spread); if (ls->eval_fac == 0.0f) { return false; } } return true; } ccl_device_inline float area_light_tree_weight(const ccl_global KernelLight *klight, const float3 P, const float3 N) { float3 light_P = make_float3(klight->co[0], klight->co[1], klight->co[2]); float3 extentu = make_float3( klight->area.extentu[0], klight->area.extentu[1], klight->area.extentu[2]); float3 extentv = make_float3( klight->area.extentv[0], klight->area.extentv[1], klight->area.extentv[2]); float3 Ng = make_float3(klight->area.dir[0], klight->area.dir[1], klight->area.dir[2]); bool is_round = (klight->area.invarea < 0.0f); if (dot(light_P - P, Ng) > 0.0f) { return 0.0f; } if (!is_round) { if (klight->area.tan_spread > 0.0f) { if (!area_light_spread_clamp_area_light( P, Ng, &light_P, &extentu, &extentv, klight->area.tan_spread)) { return 0.0f; } } } return 1.0f; } CCL_NAMESPACE_END