/* * Copyright 2011, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include "mesh.h" #include "object.h" #include "scene.h" #include "osl_closures.h" #include "osl_globals.h" #include "osl_services.h" #include "osl_shader.h" #include "util_foreach.h" #include "util_string.h" #include "kernel_compat_cpu.h" #include "kernel_globals.h" #include "kernel_montecarlo.h" #include "kernel_projection.h" #include "kernel_differential.h" #include "kernel_object.h" #include "kernel_bvh.h" #include "kernel_attribute.h" #include "kernel_projection.h" #include "kernel_triangle.h" #include "kernel_accumulate.h" #include "kernel_shader.h" CCL_NAMESPACE_BEGIN /* RenderServices implementation */ #define TO_MATRIX44(m) (*(OSL::Matrix44 *)&(m)) /* static ustrings */ ustring OSLRenderServices::u_distance("distance"); ustring OSLRenderServices::u_index("index"); ustring OSLRenderServices::u_camera("camera"); ustring OSLRenderServices::u_screen("screen"); ustring OSLRenderServices::u_raster("raster"); ustring OSLRenderServices::u_ndc("NDC"); ustring OSLRenderServices::u_object_location("object:location"); ustring OSLRenderServices::u_object_index("object:index"); ustring OSLRenderServices::u_geom_dupli_generated("geom:dupli_generated"); ustring OSLRenderServices::u_geom_dupli_uv("geom:dupli_uv"); ustring OSLRenderServices::u_material_index("material:index"); ustring OSLRenderServices::u_object_random("object:random"); ustring OSLRenderServices::u_particle_index("particle:index"); ustring OSLRenderServices::u_particle_age("particle:age"); ustring OSLRenderServices::u_particle_lifetime("particle:lifetime"); ustring OSLRenderServices::u_particle_location("particle:location"); ustring OSLRenderServices::u_particle_rotation("particle:rotation"); ustring OSLRenderServices::u_particle_size("particle:size"); ustring OSLRenderServices::u_particle_velocity("particle:velocity"); ustring OSLRenderServices::u_particle_angular_velocity("particle:angular_velocity"); ustring OSLRenderServices::u_geom_numpolyvertices("geom:numpolyvertices"); ustring OSLRenderServices::u_geom_trianglevertices("geom:trianglevertices"); ustring OSLRenderServices::u_geom_polyvertices("geom:polyvertices"); ustring OSLRenderServices::u_geom_name("geom:name"); ustring OSLRenderServices::u_path_ray_length("path:ray_length"); ustring OSLRenderServices::u_trace("trace"); ustring OSLRenderServices::u_hit("hit"); ustring OSLRenderServices::u_hitdist("hitdist"); ustring OSLRenderServices::u_N("N"); ustring OSLRenderServices::u_Ng("Ng"); ustring OSLRenderServices::u_P("P"); ustring OSLRenderServices::u_I("I"); ustring OSLRenderServices::u_u("u"); ustring OSLRenderServices::u_v("v"); ustring OSLRenderServices::u_empty; OSLRenderServices::OSLRenderServices() { kernel_globals = NULL; } OSLRenderServices::~OSLRenderServices() { } void OSLRenderServices::thread_init(KernelGlobals *kernel_globals_) { kernel_globals = kernel_globals_; } bool OSLRenderServices::get_matrix(OSL::Matrix44 &result, OSL::TransformationPtr xform, float time) { /* this is only used for shader and object space, we don't really have * a concept of shader space, so we just use object space for both. */ if (xform) { KernelGlobals *kg = kernel_globals; const ShaderData *sd = (const ShaderData *)xform; int object = sd->object; if (object != ~0) { #ifdef __OBJECT_MOTION__ Transform tfm; if(time == sd->time) tfm = sd->ob_tfm; else tfm = object_fetch_transform_motion_test(kg, object, time, NULL); #else Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM); #endif tfm = transform_transpose(tfm); result = TO_MATRIX44(tfm); return true; } } return false; } bool OSLRenderServices::get_inverse_matrix(OSL::Matrix44 &result, OSL::TransformationPtr xform, float time) { /* this is only used for shader and object space, we don't really have * a concept of shader space, so we just use object space for both. */ if (xform) { KernelGlobals *kg = kernel_globals; const ShaderData *sd = (const ShaderData *)xform; int object = sd->object; if (object != ~0) { #ifdef __OBJECT_MOTION__ Transform itfm; if(time == sd->time) itfm = sd->ob_itfm; else object_fetch_transform_motion_test(kg, object, time, &itfm); #else Transform itfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM); #endif itfm = transform_transpose(itfm); result = TO_MATRIX44(itfm); return true; } } return false; } bool OSLRenderServices::get_matrix(OSL::Matrix44 &result, ustring from, float time) { KernelGlobals *kg = kernel_globals; if (from == u_ndc) { Transform tfm = transform_transpose(transform_quick_inverse(kernel_data.cam.worldtondc)); result = TO_MATRIX44(tfm); return true; } else if (from == u_raster) { Transform tfm = transform_transpose(kernel_data.cam.rastertoworld); result = TO_MATRIX44(tfm); return true; } else if (from == u_screen) { Transform tfm = transform_transpose(kernel_data.cam.screentoworld); result = TO_MATRIX44(tfm); return true; } else if (from == u_camera) { Transform tfm = transform_transpose(kernel_data.cam.cameratoworld); result = TO_MATRIX44(tfm); return true; } return false; } bool OSLRenderServices::get_inverse_matrix(OSL::Matrix44 &result, ustring to, float time) { KernelGlobals *kg = kernel_globals; if (to == u_ndc) { Transform tfm = transform_transpose(kernel_data.cam.worldtondc); result = TO_MATRIX44(tfm); return true; } else if (to == u_raster) { Transform tfm = transform_transpose(kernel_data.cam.worldtoraster); result = TO_MATRIX44(tfm); return true; } else if (to == u_screen) { Transform tfm = transform_transpose(kernel_data.cam.worldtoscreen); result = TO_MATRIX44(tfm); return true; } else if (to == u_camera) { Transform tfm = transform_transpose(kernel_data.cam.worldtocamera); result = TO_MATRIX44(tfm); return true; } return false; } bool OSLRenderServices::get_matrix(OSL::Matrix44 &result, OSL::TransformationPtr xform) { /* this is only used for shader and object space, we don't really have * a concept of shader space, so we just use object space for both. */ if (xform) { const ShaderData *sd = (const ShaderData *)xform; int object = sd->object; if (object != ~0) { #ifdef __OBJECT_MOTION__ Transform tfm = sd->ob_tfm; #else KernelGlobals *kg = kernel_globals; Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM); #endif tfm = transform_transpose(tfm); result = TO_MATRIX44(tfm); return true; } } return false; } bool OSLRenderServices::get_inverse_matrix(OSL::Matrix44 &result, OSL::TransformationPtr xform) { /* this is only used for shader and object space, we don't really have * a concept of shader space, so we just use object space for both. */ if (xform) { const ShaderData *sd = (const ShaderData *)xform; int object = sd->object; if (object != ~0) { #ifdef __OBJECT_MOTION__ Transform tfm = sd->ob_itfm; #else KernelGlobals *kg = kernel_globals; Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM); #endif tfm = transform_transpose(tfm); result = TO_MATRIX44(tfm); return true; } } return false; } bool OSLRenderServices::get_matrix(OSL::Matrix44 &result, ustring from) { KernelGlobals *kg = kernel_globals; if (from == u_ndc) { Transform tfm = transform_transpose(transform_quick_inverse(kernel_data.cam.worldtondc)); result = TO_MATRIX44(tfm); return true; } else if (from == u_raster) { Transform tfm = transform_transpose(kernel_data.cam.rastertoworld); result = TO_MATRIX44(tfm); return true; } else if (from == u_screen) { Transform tfm = transform_transpose(kernel_data.cam.screentoworld); result = TO_MATRIX44(tfm); return true; } else if (from == u_camera) { Transform tfm = transform_transpose(kernel_data.cam.cameratoworld); result = TO_MATRIX44(tfm); return true; } return false; } bool OSLRenderServices::get_inverse_matrix(OSL::Matrix44 &result, ustring to) { KernelGlobals *kg = kernel_globals; if (to == u_ndc) { Transform tfm = transform_transpose(kernel_data.cam.worldtondc); result = TO_MATRIX44(tfm); return true; } else if (to == u_raster) { Transform tfm = transform_transpose(kernel_data.cam.worldtoraster); result = TO_MATRIX44(tfm); return true; } else if (to == u_screen) { Transform tfm = transform_transpose(kernel_data.cam.worldtoscreen); result = TO_MATRIX44(tfm); return true; } else if (to == u_camera) { Transform tfm = transform_transpose(kernel_data.cam.worldtocamera); result = TO_MATRIX44(tfm); return true; } return false; } bool OSLRenderServices::get_array_attribute(void *renderstate, bool derivatives, ustring object, TypeDesc type, ustring name, int index, void *val) { return false; } static bool set_attribute_float3(float3 f[3], TypeDesc type, bool derivatives, void *val) { if (type == TypeDesc::TypePoint || type == TypeDesc::TypeVector || type == TypeDesc::TypeNormal || type == TypeDesc::TypeColor) { float *fval = (float *)val; fval[0] = f[0].x; fval[1] = f[0].y; fval[2] = f[0].z; if (derivatives) { fval[3] = f[1].x; fval[4] = f[1].y; fval[5] = f[1].z; fval[6] = f[2].x; fval[7] = f[2].y; fval[8] = f[2].z; } return true; } else if(type == TypeDesc::TypeFloat) { float *fval = (float *)val; fval[0] = average(f[0]); if (derivatives) { fval[1] = average(f[1]); fval[2] = average(f[2]); } return true; } return false; } static bool set_attribute_float3(float3 f, TypeDesc type, bool derivatives, void *val) { float3 fv[3]; fv[0] = f; fv[1] = make_float3(0.0f, 0.0f, 0.0f); fv[2] = make_float3(0.0f, 0.0f, 0.0f); return set_attribute_float3(fv, type, derivatives, val); } static bool set_attribute_float(float f[3], TypeDesc type, bool derivatives, void *val) { if (type == TypeDesc::TypePoint || type == TypeDesc::TypeVector || type == TypeDesc::TypeNormal || type == TypeDesc::TypeColor) { float *fval = (float *)val; fval[0] = f[0]; fval[1] = f[1]; fval[2] = f[2]; if (derivatives) { fval[3] = f[1]; fval[4] = f[1]; fval[5] = f[1]; fval[6] = f[2]; fval[7] = f[2]; fval[8] = f[2]; } return true; } else if(type == TypeDesc::TypeFloat) { float *fval = (float *)val; fval[0] = f[0]; if (derivatives) { fval[1] = f[1]; fval[2] = f[2]; } return true; } return false; } static bool set_attribute_float(float f, TypeDesc type, bool derivatives, void *val) { float fv[3]; fv[0] = f; fv[1] = 0.0f; fv[2] = 0.0f; return set_attribute_float(fv, type, derivatives, val); } static bool set_attribute_int(int i, TypeDesc type, bool derivatives, void *val) { if(type.basetype == TypeDesc::INT && type.aggregate == TypeDesc::SCALAR && type.arraylen == 0) { int *ival = (int *)val; ival[0] = i; if (derivatives) { ival[1] = 0; ival[2] = 0; } return true; } return false; } static bool set_attribute_string(ustring str, TypeDesc type, bool derivatives, void *val) { if(type.basetype == TypeDesc::INT && type.aggregate == TypeDesc::SCALAR && type.arraylen == 0) { ustring *sval = (ustring *)val; sval[0] = str; if (derivatives) { sval[1] = OSLRenderServices::u_empty; sval[2] = OSLRenderServices::u_empty; } return true; } return false; } static bool set_attribute_float3_3(float3 P[3], TypeDesc type, bool derivatives, void *val) { if(type.vecsemantics == TypeDesc::POINT && type.arraylen >= 3) { float *fval = (float *)val; fval[0] = P[0].x; fval[1] = P[0].y; fval[2] = P[0].z; fval[3] = P[1].x; fval[4] = P[1].y; fval[5] = P[1].z; fval[6] = P[2].x; fval[7] = P[2].y; fval[8] = P[2].z; if(type.arraylen > 3) memset(fval + 3*3, 0, sizeof(float)*3*(type.arraylen - 3)); if (derivatives) memset(fval + type.arraylen*3, 0, sizeof(float)*2*3*type.arraylen); return true; } return false; } static bool get_mesh_attribute(KernelGlobals *kg, const ShaderData *sd, const OSLGlobals::Attribute& attr, const TypeDesc& type, bool derivatives, void *val) { if (attr.type == TypeDesc::TypePoint || attr.type == TypeDesc::TypeVector || attr.type == TypeDesc::TypeNormal || attr.type == TypeDesc::TypeColor) { float3 fval[3]; fval[0] = triangle_attribute_float3(kg, sd, attr.elem, attr.offset, (derivatives) ? &fval[1] : NULL, (derivatives) ? &fval[2] : NULL); return set_attribute_float3(fval, type, derivatives, val); } else if (attr.type == TypeDesc::TypeFloat) { float fval[3]; fval[0] = triangle_attribute_float(kg, sd, attr.elem, attr.offset, (derivatives) ? &fval[1] : NULL, (derivatives) ? &fval[2] : NULL); return set_attribute_float(fval, type, derivatives, val); } else { return false; } } static void get_object_attribute(const OSLGlobals::Attribute& attr, bool derivatives, void *val) { size_t datasize = attr.value.datasize(); memcpy(val, attr.value.data(), datasize); if (derivatives) memset((char *)val + datasize, 0, datasize * 2); } bool OSLRenderServices::get_object_standard_attribute(KernelGlobals *kg, ShaderData *sd, ustring name, TypeDesc type, bool derivatives, void *val) { /* todo: turn this into hash table? */ /* Object Attributes */ if (name == u_object_location) { float3 f = object_location(kg, sd); return set_attribute_float3(f, type, derivatives, val); } else if (name == u_object_index) { float f = object_pass_id(kg, sd->object); return set_attribute_float(f, type, derivatives, val); } else if (name == u_geom_dupli_generated) { float3 f = object_dupli_generated(kg, sd->object); return set_attribute_float3(f, type, derivatives, val); } else if (name == u_geom_dupli_uv) { float3 f = object_dupli_uv(kg, sd->object); return set_attribute_float3(f, type, derivatives, val); } else if (name == u_material_index) { float f = shader_pass_id(kg, sd); return set_attribute_float(f, type, derivatives, val); } else if (name == u_object_random) { float f = object_random_number(kg, sd->object); return set_attribute_float(f, type, derivatives, val); } /* Particle Attributes */ else if (name == u_particle_index) { uint particle_id = object_particle_id(kg, sd->object); float f = particle_index(kg, particle_id); return set_attribute_float(f, type, derivatives, val); } else if (name == u_particle_age) { uint particle_id = object_particle_id(kg, sd->object); float f = particle_age(kg, particle_id); return set_attribute_float(f, type, derivatives, val); } else if (name == u_particle_lifetime) { uint particle_id = object_particle_id(kg, sd->object); float f= particle_lifetime(kg, particle_id); return set_attribute_float(f, type, derivatives, val); } else if (name == u_particle_location) { uint particle_id = object_particle_id(kg, sd->object); float3 f = particle_location(kg, particle_id); return set_attribute_float3(f, type, derivatives, val); } #if 0 /* unsupported */ else if (name == u_particle_rotation) { uint particle_id = object_particle_id(kg, sd->object); float4 f = particle_rotation(kg, particle_id); return set_attribute_float4(f, type, derivatives, val); } #endif else if (name == u_particle_size) { uint particle_id = object_particle_id(kg, sd->object); float f = particle_size(kg, particle_id); return set_attribute_float(f, type, derivatives, val); } else if (name == u_particle_velocity) { uint particle_id = object_particle_id(kg, sd->object); float3 f = particle_velocity(kg, particle_id); return set_attribute_float3(f, type, derivatives, val); } else if (name == u_particle_angular_velocity) { uint particle_id = object_particle_id(kg, sd->object); float3 f = particle_angular_velocity(kg, particle_id); return set_attribute_float3(f, type, derivatives, val); } else if (name == u_geom_numpolyvertices) { return set_attribute_int(3, type, derivatives, val); } else if (name == u_geom_trianglevertices || name == u_geom_polyvertices) { float3 P[3]; triangle_vertices(kg, sd->prim, P); if(!(sd->flag & SD_TRANSFORM_APPLIED)) { object_position_transform(kg, sd, &P[0]); object_position_transform(kg, sd, &P[1]); object_position_transform(kg, sd, &P[2]); } return set_attribute_float3_3(P, type, derivatives, val); } else if(name == u_geom_name) { ustring object_name = kg->osl->object_names[sd->object]; return set_attribute_string(object_name, type, derivatives, val); } else return false; } bool OSLRenderServices::get_background_attribute(KernelGlobals *kg, ShaderData *sd, ustring name, TypeDesc type, bool derivatives, void *val) { /* Ray Length */ if (name == u_path_ray_length) { float f = sd->ray_length; return set_attribute_float(f, type, derivatives, val); } else return false; } bool OSLRenderServices::get_attribute(void *renderstate, bool derivatives, ustring object_name, TypeDesc type, ustring name, void *val) { KernelGlobals *kg = kernel_globals; ShaderData *sd = (ShaderData *)renderstate; int object = sd->object; int tri = sd->prim; /* lookup of attribute on another object */ if (object_name != u_empty) { OSLGlobals::ObjectNameMap::iterator it = kg->osl->object_name_map.find(object_name); if (it == kg->osl->object_name_map.end()) return false; object = it->second; tri = ~0; } else if (object == ~0) { return get_background_attribute(kg, sd, name, type, derivatives, val); } /* find attribute on object */ OSLGlobals::AttributeMap& attribute_map = kg->osl->attribute_map[object]; OSLGlobals::AttributeMap::iterator it = attribute_map.find(name); if (it != attribute_map.end()) { const OSLGlobals::Attribute& attr = it->second; if (attr.elem != ATTR_ELEMENT_VALUE) { /* triangle and vertex attributes */ if (tri != ~0) return get_mesh_attribute(kg, sd, attr, type, derivatives, val); } else { /* object attribute */ get_object_attribute(attr, derivatives, val); return true; } } else { /* not found in attribute, check standard object info */ bool is_std_object_attribute = get_object_standard_attribute(kg, sd, name, type, derivatives, val); if (is_std_object_attribute) return true; return get_background_attribute(kg, sd, name, type, derivatives, val); } return false; } bool OSLRenderServices::get_userdata(bool derivatives, ustring name, TypeDesc type, void *renderstate, void *val) { return false; /* disabled by lockgeom */ } bool OSLRenderServices::has_userdata(ustring name, TypeDesc type, void *renderstate) { return false; /* never called by OSL */ } bool OSLRenderServices::texture(ustring filename, TextureOpt &options, OSL::ShaderGlobals *sg, float s, float t, float dsdx, float dtdx, float dsdy, float dtdy, float *result) { OSL::TextureSystem *ts = kernel_globals->osl->ts; bool status = ts->texture(filename, options, s, t, dsdx, dtdx, dsdy, dtdy, result); if(!status) { if(options.nchannels == 3 || options.nchannels == 4) { result[0] = 1.0f; result[1] = 0.0f; result[2] = 1.0f; if(options.nchannels == 4) result[3] = 1.0f; } } return status; } bool OSLRenderServices::texture3d(ustring filename, TextureOpt &options, OSL::ShaderGlobals *sg, const OSL::Vec3 &P, const OSL::Vec3 &dPdx, const OSL::Vec3 &dPdy, const OSL::Vec3 &dPdz, float *result) { OSL::TextureSystem *ts = kernel_globals->osl->ts; bool status = ts->texture3d(filename, options, P, dPdx, dPdy, dPdz, result); if(!status) { if(options.nchannels == 3 || options.nchannels == 4) { result[0] = 1.0f; result[1] = 0.0f; result[2] = 1.0f; if(options.nchannels == 4) result[3] = 1.0f; } } return status; } bool OSLRenderServices::environment(ustring filename, TextureOpt &options, OSL::ShaderGlobals *sg, const OSL::Vec3 &R, const OSL::Vec3 &dRdx, const OSL::Vec3 &dRdy, float *result) { OSL::TextureSystem *ts = kernel_globals->osl->ts; bool status = ts->environment(filename, options, R, dRdx, dRdy, result); if(!status) { if(options.nchannels == 3 || options.nchannels == 4) { result[0] = 1.0f; result[1] = 0.0f; result[2] = 1.0f; if(options.nchannels == 4) result[3] = 1.0f; } } return status; } bool OSLRenderServices::get_texture_info(ustring filename, int subimage, ustring dataname, TypeDesc datatype, void *data) { OSL::TextureSystem *ts = kernel_globals->osl->ts; return ts->get_texture_info(filename, subimage, dataname, datatype, data); } int OSLRenderServices::pointcloud_search(OSL::ShaderGlobals *sg, ustring filename, const OSL::Vec3 ¢er, float radius, int max_points, bool sort, size_t *out_indices, float *out_distances, int derivs_offset) { return 0; } int OSLRenderServices::pointcloud_get(ustring filename, size_t *indices, int count, ustring attr_name, TypeDesc attr_type, void *out_data) { return 0; } bool OSLRenderServices::trace(TraceOpt &options, OSL::ShaderGlobals *sg, const OSL::Vec3 &P, const OSL::Vec3 &dPdx, const OSL::Vec3 &dPdy, const OSL::Vec3 &R, const OSL::Vec3 &dRdx, const OSL::Vec3 &dRdy) { /* todo: options.shader support, maybe options.traceset */ ShaderData *sd = (ShaderData *)(sg->renderstate); /* setup ray */ Ray ray; ray.P = TO_FLOAT3(P); ray.D = TO_FLOAT3(R); ray.t = (options.maxdist == 1.0e30)? FLT_MAX: options.maxdist - options.mindist; ray.time = sd->time; if(options.mindist == 0.0f) { /* avoid self-intersections */ if(ray.P == sd->P) { bool transmit = (dot(sd->Ng, ray.D) < 0.0f); ray.P = ray_offset(sd->P, (transmit)? -sd->Ng: sd->Ng); } } else { /* offset for minimum distance */ ray.P += options.mindist*ray.D; } /* ray differentials */ ray.dP.dx = TO_FLOAT3(dPdx); ray.dP.dy = TO_FLOAT3(dPdy); ray.dD.dx = TO_FLOAT3(dRdx); ray.dD.dy = TO_FLOAT3(dRdy); /* allocate trace data */ TraceData *tracedata = new TraceData(); tracedata->ray = ray; tracedata->setup = false; if(sg->tracedata) delete (TraceData*)sg->tracedata; sg->tracedata = tracedata; /* raytrace */ return scene_intersect(kernel_globals, &ray, ~0, &tracedata->isect); } bool OSLRenderServices::getmessage(OSL::ShaderGlobals *sg, ustring source, ustring name, TypeDesc type, void *val, bool derivatives) { TraceData *tracedata = (TraceData*)sg->tracedata; if(source == u_trace && tracedata) { if(name == u_hit) { return set_attribute_int((tracedata->isect.prim != ~0), type, derivatives, val); } else if(tracedata->isect.prim != ~0) { if(name == u_hitdist) { float f[3] = {tracedata->isect.t, 0.0f, 0.0f}; return set_attribute_float(f, type, derivatives, val); } else { KernelGlobals *kg = kernel_globals; ShaderData *sd = &tracedata->sd; if(!tracedata->setup) { /* lazy shader data setup */ shader_setup_from_ray(kg, sd, &tracedata->isect, &tracedata->ray); tracedata->setup = true; } if(name == u_N) { return set_attribute_float3(sd->N, type, derivatives, val); } else if(name == u_Ng) { return set_attribute_float3(sd->Ng, type, derivatives, val); } else if(name == u_P) { float3 f[3] = {sd->P, sd->dP.dx, sd->dP.dy}; return set_attribute_float3(f, type, derivatives, val); } else if(name == u_I) { float3 f[3] = {sd->I, sd->dI.dx, sd->dI.dy}; return set_attribute_float3(f, type, derivatives, val); } else if(name == u_u) { float f[3] = {sd->u, sd->du.dx, sd->du.dy}; return set_attribute_float(f, type, derivatives, val); } else if(name == u_v) { float f[3] = {sd->v, sd->dv.dx, sd->dv.dy}; return set_attribute_float(f, type, derivatives, val); } return get_attribute(sd, derivatives, u_empty, type, name, val); } } } return false; } CCL_NAMESPACE_END