/* SPDX-License-Identifier: Apache-2.0 * Copyright 2011-2022 Blender Foundation */ float safe_divide(float a, float b) { return (b != 0.0) ? a / b : 0.0; } vector safe_divide(vector a, vector b) { return vector((b[0] != 0.0) ? a[0] / b[0] : 0.0, (b[1] != 0.0) ? a[1] / b[1] : 0.0, (b[2] != 0.0) ? a[2] / b[2] : 0.0); } float safe_modulo(float a, float b) { return (b != 0.0) ? fmod(a, b) : 0.0; } float fract(float a) { return a - floor(a); } /* See: https://www.iquilezles.org/www/articles/smin/smin.htm. */ float smoothmin(float a, float b, float c) { if (c != 0.0) { float h = max(c - abs(a - b), 0.0) / c; return min(a, b) - h * h * h * c * (1.0 / 6.0); } else { return min(a, b); } } float pingpong(float a, float b) { return (b != 0.0) ? abs(fract((a - b) / (b * 2.0)) * b * 2.0 - b) : 0.0; } float safe_sqrt(float a) { return (a > 0.0) ? sqrt(a) : 0.0; } float safe_log(float a, float b) { return (a > 0.0 && b > 0.0) ? log(a) / log(b) : 0.0; } vector project(vector v, vector v_proj) { float lenSquared = dot(v_proj, v_proj); return (lenSquared != 0.0) ? (dot(v, v_proj) / lenSquared) * v_proj : vector(0.0); } vector snap(vector a, vector b) { return floor(safe_divide(a, b)) * b; } /* Adapted from GODOT-engine math_funcs.h. */ float wrap(float value, float max, float min) { float range = max - min; return (range != 0.0) ? value - (range * floor((value - min) / range)) : min; } point wrap(point value, point max, point min) { return point(wrap(value[0], max[0], min[0]), wrap(value[1], max[1], min[1]), wrap(value[2], max[2], min[2])); } /* Built in OSL faceforward is `(dot(I, Nref) > 0) ? -N : N;` which is different to * GLSL `dot(Nref, I) < 0 ? N : -N` for zero values. */ point compatible_faceforward(point vec, point incident, point reference) { return dot(reference, incident) < 0.0 ? vec : -vec; } matrix euler_to_mat(point euler) { float cx = cos(euler[0]); float cy = cos(euler[1]); float cz = cos(euler[2]); float sx = sin(euler[0]); float sy = sin(euler[1]); float sz = sin(euler[2]); matrix mat = matrix(1.0); mat[0][0] = cy * cz; mat[0][1] = cy * sz; mat[0][2] = -sy; mat[1][0] = sy * sx * cz - cx * sz; mat[1][1] = sy * sx * sz + cx * cz; mat[1][2] = cy * sx; +mat[2][0] = sy * cx * cz + sx * sz; mat[2][1] = sy * cx * sz - sx * cz; mat[2][2] = cy * cx; return mat; }