/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "stdosl.h" #include "node_color.h" point texco_remap_square(point co) { return (co - point(0.5, 0.5, 0.5)) * 2.0; } point map_to_tube(vector dir) { float u, v; v = (dir[2] + 1.0) * 0.5; float len = sqrt(dir[0] * dir[0] + dir[1] * dir[1]); if (len > 0.0) { u = (1.0 - (atan2(dir[0] / len, dir[1] / len) / M_PI)) * 0.5; } else { v = u = 0.0; /* To avoid un-initialized variables. */ } return point(u, v, 0.0); } point map_to_sphere(vector dir) { float len = length(dir); float v, u; if (len > 0.0) { if (dir[0] == 0.0 && dir[1] == 0.0) { u = 0.0; /* Othwise domain error. */ } else { u = (1.0 - atan2(dir[0], dir[1]) / M_PI) / 2.0; } v = 1.0 - acos(dir[2] / len) / M_PI; } else { v = u = 0.0; /* To avoid un-initialized variables. */ } return point(u, v, 0.0); } color image_texture_lookup(string filename, string color_space, float u, float v, output float Alpha, int use_alpha, int is_float, string interpolation, string wrap) { color rgb = (color)texture(filename, u, 1.0 - v, "wrap", wrap, "interp", interpolation, "alpha", Alpha); if (use_alpha) { rgb = color_unpremultiply(rgb, Alpha); if (!is_float) rgb = min(rgb, 1.0); } if (color_space == "sRGB") { rgb = color_srgb_to_scene_linear(rgb); } return rgb; } shader node_image_texture( int use_mapping = 0, matrix mapping = matrix(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), point Vector = P, string filename = "", string color_space = "sRGB", string projection = "Flat", string interpolation = "smartcubic", string wrap = "periodic", float projection_blend = 0.0, int is_float = 1, int use_alpha = 1, output color Color = 0.0, output float Alpha = 1.0) { point p = Vector; if (use_mapping) p = transform(mapping, p); if (projection == "Flat") { Color = image_texture_lookup(filename, color_space, p[0], p[1], Alpha, use_alpha, is_float, interpolation, wrap); } else if (projection == "Box") { /* object space normal */ vector Nob = transform("world", "object", N); /* project from direction vector to barycentric coordinates in triangles */ Nob = vector(fabs(Nob[0]), fabs(Nob[1]), fabs(Nob[2])); Nob /= (Nob[0] + Nob[1] + Nob[2]); /* basic idea is to think of this as a triangle, each corner representing * one of the 3 faces of the cube. in the corners we have single textures, * in between we blend between two textures, and in the middle we a blend * between three textures. * * the Nxyz values are the barycentric coordinates in an equilateral * triangle, which in case of blending, in the middle has a smaller * equilateral triangle where 3 textures blend. this divides things into * 7 zones, with an if () test for each zone */ vector weight = vector(0.0, 0.0, 0.0); float blend = projection_blend; float limit = 0.5 * (1.0 + blend); /* first test for corners with single texture */ if (Nob[0] > limit * (Nob[0] + Nob[1]) && Nob[0] > limit * (Nob[0] + Nob[2])) { weight[0] = 1.0; } else if (Nob[1] > limit * (Nob[0] + Nob[1]) && Nob[1] > limit * (Nob[1] + Nob[2])) { weight[1] = 1.0; } else if (Nob[2] > limit * (Nob[0] + Nob[2]) && Nob[2] > limit * (Nob[1] + Nob[2])) { weight[2] = 1.0; } else if (blend > 0.0) { /* in case of blending, test for mixes between two textures */ if (Nob[2] < (1.0 - limit) * (Nob[1] + Nob[0])) { weight[0] = Nob[0] / (Nob[0] + Nob[1]); weight[0] = clamp((weight[0] - 0.5 * (1.0 - blend)) / blend, 0.0, 1.0); weight[1] = 1.0 - weight[0]; } else if (Nob[0] < (1.0 - limit) * (Nob[1] + Nob[2])) { weight[1] = Nob[1] / (Nob[1] + Nob[2]); weight[1] = clamp((weight[1] - 0.5 * (1.0 - blend)) / blend, 0.0, 1.0); weight[2] = 1.0 - weight[1]; } else if (Nob[1] < (1.0 - limit) * (Nob[0] + Nob[2])) { weight[0] = Nob[0] / (Nob[0] + Nob[2]); weight[0] = clamp((weight[0] - 0.5 * (1.0 - blend)) / blend, 0.0, 1.0); weight[2] = 1.0 - weight[0]; } else { /* last case, we have a mix between three */ weight[0] = ((2.0 - limit) * Nob[0] + (limit - 1.0)) / (2.0 * limit - 1.0); weight[1] = ((2.0 - limit) * Nob[1] + (limit - 1.0)) / (2.0 * limit - 1.0); weight[2] = ((2.0 - limit) * Nob[2] + (limit - 1.0)) / (2.0 * limit - 1.0); } } else { /* Desperate mode, no valid choice anyway, fallback to one side.*/ weight[0] = 1.0; } Color = color(0.0, 0.0, 0.0); Alpha = 0.0; float tmp_alpha; if (weight[0] > 0.0) { Color += weight[0] * image_texture_lookup(filename, color_space, p[1], p[2], tmp_alpha, use_alpha, is_float, interpolation, wrap); Alpha += weight[0] * tmp_alpha; } if (weight[1] > 0.0) { Color += weight[1] * image_texture_lookup(filename, color_space, p[0], p[2], tmp_alpha, use_alpha, is_float, interpolation, wrap); Alpha += weight[1] * tmp_alpha; } if (weight[2] > 0.0) { Color += weight[2] * image_texture_lookup(filename, color_space, p[1], p[0], tmp_alpha, use_alpha, is_float, interpolation, wrap); Alpha += weight[2] * tmp_alpha; } } else if (projection == "Sphere") { point projected = map_to_sphere(texco_remap_square(p)); Color = image_texture_lookup(filename, color_space, projected[0], projected[1], Alpha, use_alpha, is_float, interpolation, wrap); } else if (projection == "Tube") { point projected = map_to_tube(texco_remap_square(p)); Color = image_texture_lookup(filename, color_space, projected[0], projected[1], Alpha, use_alpha, is_float, interpolation, wrap); } }