/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "node_noise.h" #include "stdcycles.h" #include "vector2.h" #include "vector4.h" #define vector3 point /* 1D Musgrave fBm * * H: fractal increment parameter * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * * from "Texturing and Modelling: A procedural approach" */ float noise_musgrave_fBm_1d(float co, float H, float lacunarity, float octaves) { float p = co; float value = 0.0; float pwr = 1.0; float pwHL = pow(lacunarity, -H); for (int i = 0; i < (int)octaves; i++) { value += safe_snoise(p) * pwr; pwr *= pwHL; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { value += rmd * safe_snoise(p) * pwr; } return value; } /* 1D Musgrave Multifractal * * H: highest fractal dimension * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm */ float noise_musgrave_multi_fractal_1d(float co, float H, float lacunarity, float octaves) { float p = co; float value = 1.0; float pwr = 1.0; float pwHL = pow(lacunarity, -H); for (int i = 0; i < (int)octaves; i++) { value *= (pwr * safe_snoise(p) + 1.0); pwr *= pwHL; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { value *= (rmd * pwr * safe_snoise(p) + 1.0); /* correct? */ } return value; } /* 1D Musgrave Heterogeneous Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_hetero_terrain_1d( float co, float H, float lacunarity, float octaves, float offset) { float p = co; float pwHL = pow(lacunarity, -H); float pwr = pwHL; /* first unscaled octave of function; later octaves are scaled */ float value = offset + safe_snoise(p); p *= lacunarity; for (int i = 1; i < (int)octaves; i++) { float increment = (safe_snoise(p) + offset) * pwr * value; value += increment; pwr *= pwHL; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { float increment = (safe_snoise(p) + offset) * pwr * value; value += rmd * increment; } return value; } /* 1D Hybrid Additive/Multiplicative Multifractal Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_hybrid_multi_fractal_1d( float co, float H, float lacunarity, float octaves, float offset, float gain) { float p = co; float pwHL = pow(lacunarity, -H); float pwr = pwHL; float value = safe_snoise(p) + offset; float weight = gain * value; p *= lacunarity; for (int i = 1; (weight > 0.001) && (i < (int)octaves); i++) { if (weight > 1.0) { weight = 1.0; } float signal = (safe_snoise(p) + offset) * pwr; pwr *= pwHL; value += weight * signal; weight *= gain * signal; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { value += rmd * ((safe_snoise(p) + offset) * pwr); } return value; } /* 1D Ridged Multifractal Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_ridged_multi_fractal_1d( float co, float H, float lacunarity, float octaves, float offset, float gain) { float p = co; float pwHL = pow(lacunarity, -H); float pwr = pwHL; float signal = offset - fabs(safe_snoise(p)); signal *= signal; float value = signal; float weight = 1.0; for (int i = 1; i < (int)octaves; i++) { p *= lacunarity; weight = clamp(signal * gain, 0.0, 1.0); signal = offset - fabs(safe_snoise(p)); signal *= signal; signal *= weight; value += signal * pwr; pwr *= pwHL; } return value; } /* 2D Musgrave fBm * * H: fractal increment parameter * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * * from "Texturing and Modelling: A procedural approach" */ float noise_musgrave_fBm_2d(vector2 co, float H, float lacunarity, float octaves) { vector2 p = co; float value = 0.0; float pwr = 1.0; float pwHL = pow(lacunarity, -H); for (int i = 0; i < (int)octaves; i++) { value += safe_snoise(p) * pwr; pwr *= pwHL; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { value += rmd * safe_snoise(p) * pwr; } return value; } /* 2D Musgrave Multifractal * * H: highest fractal dimension * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm */ float noise_musgrave_multi_fractal_2d(vector2 co, float H, float lacunarity, float octaves) { vector2 p = co; float value = 1.0; float pwr = 1.0; float pwHL = pow(lacunarity, -H); for (int i = 0; i < (int)octaves; i++) { value *= (pwr * safe_snoise(p) + 1.0); pwr *= pwHL; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { value *= (rmd * pwr * safe_snoise(p) + 1.0); /* correct? */ } return value; } /* 2D Musgrave Heterogeneous Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_hetero_terrain_2d( vector2 co, float H, float lacunarity, float octaves, float offset) { vector2 p = co; float pwHL = pow(lacunarity, -H); float pwr = pwHL; /* first unscaled octave of function; later octaves are scaled */ float value = offset + safe_snoise(p); p *= lacunarity; for (int i = 1; i < (int)octaves; i++) { float increment = (safe_snoise(p) + offset) * pwr * value; value += increment; pwr *= pwHL; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { float increment = (safe_snoise(p) + offset) * pwr * value; value += rmd * increment; } return value; } /* 2D Hybrid Additive/Multiplicative Multifractal Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_hybrid_multi_fractal_2d( vector2 co, float H, float lacunarity, float octaves, float offset, float gain) { vector2 p = co; float pwHL = pow(lacunarity, -H); float pwr = pwHL; float value = safe_snoise(p) + offset; float weight = gain * value; p *= lacunarity; for (int i = 1; (weight > 0.001) && (i < (int)octaves); i++) { if (weight > 1.0) { weight = 1.0; } float signal = (safe_snoise(p) + offset) * pwr; pwr *= pwHL; value += weight * signal; weight *= gain * signal; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { value += rmd * ((safe_snoise(p) + offset) * pwr); } return value; } /* 2D Ridged Multifractal Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_ridged_multi_fractal_2d( vector2 co, float H, float lacunarity, float octaves, float offset, float gain) { vector2 p = co; float pwHL = pow(lacunarity, -H); float pwr = pwHL; float signal = offset - fabs(safe_snoise(p)); signal *= signal; float value = signal; float weight = 1.0; for (int i = 1; i < (int)octaves; i++) { p *= lacunarity; weight = clamp(signal * gain, 0.0, 1.0); signal = offset - fabs(safe_snoise(p)); signal *= signal; signal *= weight; value += signal * pwr; pwr *= pwHL; } return value; } /* 3D Musgrave fBm * * H: fractal increment parameter * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * * from "Texturing and Modelling: A procedural approach" */ float noise_musgrave_fBm_3d(vector3 co, float H, float lacunarity, float octaves) { vector3 p = co; float value = 0.0; float pwr = 1.0; float pwHL = pow(lacunarity, -H); for (int i = 0; i < (int)octaves; i++) { value += safe_snoise(p) * pwr; pwr *= pwHL; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { value += rmd * safe_snoise(p) * pwr; } return value; } /* 3D Musgrave Multifractal * * H: highest fractal dimension * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm */ float noise_musgrave_multi_fractal_3d(vector3 co, float H, float lacunarity, float octaves) { vector3 p = co; float value = 1.0; float pwr = 1.0; float pwHL = pow(lacunarity, -H); for (int i = 0; i < (int)octaves; i++) { value *= (pwr * safe_snoise(p) + 1.0); pwr *= pwHL; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { value *= (rmd * pwr * safe_snoise(p) + 1.0); /* correct? */ } return value; } /* 3D Musgrave Heterogeneous Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_hetero_terrain_3d( vector3 co, float H, float lacunarity, float octaves, float offset) { vector3 p = co; float pwHL = pow(lacunarity, -H); float pwr = pwHL; /* first unscaled octave of function; later octaves are scaled */ float value = offset + safe_snoise(p); p *= lacunarity; for (int i = 1; i < (int)octaves; i++) { float increment = (safe_snoise(p) + offset) * pwr * value; value += increment; pwr *= pwHL; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { float increment = (safe_snoise(p) + offset) * pwr * value; value += rmd * increment; } return value; } /* 3D Hybrid Additive/Multiplicative Multifractal Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_hybrid_multi_fractal_3d( vector3 co, float H, float lacunarity, float octaves, float offset, float gain) { vector3 p = co; float pwHL = pow(lacunarity, -H); float pwr = pwHL; float value = safe_snoise(p) + offset; float weight = gain * value; p *= lacunarity; for (int i = 1; (weight > 0.001) && (i < (int)octaves); i++) { if (weight > 1.0) { weight = 1.0; } float signal = (safe_snoise(p) + offset) * pwr; pwr *= pwHL; value += weight * signal; weight *= gain * signal; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { value += rmd * ((safe_snoise(p) + offset) * pwr); } return value; } /* 3D Ridged Multifractal Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_ridged_multi_fractal_3d( vector3 co, float H, float lacunarity, float octaves, float offset, float gain) { vector3 p = co; float pwHL = pow(lacunarity, -H); float pwr = pwHL; float signal = offset - fabs(safe_snoise(p)); signal *= signal; float value = signal; float weight = 1.0; for (int i = 1; i < (int)octaves; i++) { p *= lacunarity; weight = clamp(signal * gain, 0.0, 1.0); signal = offset - fabs(safe_snoise(p)); signal *= signal; signal *= weight; value += signal * pwr; pwr *= pwHL; } return value; } /* 4D Musgrave fBm * * H: fractal increment parameter * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * * from "Texturing and Modelling: A procedural approach" */ float noise_musgrave_fBm_4d(vector4 co, float H, float lacunarity, float octaves) { vector4 p = co; float value = 0.0; float pwr = 1.0; float pwHL = pow(lacunarity, -H); for (int i = 0; i < (int)octaves; i++) { value += safe_snoise(p) * pwr; pwr *= pwHL; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { value += rmd * safe_snoise(p) * pwr; } return value; } /* 4D Musgrave Multifractal * * H: highest fractal dimension * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm */ float noise_musgrave_multi_fractal_4d(vector4 co, float H, float lacunarity, float octaves) { vector4 p = co; float value = 1.0; float pwr = 1.0; float pwHL = pow(lacunarity, -H); for (int i = 0; i < (int)octaves; i++) { value *= (pwr * safe_snoise(p) + 1.0); pwr *= pwHL; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { value *= (rmd * pwr * safe_snoise(p) + 1.0); /* correct? */ } return value; } /* 4D Musgrave Heterogeneous Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_hetero_terrain_4d( vector4 co, float H, float lacunarity, float octaves, float offset) { vector4 p = co; float pwHL = pow(lacunarity, -H); float pwr = pwHL; /* first unscaled octave of function; later octaves are scaled */ float value = offset + safe_snoise(p); p *= lacunarity; for (int i = 1; i < (int)octaves; i++) { float increment = (safe_snoise(p) + offset) * pwr * value; value += increment; pwr *= pwHL; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { float increment = (safe_snoise(p) + offset) * pwr * value; value += rmd * increment; } return value; } /* 4D Hybrid Additive/Multiplicative Multifractal Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_hybrid_multi_fractal_4d( vector4 co, float H, float lacunarity, float octaves, float offset, float gain) { vector4 p = co; float pwHL = pow(lacunarity, -H); float pwr = pwHL; float value = safe_snoise(p) + offset; float weight = gain * value; p *= lacunarity; for (int i = 1; (weight > 0.001) && (i < (int)octaves); i++) { if (weight > 1.0) { weight = 1.0; } float signal = (safe_snoise(p) + offset) * pwr; pwr *= pwHL; value += weight * signal; weight *= gain * signal; p *= lacunarity; } float rmd = octaves - floor(octaves); if (rmd != 0.0) { value += rmd * ((safe_snoise(p) + offset) * pwr); } return value; } /* 4D Ridged Multifractal Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_ridged_multi_fractal_4d( vector4 co, float H, float lacunarity, float octaves, float offset, float gain) { vector4 p = co; float pwHL = pow(lacunarity, -H); float pwr = pwHL; float signal = offset - fabs(safe_snoise(p)); signal *= signal; float value = signal; float weight = 1.0; for (int i = 1; i < (int)octaves; i++) { p *= lacunarity; weight = clamp(signal * gain, 0.0, 1.0); signal = offset - fabs(safe_snoise(p)); signal *= signal; signal *= weight; value += signal * pwr; pwr *= pwHL; } return value; } shader node_musgrave_texture( int use_mapping = 0, matrix mapping = matrix(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), string musgrave_type = "fBM", string dimensions = "3D", point Vector = P, float W = 0.0, float Dimension = 2.0, float Scale = 5.0, float Detail = 2.0, float Lacunarity = 2.0, float Offset = 0.0, float Gain = 1.0, output float Fac = 0.0) { float dimension = max(Dimension, 1e-5); float octaves = clamp(Detail, 0.0, 16.0); float lacunarity = max(Lacunarity, 1e-5); vector3 s = Vector; if (use_mapping) s = transform(mapping, s); if (dimensions == "1D") { float p = W * Scale; if (musgrave_type == "multifractal") { Fac = noise_musgrave_multi_fractal_1d(p, dimension, lacunarity, octaves); } else if (musgrave_type == "fBM") { Fac = noise_musgrave_fBm_1d(p, dimension, lacunarity, octaves); } else if (musgrave_type == "hybrid_multifractal") { Fac = noise_musgrave_hybrid_multi_fractal_1d( p, dimension, lacunarity, octaves, Offset, Gain); } else if (musgrave_type == "ridged_multifractal") { Fac = noise_musgrave_ridged_multi_fractal_1d( p, dimension, lacunarity, octaves, Offset, Gain); } else if (musgrave_type == "hetero_terrain") { Fac = noise_musgrave_hetero_terrain_1d(p, dimension, lacunarity, octaves, Offset); } else { Fac = 0.0; } } else if (dimensions == "2D") { vector2 p = vector2(s[0], s[1]) * Scale; if (musgrave_type == "multifractal") { Fac = noise_musgrave_multi_fractal_2d(p, dimension, lacunarity, octaves); } else if (musgrave_type == "fBM") { Fac = noise_musgrave_fBm_2d(p, dimension, lacunarity, octaves); } else if (musgrave_type == "hybrid_multifractal") { Fac = noise_musgrave_hybrid_multi_fractal_2d( p, dimension, lacunarity, octaves, Offset, Gain); } else if (musgrave_type == "ridged_multifractal") { Fac = noise_musgrave_ridged_multi_fractal_2d( p, dimension, lacunarity, octaves, Offset, Gain); } else if (musgrave_type == "hetero_terrain") { Fac = noise_musgrave_hetero_terrain_2d(p, dimension, lacunarity, octaves, Offset); } else { Fac = 0.0; } } else if (dimensions == "3D") { vector3 p = s * Scale; if (musgrave_type == "multifractal") { Fac = noise_musgrave_multi_fractal_3d(p, dimension, lacunarity, octaves); } else if (musgrave_type == "fBM") { Fac = noise_musgrave_fBm_3d(p, dimension, lacunarity, octaves); } else if (musgrave_type == "hybrid_multifractal") { Fac = noise_musgrave_hybrid_multi_fractal_3d( p, dimension, lacunarity, octaves, Offset, Gain); } else if (musgrave_type == "ridged_multifractal") { Fac = noise_musgrave_ridged_multi_fractal_3d( p, dimension, lacunarity, octaves, Offset, Gain); } else if (musgrave_type == "hetero_terrain") { Fac = noise_musgrave_hetero_terrain_3d(p, dimension, lacunarity, octaves, Offset); } else { Fac = 0.0; } } else if (dimensions == "4D") { vector4 p = vector4(s[0], s[1], s[2], W) * Scale; if (musgrave_type == "multifractal") { Fac = noise_musgrave_multi_fractal_4d(p, dimension, lacunarity, octaves); } else if (musgrave_type == "fBM") { Fac = noise_musgrave_fBm_4d(p, dimension, lacunarity, octaves); } else if (musgrave_type == "hybrid_multifractal") { Fac = noise_musgrave_hybrid_multi_fractal_4d( p, dimension, lacunarity, octaves, Offset, Gain); } else if (musgrave_type == "ridged_multifractal") { Fac = noise_musgrave_ridged_multi_fractal_4d( p, dimension, lacunarity, octaves, Offset, Gain); } else if (musgrave_type == "hetero_terrain") { Fac = noise_musgrave_hetero_terrain_4d(p, dimension, lacunarity, octaves, Offset); } else { Fac = 0.0; } } else { Fac = 0.0; } }