/* * Copyright 2011, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "stdosl.h" #include "node_texture.h" /* Musgrave fBm * * H: fractal increment parameter * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * * from "Texturing and Modelling: A procedural approach" */ float noise_musgrave_fBm(point p, string basis, float H, float lacunarity, float octaves) { float rmd; float value = 0.0; float pwr = 1.0; float pwHL = pow(lacunarity, -H); int i; for (i = 0; i < (int)octaves; i++) { value += noise("perlin", p) * pwr; pwr *= pwHL; p *= lacunarity; } rmd = octaves - floor(octaves); if (rmd != 0.0) value += rmd * noise("perlin", p) * pwr; return value; } /* Musgrave Multifractal * * H: highest fractal dimension * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm */ float noise_musgrave_multi_fractal(point p, string basis, float H, float lacunarity, float octaves) { float rmd; float value = 1.0; float pwr = 1.0; float pwHL = pow(lacunarity, -H); int i; for (i = 0; i < (int)octaves; i++) { value *= (pwr * noise("perlin", p) + 1.0); pwr *= pwHL; p *= lacunarity; } rmd = octaves - floor(octaves); if (rmd != 0.0) value *= (rmd * pwr * noise("perlin", p) + 1.0); /* correct? */ return value; } /* Musgrave Heterogeneous Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_hetero_terrain(point p, string basis, float H, float lacunarity, float octaves, float offset) { float value, increment, rmd; float pwHL = pow(lacunarity, -H); float pwr = pwHL; int i; /* first unscaled octave of function; later octaves are scaled */ value = offset + noise("perlin", p); p *= lacunarity; for (i = 1; i < (int)octaves; i++) { increment = (noise("perlin", p) + offset) * pwr * value; value += increment; pwr *= pwHL; p *= lacunarity; } rmd = octaves - floor(octaves); if (rmd != 0.0) { increment = (noise("perlin", p) + offset) * pwr * value; value += rmd * increment; } return value; } /* Hybrid Additive/Multiplicative Multifractal Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_hybrid_multi_fractal(point p, string basis, float H, float lacunarity, float octaves, float offset, float gain) { float result, signal, weight, rmd; float pwHL = pow(lacunarity, -H); float pwr = pwHL; int i; result = noise("perlin", p) + offset; weight = gain * result; p *= lacunarity; for (i = 1; (weight > 0.001) && (i < (int)octaves); i++) { if (weight > 1.0) weight = 1.0; signal = (noise("perlin", p) + offset) * pwr; pwr *= pwHL; result += weight * signal; weight *= gain * signal; p *= lacunarity; } rmd = octaves - floor(octaves); if (rmd != 0.0) result += rmd * ((noise("perlin", p) + offset) * pwr); return result; } /* Ridged Multifractal Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ float noise_musgrave_ridged_multi_fractal(point p, string basis, float H, float lacunarity, float octaves, float offset, float gain) { float result, signal, weight; float pwHL = pow(lacunarity, -H); float pwr = pwHL; int i; signal = offset - fabs(noise("perlin", p)); signal *= signal; result = signal; weight = 1.0; for (i = 1; i < (int)octaves; i++) { p *= lacunarity; weight = clamp(signal * gain, 0.0, 1.0); signal = offset - fabs(noise("perlin", p)); signal *= signal; signal *= weight; result += signal * pwr; pwr *= pwHL; } return result; } /* Shader */ shader node_musgrave_texture( int use_mapping = 0, matrix mapping = matrix(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), string Type = "fBM", float Dimension = 2.0, float Lacunarity = 1.0, float Detail = 2.0, float Offset = 0.0, float Gain = 1.0, float Scale = 5.0, point Vector = P, output float Fac = 0.0, output color Color = color(0.0, 0.0, 0.0)) { float dimension = max(Dimension, 1e-5); float octaves = clamp(Detail, 0.0, 16.0); float lacunarity = max(Lacunarity, 1e-5); string Basis = "Perlin"; float intensity = 1.0; point p = Vector; if (use_mapping) p = transform(mapping, p); p = p * Scale; if (Type == "Multifractal") Fac = intensity * noise_musgrave_multi_fractal(p, Basis, dimension, lacunarity, octaves); else if (Type == "fBM") Fac = intensity * noise_musgrave_fBm(p, Basis, dimension, lacunarity, octaves); else if (Type == "Hybrid Multifractal") Fac = intensity * noise_musgrave_hybrid_multi_fractal(p, Basis, dimension, lacunarity, octaves, Offset, Gain); else if (Type == "Ridged Multifractal") Fac = intensity * noise_musgrave_ridged_multi_fractal(p, Basis, dimension, lacunarity, octaves, Offset, Gain); else if (Type == "Hetero Terrain") Fac = intensity * noise_musgrave_hetero_terrain(p, Basis, dimension, lacunarity, octaves, Offset); Color = color(Fac, Fac, Fac); }