/* * Copyright 2011-2015 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ CCL_NAMESPACE_BEGIN /* This kernel takes care of rays that hit the background (sceneintersect * kernel), and for the rays of state RAY_UPDATE_BUFFER it updates the ray's * accumulated radiance in the output buffer. This kernel also takes care of * rays that have been determined to-be-regenerated. * * We will empty QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue in this kernel. * * Typically all rays that are in state RAY_HIT_BACKGROUND, RAY_UPDATE_BUFFER * will be eventually set to RAY_TO_REGENERATE state in this kernel. * Finally all rays of ray_state RAY_TO_REGENERATE will be regenerated and put * in queue QUEUE_ACTIVE_AND_REGENERATED_RAYS. * * State of queues when this kernel is called: * At entry, * - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE rays. * - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with * RAY_UPDATE_BUFFER, RAY_HIT_BACKGROUND, RAY_TO_REGENERATE rays. * At exit, * - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE and * RAY_REGENERATED rays. * - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be empty. */ ccl_device void kernel_buffer_update(KernelGlobals *kg, ccl_local_param unsigned int *local_queue_atomics) { if(ccl_local_id(0) == 0 && ccl_local_id(1) == 0) { *local_queue_atomics = 0; } ccl_barrier(CCL_LOCAL_MEM_FENCE); int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0); if(ray_index == 0) { /* We will empty this queue in this kernel. */ kernel_split_params.queue_index[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS] = 0; } char enqueue_flag = 0; ray_index = get_ray_index(kg, ray_index, QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS, kernel_split_state.queue_data, kernel_split_params.queue_size, 1); #ifdef __COMPUTE_DEVICE_GPU__ /* If we are executing on a GPU device, we exit all threads that are not * required. * * If we are executing on a CPU device, then we need to keep all threads * active since we have barrier() calls later in the kernel. CPU devices, * expect all threads to execute barrier statement. */ if(ray_index == QUEUE_EMPTY_SLOT) { return; } #endif #ifndef __COMPUTE_DEVICE_GPU__ if(ray_index != QUEUE_EMPTY_SLOT) { #endif ccl_global uint *rng_state = kernel_split_params.rng_state; int stride = kernel_split_params.stride; ccl_global char *ray_state = kernel_split_state.ray_state; #ifdef __KERNEL_DEBUG__ DebugData *debug_data = &kernel_split_state.debug_data[ray_index]; #endif ccl_global PathState *state = &kernel_split_state.path_state[ray_index]; PathRadiance *L = &kernel_split_state.path_radiance[ray_index]; ccl_global Ray *ray = &kernel_split_state.ray[ray_index]; ccl_global float3 *throughput = &kernel_split_state.throughput[ray_index]; ccl_global float *L_transparent = &kernel_split_state.L_transparent[ray_index]; RNG rng = kernel_split_state.rng[ray_index]; ccl_global float *buffer = kernel_split_params.buffer; unsigned int work_index; ccl_global uint *initial_rng; unsigned int sample; unsigned int tile_x; unsigned int tile_y; unsigned int pixel_x; unsigned int pixel_y; work_index = kernel_split_state.work_array[ray_index]; sample = get_work_sample(kg, work_index, ray_index) + kernel_split_params.start_sample; get_work_pixel_tile_position(kg, &pixel_x, &pixel_y, &tile_x, &tile_y, work_index, ray_index); initial_rng = rng_state; rng_state += kernel_split_params.offset + pixel_x + pixel_y*stride; buffer += (kernel_split_params.offset + pixel_x + pixel_y*stride) * kernel_data.film.pass_stride; if(IS_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER)) { float3 L_sum; #ifdef __SHADOW_TRICKS__ if(state->flag & PATH_RAY_SHADOW_CATCHER) { L_sum = path_radiance_sum_shadowcatcher(kg, L, L_transparent); } else #endif /* __SHADOW_TRICKS__ */ { L_sum = path_radiance_clamp_and_sum(kg, L); } kernel_write_light_passes(kg, buffer, L, sample); #ifdef __KERNEL_DEBUG__ kernel_write_debug_passes(kg, buffer, state, debug_data, sample); #endif float4 L_rad = make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - (*L_transparent)); /* accumulate result in output buffer */ kernel_write_pass_float4(buffer, sample, L_rad); path_rng_end(kg, rng_state, rng); ASSIGN_RAY_STATE(ray_state, ray_index, RAY_TO_REGENERATE); } if(IS_STATE(ray_state, ray_index, RAY_TO_REGENERATE)) { /* We have completed current work; So get next work */ int valid_work = get_next_work(kg, &work_index, ray_index); if(!valid_work) { /* If work is invalid, this means no more work is available and the thread may exit */ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_INACTIVE); } if(IS_STATE(ray_state, ray_index, RAY_TO_REGENERATE)) { kernel_split_state.work_array[ray_index] = work_index; /* Get the sample associated with the current work */ sample = get_work_sample(kg, work_index, ray_index) + kernel_split_params.start_sample; /* Get pixel and tile position associated with current work */ get_work_pixel_tile_position(kg, &pixel_x, &pixel_y, &tile_x, &tile_y, work_index, ray_index); /* Remap rng_state according to the current work */ rng_state = initial_rng + kernel_split_params.offset + pixel_x + pixel_y*stride; /* Remap buffer according to the current work */ buffer += (kernel_split_params.offset + pixel_x + pixel_y*stride) * kernel_data.film.pass_stride; /* Initialize random numbers and ray. */ kernel_path_trace_setup(kg, rng_state, sample, pixel_x, pixel_y, &rng, ray); if(ray->t != 0.0f) { /* Initialize throughput, L_transparent, Ray, PathState; * These rays proceed with path-iteration. */ *throughput = make_float3(1.0f, 1.0f, 1.0f); *L_transparent = 0.0f; path_radiance_init(L, kernel_data.film.use_light_pass); path_state_init(kg, &kernel_split_state.sd_DL_shadow[ray_index], state, &rng, sample, ray); #ifdef __SUBSURFACE__ kernel_path_subsurface_init_indirect(&kernel_split_state.ss_rays[ray_index]); #endif #ifdef __KERNEL_DEBUG__ debug_data_init(debug_data); #endif ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED); enqueue_flag = 1; } else { /* These rays do not participate in path-iteration. */ float4 L_rad = make_float4(0.0f, 0.0f, 0.0f, 0.0f); /* Accumulate result in output buffer. */ kernel_write_pass_float4(buffer, sample, L_rad); path_rng_end(kg, rng_state, rng); ASSIGN_RAY_STATE(ray_state, ray_index, RAY_TO_REGENERATE); } } } kernel_split_state.rng[ray_index] = rng; #ifndef __COMPUTE_DEVICE_GPU__ } #endif /* Enqueue RAY_REGENERATED rays into QUEUE_ACTIVE_AND_REGENERATED_RAYS; * These rays will be made active during next SceneIntersectkernel. */ enqueue_ray_index_local(ray_index, QUEUE_ACTIVE_AND_REGENERATED_RAYS, enqueue_flag, kernel_split_params.queue_size, local_queue_atomics, kernel_split_state.queue_data, kernel_split_params.queue_index); } CCL_NAMESPACE_END