/* * Copyright 2011-2015 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ CCL_NAMESPACE_BEGIN /* This kernel takes care of rays that hit the background (sceneintersect * kernel), and for the rays of state RAY_UPDATE_BUFFER it updates the ray's * accumulated radiance in the output buffer. This kernel also takes care of * rays that have been determined to-be-regenerated. * * We will empty QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue in this kernel. * * Typically all rays that are in state RAY_HIT_BACKGROUND, RAY_UPDATE_BUFFER * will be eventually set to RAY_TO_REGENERATE state in this kernel. * Finally all rays of ray_state RAY_TO_REGENERATE will be regenerated and put * in queue QUEUE_ACTIVE_AND_REGENERATED_RAYS. * * State of queues when this kernel is called: * At entry, * - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE rays. * - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with * RAY_UPDATE_BUFFER, RAY_HIT_BACKGROUND, RAY_TO_REGENERATE rays. * At exit, * - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE and * RAY_REGENERATED rays. * - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be empty. */ ccl_device void kernel_buffer_update(KernelGlobals *kg, ccl_local_param unsigned int *local_queue_atomics) { if (ccl_local_id(0) == 0 && ccl_local_id(1) == 0) { *local_queue_atomics = 0; } ccl_barrier(CCL_LOCAL_MEM_FENCE); int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0); if (ray_index == 0) { /* We will empty this queue in this kernel. */ kernel_split_params.queue_index[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS] = 0; } char enqueue_flag = 0; ray_index = get_ray_index(kg, ray_index, QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS, kernel_split_state.queue_data, kernel_split_params.queue_size, 1); if (ray_index != QUEUE_EMPTY_SLOT) { ccl_global char *ray_state = kernel_split_state.ray_state; ccl_global PathState *state = &kernel_split_state.path_state[ray_index]; PathRadiance *L = &kernel_split_state.path_radiance[ray_index]; ccl_global Ray *ray = &kernel_split_state.ray[ray_index]; ccl_global float3 *throughput = &kernel_split_state.throughput[ray_index]; bool ray_was_updated = false; if (IS_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER)) { ray_was_updated = true; uint sample = state->sample; uint buffer_offset = kernel_split_state.buffer_offset[ray_index]; ccl_global float *buffer = kernel_split_params.tile.buffer + buffer_offset; /* accumulate result in output buffer */ kernel_write_result(kg, buffer, sample, L); ASSIGN_RAY_STATE(ray_state, ray_index, RAY_TO_REGENERATE); } if (kernel_data.film.cryptomatte_passes) { /* Make sure no thread is writing to the buffers. */ ccl_barrier(CCL_LOCAL_MEM_FENCE); if (ray_was_updated && state->sample - 1 == kernel_data.integrator.aa_samples) { uint buffer_offset = kernel_split_state.buffer_offset[ray_index]; ccl_global float *buffer = kernel_split_params.tile.buffer + buffer_offset; ccl_global float *cryptomatte_buffer = buffer + kernel_data.film.pass_cryptomatte; kernel_sort_id_slots(cryptomatte_buffer, 2 * kernel_data.film.cryptomatte_depth); } } if (IS_STATE(ray_state, ray_index, RAY_TO_REGENERATE)) { /* We have completed current work; So get next work */ ccl_global uint *work_pools = kernel_split_params.work_pools; uint total_work_size = kernel_split_params.total_work_size; uint work_index; if (!get_next_work(kg, work_pools, total_work_size, ray_index, &work_index)) { /* If work is invalid, this means no more work is available and the thread may exit */ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_INACTIVE); } if (IS_STATE(ray_state, ray_index, RAY_TO_REGENERATE)) { ccl_global WorkTile *tile = &kernel_split_params.tile; uint x, y, sample; get_work_pixel(tile, work_index, &x, &y, &sample); /* Store buffer offset for writing to passes. */ uint buffer_offset = (tile->offset + x + y * tile->stride) * kernel_data.film.pass_stride; kernel_split_state.buffer_offset[ray_index] = buffer_offset; /* Initialize random numbers and ray. */ uint rng_hash; kernel_path_trace_setup(kg, sample, x, y, &rng_hash, ray); if (ray->t != 0.0f) { /* Initialize throughput, path radiance, Ray, PathState; * These rays proceed with path-iteration. */ *throughput = make_float3(1.0f, 1.0f, 1.0f); path_radiance_init(kg, L); path_state_init(kg, AS_SHADER_DATA(&kernel_split_state.sd_DL_shadow[ray_index]), state, rng_hash, sample, ray); #ifdef __SUBSURFACE__ kernel_path_subsurface_init_indirect(&kernel_split_state.ss_rays[ray_index]); #endif ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED); enqueue_flag = 1; } else { ASSIGN_RAY_STATE(ray_state, ray_index, RAY_TO_REGENERATE); } } } } /* Enqueue RAY_REGENERATED rays into QUEUE_ACTIVE_AND_REGENERATED_RAYS; * These rays will be made active during next SceneIntersectkernel. */ enqueue_ray_index_local(ray_index, QUEUE_ACTIVE_AND_REGENERATED_RAYS, enqueue_flag, kernel_split_params.queue_size, local_queue_atomics, kernel_split_state.queue_data, kernel_split_params.queue_index); } CCL_NAMESPACE_END