/* * Copyright 2011-2015 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "kernel_split_common.h" /* Note on kernel_lamp_emission * This is the 3rd kernel in the ray-tracing logic. This is the second of the * path-iteration kernels. This kernel takes care of the indirect lamp emission logic. * This kernel operates on QUEUE_ACTIVE_AND_REGENERATED_RAYS. It processes rays of state RAY_ACTIVE * and RAY_HIT_BACKGROUND. * We will empty QUEUE_ACTIVE_AND_REGENERATED_RAYS queue in this kernel. * The input/output of the kernel is as follows, * Throughput_coop ------------------------------------|--- kernel_lamp_emission --|--- PathRadiance_coop * Ray_coop -------------------------------------------| |--- Queue_data(QUEUE_ACTIVE_AND_REGENERATED_RAYS) * PathState_coop -------------------------------------| |--- Queue_index(QUEUE_ACTIVE_AND_REGENERATED_RAYS) * kg (globals) ---------------------------------------| | * Intersection_coop ----------------------------------| | * ray_state ------------------------------------------| | * Queue_data (QUEUE_ACTIVE_AND_REGENERATED_RAYS) -----| | * Queue_index (QUEUE_ACTIVE_AND_REGENERATED_RAYS) ----| | * queuesize ------------------------------------------| | * use_queues_flag ------------------------------------| | * sw -------------------------------------------------| | * sh -------------------------------------------------| | * parallel_samples -----------------------------------| | * * note : sd is neither input nor output. Its just filled and consumed in the same, kernel_lamp_emission, kernel. */ ccl_device void kernel_lamp_emission( KernelGlobals *kg, ShaderData *sd, /* Required for lamp emission */ ccl_global float3 *throughput_coop, /* Required for lamp emission */ PathRadiance *PathRadiance_coop, /* Required for lamp emission */ ccl_global Ray *Ray_coop, /* Required for lamp emission */ ccl_global PathState *PathState_coop, /* Required for lamp emission */ Intersection *Intersection_coop, /* Required for lamp emission */ ccl_global char *ray_state, /* Denotes the state of each ray */ int sw, int sh, ccl_global char *use_queues_flag, /* Used to decide if this kernel should use * queues to fetch ray index */ int parallel_samples, /* Number of samples to be processed in parallel */ int ray_index) { if(IS_STATE(ray_state, ray_index, RAY_ACTIVE) || IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND)) { PathRadiance *L = &PathRadiance_coop[ray_index]; ccl_global PathState *state = &PathState_coop[ray_index]; float3 throughput = throughput_coop[ray_index]; Ray ray = Ray_coop[ray_index]; #ifdef __LAMP_MIS__ if(kernel_data.integrator.use_lamp_mis && !(state->flag & PATH_RAY_CAMERA)) { /* ray starting from previous non-transparent bounce */ Ray light_ray; light_ray.P = ray.P - state->ray_t*ray.D; state->ray_t += Intersection_coop[ray_index].t; light_ray.D = ray.D; light_ray.t = state->ray_t; light_ray.time = ray.time; light_ray.dD = ray.dD; light_ray.dP = ray.dP; /* intersect with lamp */ float3 emission; if(indirect_lamp_emission(kg, state, &light_ray, &emission, sd)) { path_radiance_accum_emission(L, throughput, emission, state->bounce); } } #endif /* __LAMP_MIS__ */ /* __VOLUME__ feature is disabled */ #if 0 #ifdef __VOLUME__ /* volume attenuation, emission, scatter */ if(state->volume_stack[0].shader != SHADER_NONE) { Ray volume_ray = ray; volume_ray.t = (hit)? isect.t: FLT_MAX; bool heterogeneous = volume_stack_is_heterogeneous(kg, state->volume_stack); #ifdef __VOLUME_DECOUPLED__ int sampling_method = volume_stack_sampling_method(kg, state->volume_stack); bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, true, sampling_method); if(decoupled) { /* cache steps along volume for repeated sampling */ VolumeSegment volume_segment; ShaderData volume_sd; shader_setup_from_volume(kg, &volume_sd, &volume_ray); kernel_volume_decoupled_record(kg, state, &volume_ray, &volume_sd, &volume_segment, heterogeneous); volume_segment.sampling_method = sampling_method; /* emission */ if(volume_segment.closure_flag & SD_EMISSION) path_radiance_accum_emission(&L, throughput, volume_segment.accum_emission, state->bounce); /* scattering */ VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED; if(volume_segment.closure_flag & SD_SCATTER) { bool all = false; /* direct light sampling */ kernel_branched_path_volume_connect_light(kg, rng, &volume_sd, throughput, state, &L, 1.0f, all, &volume_ray, &volume_segment); /* indirect sample. if we use distance sampling and take just * one sample for direct and indirect light, we could share * this computation, but makes code a bit complex */ float rphase = path_state_rng_1D_for_decision(kg, rng, state, PRNG_PHASE); float rscatter = path_state_rng_1D_for_decision(kg, rng, state, PRNG_SCATTER_DISTANCE); result = kernel_volume_decoupled_scatter(kg, state, &volume_ray, &volume_sd, &throughput, rphase, rscatter, &volume_segment, NULL, true); } if(result != VOLUME_PATH_SCATTERED) throughput *= volume_segment.accum_transmittance; /* free cached steps */ kernel_volume_decoupled_free(kg, &volume_segment); if(result == VOLUME_PATH_SCATTERED) { if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, state, &L, &ray)) continue; else break; } } else #endif /* __VOLUME_DECOUPLED__ */ { /* integrate along volume segment with distance sampling */ ShaderData volume_sd; VolumeIntegrateResult result = kernel_volume_integrate( kg, state, &volume_sd, &volume_ray, &L, &throughput, rng, heterogeneous); #ifdef __VOLUME_SCATTER__ if(result == VOLUME_PATH_SCATTERED) { /* direct lighting */ kernel_path_volume_connect_light(kg, rng, &volume_sd, throughput, state, &L); /* indirect light bounce */ if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, state, &L, &ray)) continue; else break; } #endif /* __VOLUME_SCATTER__ */ } } #endif /* __VOLUME__ */ #endif } }