/* * Copyright 2011-2018 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "kernel/bvh/bvh.h" CCL_NAMESPACE_BEGIN #ifdef __SHADER_RAYTRACE__ # ifdef __KERNEL_OPTIX__ extern "C" __device__ float __direct_callable__svm_node_ao( # else ccl_device float svm_ao( # endif KernelGlobals kg, ConstIntegratorState state, ccl_private ShaderData *sd, float3 N, float max_dist, int num_samples, int flags) { if (flags & NODE_AO_GLOBAL_RADIUS) { max_dist = kernel_data.integrator.ao_bounces_distance; } /* Early out if no sampling needed. */ if (max_dist <= 0.0f || num_samples < 1 || sd->object == OBJECT_NONE) { return 1.0f; } /* Can't raytrace from shaders like displacement, before BVH exists. */ if (kernel_data.bvh.bvh_layout == BVH_LAYOUT_NONE) { return 1.0f; } if (flags & NODE_AO_INSIDE) { N = -N; } float3 T, B; make_orthonormals(N, &T, &B); /* TODO: support ray-tracing in shadow shader evaluation? */ RNGState rng_state; path_state_rng_load(state, &rng_state); int unoccluded = 0; for (int sample = 0; sample < num_samples; sample++) { float disk_u, disk_v; path_branched_rng_2D(kg, &rng_state, sample, num_samples, PRNG_BEVEL_U, &disk_u, &disk_v); float2 d = concentric_sample_disk(disk_u, disk_v); float3 D = make_float3(d.x, d.y, safe_sqrtf(1.0f - dot(d, d))); /* Create ray. */ Ray ray; ray.P = ray_offset(sd->P, N); ray.D = D.x * T + D.y * B + D.z * N; ray.t = max_dist; ray.time = sd->time; ray.dP = differential_zero_compact(); ray.dD = differential_zero_compact(); if (flags & NODE_AO_ONLY_LOCAL) { if (!scene_intersect_local(kg, &ray, NULL, sd->object, NULL, 0)) { unoccluded++; } } else { Intersection isect; if (!scene_intersect(kg, &ray, PATH_RAY_SHADOW_OPAQUE, &isect)) { unoccluded++; } } } return ((float)unoccluded) / num_samples; } template # if defined(__KERNEL_OPTIX__) ccl_device_inline # else ccl_device_noinline # endif void svm_node_ao(KernelGlobals kg, ConstIntegratorGenericState state, ccl_private ShaderData *sd, ccl_private float *stack, uint4 node) { uint flags, dist_offset, normal_offset, out_ao_offset; svm_unpack_node_uchar4(node.y, &flags, &dist_offset, &normal_offset, &out_ao_offset); uint color_offset, out_color_offset, samples; svm_unpack_node_uchar3(node.z, &color_offset, &out_color_offset, &samples); float ao = 1.0f; IF_KERNEL_NODES_FEATURE(RAYTRACE) { float dist = stack_load_float_default(stack, dist_offset, node.w); float3 normal = stack_valid(normal_offset) ? stack_load_float3(stack, normal_offset) : sd->N; # ifdef __KERNEL_OPTIX__ ao = optixDirectCall(0, kg, state, sd, normal, dist, samples, flags); # else ao = svm_ao(kg, state, sd, normal, dist, samples, flags); # endif } if (stack_valid(out_ao_offset)) { stack_store_float(stack, out_ao_offset, ao); } if (stack_valid(out_color_offset)) { float3 color = stack_load_float3(stack, color_offset); stack_store_float3(stack, out_color_offset, ao * color); } } #endif /* __SHADER_RAYTRACE__ */ CCL_NAMESPACE_END