/* * Adapted from Open Shading Language with this license: * * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al. * All Rights Reserved. * * Modifications Copyright 2011, Blender Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Sony Pictures Imageworks nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __BSDF_MICROFACET_H__ #define __BSDF_MICROFACET_H__ CCL_NAMESPACE_BEGIN /* GGX */ typedef struct BsdfMicrofacetGGXClosure { //float3 m_N; float m_ag; float m_eta; } BsdfMicrofacetGGXClosure; __device_inline float safe_sqrtf(float f) { return sqrtf(max(f, 0.0f)); } __device void bsdf_microfacet_ggx_setup(ShaderData *sd, ShaderClosure *sc, float ag, float eta, bool refractive) { float m_ag = clamp(ag, 1e-4f, 1.0f); float m_eta = eta; sc->data0 = m_ag; sc->data1 = m_eta; if(refractive) sc->type = CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID; else sc->type = CLOSURE_BSDF_MICROFACET_GGX_ID; sd->flag |= SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY; } __device void bsdf_microfacet_ggx_blur(ShaderClosure *sc, float roughness) { float m_ag = sc->data0; m_ag = fmaxf(roughness, m_ag); sc->data0 = m_ag; } __device float3 bsdf_microfacet_ggx_eval_reflect(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { float m_ag = sc->data0; //float m_eta = sc->data1; int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID; float3 m_N = sd->N; if(m_refractive) return make_float3 (0, 0, 0); float cosNO = dot(m_N, I); float cosNI = dot(m_N, omega_in); if(cosNI > 0 && cosNO > 0) { // get half vector float3 Hr = normalize(omega_in + I); // eq. 20: (F*G*D)/(4*in*on) // eq. 33: first we calculate D(m) with m=Hr: float alpha2 = m_ag * m_ag; float cosThetaM = dot(m_N, Hr); float cosThetaM2 = cosThetaM * cosThetaM; float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2; float cosThetaM4 = cosThetaM2 * cosThetaM2; float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2)); // eq. 34: now calculate G1(i,m) and G1(o,m) float G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO))); float G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI))); float G = G1o * G1i; float out = (G * D) * 0.25f / cosNO; // eq. 24 float pm = D * cosThetaM; // convert into pdf of the sampled direction // eq. 38 - but see also: // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf *pdf = pm * 0.25f / dot(Hr, I); return make_float3 (out, out, out); } return make_float3 (0, 0, 0); } __device float3 bsdf_microfacet_ggx_eval_transmit(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { float m_ag = sc->data0; float m_eta = sc->data1; int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID; float3 m_N = sd->N; if(!m_refractive) return make_float3 (0, 0, 0); float cosNO = dot(m_N, I); float cosNI = dot(m_N, omega_in); if(cosNO <= 0 || cosNI >= 0) return make_float3 (0, 0, 0); // vectors on same side -- not possible // compute half-vector of the refraction (eq. 16) float3 ht = -(m_eta * omega_in + I); float3 Ht = normalize(ht); float cosHO = dot(Ht, I); float cosHI = dot(Ht, omega_in); // eq. 33: first we calculate D(m) with m=Ht: float alpha2 = m_ag * m_ag; float cosThetaM = dot(m_N, Ht); float cosThetaM2 = cosThetaM * cosThetaM; float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2; float cosThetaM4 = cosThetaM2 * cosThetaM2; float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2)); // eq. 34: now calculate G1(i,m) and G1(o,m) float G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO))); float G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI))); float G = G1o * G1i; // probability float invHt2 = 1 / dot(ht, ht); *pdf = D * fabsf(cosThetaM) * (fabsf(cosHI) * (m_eta * m_eta)) * invHt2; float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D) * invHt2) / cosNO; return make_float3 (out, out, out); } __device float bsdf_microfacet_ggx_albedo(const ShaderData *sd, const ShaderClosure *sc, const float3 I) { return 1.0f; } __device int bsdf_microfacet_ggx_sample(const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf) { float m_ag = sc->data0; float m_eta = sc->data1; int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID; float3 m_N = sd->N; float cosNO = dot(m_N, sd->I); if(cosNO > 0) { float3 X, Y, Z = m_N; make_orthonormals(Z, &X, &Y); // generate a random microfacet normal m // eq. 35,36: // we take advantage of cos(atan(x)) == 1/sqrt(1+x^2) //tttt and sin(atan(x)) == x/sqrt(1+x^2) float alpha2 = m_ag * m_ag; float tanThetaM2 = alpha2 * randu / (1 - randu); float cosThetaM = 1 / safe_sqrtf(1 + tanThetaM2); float sinThetaM = cosThetaM * safe_sqrtf(tanThetaM2); float phiM = 2 * M_PI_F * randv; float3 m = (cosf(phiM) * sinThetaM) * X + (sinf(phiM) * sinThetaM) * Y + cosThetaM * Z; if(!m_refractive) { float cosMO = dot(m, sd->I); if(cosMO > 0) { // eq. 39 - compute actual reflected direction *omega_in = 2 * cosMO * m - sd->I; if(dot(sd->Ng, *omega_in) > 0) { // microfacet normal is visible to this ray // eq. 33 float cosThetaM2 = cosThetaM * cosThetaM; float cosThetaM4 = cosThetaM2 * cosThetaM2; float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2)); // eq. 24 float pm = D * cosThetaM; // convert into pdf of the sampled direction // eq. 38 - but see also: // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf *pdf = pm * 0.25f / cosMO; // eval BRDF*cosNI float cosNI = dot(m_N, *omega_in); // eq. 34: now calculate G1(i,m) and G1(o,m) float G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO))); float G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI))); float G = G1o * G1i; // eq. 20: (F*G*D)/(4*in*on) float out = (G * D) * 0.25f / cosNO; *eval = make_float3(out, out, out); #ifdef __RAY_DIFFERENTIALS__ *domega_in_dx = (2 * dot(m, sd->dI.dx)) * m - sd->dI.dx; *domega_in_dy = (2 * dot(m, sd->dI.dy)) * m - sd->dI.dy; // Since there is some blur to this reflection, make the // derivatives a bit bigger. In theory this varies with the // roughness but the exact relationship is complex and // requires more ops than are practical. *domega_in_dx *= 10.0f; *domega_in_dy *= 10.0f; #endif } } } else { // CAUTION: the i and o variables are inverted relative to the paper // eq. 39 - compute actual refractive direction float3 R, T; #ifdef __RAY_DIFFERENTIALS__ float3 dRdx, dRdy, dTdx, dTdy; #endif bool inside; fresnel_dielectric(m_eta, m, sd->I, &R, &T, #ifdef __RAY_DIFFERENTIALS__ sd->dI.dx, sd->dI.dy, &dRdx, &dRdy, &dTdx, &dTdy, #endif &inside); if(!inside) { *omega_in = T; #ifdef __RAY_DIFFERENTIALS__ *domega_in_dx = dTdx; *domega_in_dy = dTdy; #endif // eq. 33 float cosThetaM2 = cosThetaM * cosThetaM; float cosThetaM4 = cosThetaM2 * cosThetaM2; float D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2)); // eq. 24 float pm = D * cosThetaM; // eval BRDF*cosNI float cosNI = dot(m_N, *omega_in); // eq. 34: now calculate G1(i,m) and G1(o,m) float G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO))); float G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI))); float G = G1o * G1i; // eq. 21 float cosHI = dot(m, *omega_in); float cosHO = dot(m, sd->I); float Ht2 = m_eta * cosHI + cosHO; Ht2 *= Ht2; float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D)) / (cosNO * Ht2); // eq. 38 and eq. 17 *pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2; *eval = make_float3(out, out, out); #ifdef __RAY_DIFFERENTIALS__ // Since there is some blur to this refraction, make the // derivatives a bit bigger. In theory this varies with the // roughness but the exact relationship is complex and // requires more ops than are practical. *domega_in_dx *= 10.0f; *domega_in_dy *= 10.0f; #endif } } } return (m_refractive) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY; } /* BECKMANN */ typedef struct BsdfMicrofacetBeckmannClosure { //float3 m_N; float m_ab; float m_eta; } BsdfMicrofacetBeckmannClosure; __device void bsdf_microfacet_beckmann_setup(ShaderData *sd, ShaderClosure *sc, float ab, float eta, bool refractive) { float m_ab = clamp(ab, 1e-4f, 1.0f); float m_eta = eta; sc->data0 = m_ab; sc->data1 = m_eta; if(refractive) sc->type = CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID; else sc->type = CLOSURE_BSDF_MICROFACET_BECKMANN_ID; sd->flag |= SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY; } __device void bsdf_microfacet_beckmann_blur(ShaderClosure *sc, float roughness) { float m_ab = sc->data0; m_ab = fmaxf(roughness, m_ab); sc->data0 = m_ab; } __device float3 bsdf_microfacet_beckmann_eval_reflect(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { float m_ab = sc->data0; //float m_eta = sc->data1; int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID; float3 m_N = sd->N; if(m_refractive) return make_float3 (0, 0, 0); float cosNO = dot(m_N, I); float cosNI = dot(m_N, omega_in); if(cosNO > 0 && cosNI > 0) { // get half vector float3 Hr = normalize(omega_in + I); // eq. 20: (F*G*D)/(4*in*on) // eq. 25: first we calculate D(m) with m=Hr: float alpha2 = m_ab * m_ab; float cosThetaM = dot(m_N, Hr); float cosThetaM2 = cosThetaM * cosThetaM; float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2; float cosThetaM4 = cosThetaM2 * cosThetaM2; float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4); // eq. 26, 27: now calculate G1(i,m) and G1(o,m) float ao = 1 / (m_ab * safe_sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO))); float ai = 1 / (m_ab * safe_sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI))); float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f; float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f; float G = G1o * G1i; float out = (G * D) * 0.25f / cosNO; // eq. 24 float pm = D * cosThetaM; // convert into pdf of the sampled direction // eq. 38 - but see also: // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf *pdf = pm * 0.25f / dot(Hr, I); return make_float3 (out, out, out); } return make_float3 (0, 0, 0); } __device float3 bsdf_microfacet_beckmann_eval_transmit(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { float m_ab = sc->data0; float m_eta = sc->data1; int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID; float3 m_N = sd->N; if(!m_refractive) return make_float3 (0, 0, 0); float cosNO = dot(m_N, I); float cosNI = dot(m_N, omega_in); if(cosNO <= 0 || cosNI >= 0) return make_float3 (0, 0, 0); // compute half-vector of the refraction (eq. 16) float3 ht = -(m_eta * omega_in + I); float3 Ht = normalize(ht); float cosHO = dot(Ht, I); float cosHI = dot(Ht, omega_in); // eq. 33: first we calculate D(m) with m=Ht: float alpha2 = m_ab * m_ab; float cosThetaM = dot(m_N, Ht); float cosThetaM2 = cosThetaM * cosThetaM; float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2; float cosThetaM4 = cosThetaM2 * cosThetaM2; float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4); // eq. 26, 27: now calculate G1(i,m) and G1(o,m) float ao = 1 / (m_ab * safe_sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO))); float ai = 1 / (m_ab * safe_sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI))); float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f; float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f; float G = G1o * G1i; // probability float invHt2 = 1 / dot(ht, ht); *pdf = D * fabsf(cosThetaM) * (fabsf(cosHI) * (m_eta * m_eta)) * invHt2; float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D) * invHt2) / cosNO; return make_float3 (out, out, out); } __device float bsdf_microfacet_beckmann_albedo(const ShaderData *sd, const ShaderClosure *sc, const float3 I) { return 1.0f; } __device int bsdf_microfacet_beckmann_sample(const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf) { float m_ab = sc->data0; float m_eta = sc->data1; int m_refractive = sc->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID; float3 m_N = sd->N; float cosNO = dot(m_N, sd->I); if(cosNO > 0) { float3 X, Y, Z = m_N; make_orthonormals(Z, &X, &Y); // generate a random microfacet normal m // eq. 35,36: // we take advantage of cos(atan(x)) == 1/sqrt(1+x^2) //tttt and sin(atan(x)) == x/sqrt(1+x^2) float alpha2 = m_ab * m_ab; float tanThetaM = safe_sqrtf(-alpha2 * logf(1 - randu)); float cosThetaM = 1 / safe_sqrtf(1 + tanThetaM * tanThetaM); float sinThetaM = cosThetaM * tanThetaM; float phiM = 2 * M_PI_F * randv; float3 m = (cosf(phiM) * sinThetaM) * X + (sinf(phiM) * sinThetaM) * Y + cosThetaM * Z; if(!m_refractive) { float cosMO = dot(m, sd->I); if(cosMO > 0) { // eq. 39 - compute actual reflected direction *omega_in = 2 * cosMO * m - sd->I; if(dot(sd->Ng, *omega_in) > 0) { // microfacet normal is visible to this ray // eq. 25 float cosThetaM2 = cosThetaM * cosThetaM; float tanThetaM2 = tanThetaM * tanThetaM; float cosThetaM4 = cosThetaM2 * cosThetaM2; float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4); // eq. 24 float pm = D * cosThetaM; // convert into pdf of the sampled direction // eq. 38 - but see also: // eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf *pdf = pm * 0.25f / cosMO; // Eval BRDF*cosNI float cosNI = dot(m_N, *omega_in); // eq. 26, 27: now calculate G1(i,m) and G1(o,m) float ao = 1 / (m_ab * safe_sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO))); float ai = 1 / (m_ab * safe_sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI))); float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f; float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f; float G = G1o * G1i; // eq. 20: (F*G*D)/(4*in*on) float out = (G * D) * 0.25f / cosNO; *eval = make_float3(out, out, out); #ifdef __RAY_DIFFERENTIALS__ *domega_in_dx = (2 * dot(m, sd->dI.dx)) * m - sd->dI.dx; *domega_in_dy = (2 * dot(m, sd->dI.dy)) * m - sd->dI.dy; // Since there is some blur to this reflection, make the // derivatives a bit bigger. In theory this varies with the // roughness but the exact relationship is complex and // requires more ops than are practical. *domega_in_dx *= 10.0f; *domega_in_dy *= 10.0f; #endif } } } else { // CAUTION: the i and o variables are inverted relative to the paper // eq. 39 - compute actual refractive direction float3 R, T; #ifdef __RAY_DIFFERENTIALS__ float3 dRdx, dRdy, dTdx, dTdy; #endif bool inside; fresnel_dielectric(m_eta, m, sd->I, &R, &T, #ifdef __RAY_DIFFERENTIALS__ sd->dI.dx, sd->dI.dy, &dRdx, &dRdy, &dTdx, &dTdy, #endif &inside); if(!inside) { *omega_in = T; #ifdef __RAY_DIFFERENTIALS__ *domega_in_dx = dTdx; *domega_in_dy = dTdy; #endif // eq. 33 float cosThetaM2 = cosThetaM * cosThetaM; float tanThetaM2 = tanThetaM * tanThetaM; float cosThetaM4 = cosThetaM2 * cosThetaM2; float D = expf(-tanThetaM2 / alpha2) / (M_PI_F * alpha2 * cosThetaM4); // eq. 24 float pm = D * cosThetaM; // eval BRDF*cosNI float cosNI = dot(m_N, *omega_in); // eq. 26, 27: now calculate G1(i,m) and G1(o,m) float ao = 1 / (m_ab * safe_sqrtf((1 - cosNO * cosNO) / (cosNO * cosNO))); float ai = 1 / (m_ab * safe_sqrtf((1 - cosNI * cosNI) / (cosNI * cosNI))); float G1o = ao < 1.6f ? (3.535f * ao + 2.181f * ao * ao) / (1 + 2.276f * ao + 2.577f * ao * ao) : 1.0f; float G1i = ai < 1.6f ? (3.535f * ai + 2.181f * ai * ai) / (1 + 2.276f * ai + 2.577f * ai * ai) : 1.0f; float G = G1o * G1i; // eq. 21 float cosHI = dot(m, *omega_in); float cosHO = dot(m, sd->I); float Ht2 = m_eta * cosHI + cosHO; Ht2 *= Ht2; float out = (fabsf(cosHI * cosHO) * (m_eta * m_eta) * (G * D)) / (cosNO * Ht2); // eq. 38 and eq. 17 *pdf = pm * (m_eta * m_eta) * fabsf(cosHI) / Ht2; *eval = make_float3(out, out, out); #ifdef __RAY_DIFFERENTIALS__ // Since there is some blur to this refraction, make the // derivatives a bit bigger. In theory this varies with the // roughness but the exact relationship is complex and // requires more ops than are practical. *domega_in_dx *= 10.0f; *domega_in_dy *= 10.0f; #endif } } } return (m_refractive) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY; } CCL_NAMESPACE_END #endif /* __BSDF_MICROFACET_H__ */