/* * Adapted from Open Shading Language with this license: * * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al. * All Rights Reserved. * * Modifications Copyright 2011, Blender Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Sony Pictures Imageworks nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __BSDF_WARD_H__ #define __BSDF_WARD_H__ CCL_NAMESPACE_BEGIN /* WARD */ typedef struct BsdfWardClosure { //float3 m_N; //float3 m_T; float m_ax; float m_ay; } BsdfWardClosure; __device void bsdf_ward_setup(ShaderData *sd, ShaderClosure *sc, float3 T, float ax, float ay) { float m_ax = clamp(ax, 1e-5f, 1.0f); float m_ay = clamp(ay, 1e-5f, 1.0f); sc->data0 = m_ax; sc->data1 = m_ay; sc->type = CLOSURE_BSDF_WARD_ID; sd->flag |= SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY; } __device void bsdf_ward_blur(ShaderClosure *sc, float roughness) { sc->data0 = fmaxf(roughness, sc->data0); sc->data1 = fmaxf(roughness, sc->data1); } __device float3 bsdf_ward_eval_reflect(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { float m_ax = sc->data0; float m_ay = sc->data1; float3 m_N = sd->N; float3 m_T = normalize(sd->dPdu); float cosNO = dot(m_N, I); float cosNI = dot(m_N, omega_in); if(cosNI > 0 && cosNO > 0) { // get half vector and get x,y basis on the surface for anisotropy float3 H = normalize(omega_in + I); // normalize needed for pdf float3 X, Y; make_orthonormals_tangent(m_N, m_T, &X, &Y); // eq. 4 float dotx = dot(H, X) / m_ax; float doty = dot(H, Y) / m_ay; float dotn = dot(H, m_N); float exp_arg = (dotx * dotx + doty * doty) / (dotn * dotn); float denom = (4 * M_PI_F * m_ax * m_ay * sqrtf(cosNO * cosNI)); float exp_val = expf(-exp_arg); float out = cosNI * exp_val / denom; float oh = dot(H, I); denom = 4 * M_PI_F * m_ax * m_ay * oh * dotn * dotn * dotn; *pdf = exp_val / denom; return make_float3 (out, out, out); } return make_float3 (0, 0, 0); } __device float3 bsdf_ward_eval_transmit(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { return make_float3(0.0f, 0.0f, 0.0f); } __device float bsdf_ward_albedo(const ShaderData *sd, const ShaderClosure *sc, const float3 I) { return 1.0f; } __device int bsdf_ward_sample(const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf) { float m_ax = sc->data0; float m_ay = sc->data1; float3 m_N = sd->N; float3 m_T = normalize(sd->dPdu); float cosNO = dot(m_N, sd->I); if(cosNO > 0) { // get x,y basis on the surface for anisotropy float3 X, Y; make_orthonormals_tangent(m_N, m_T, &X, &Y); // generate random angles for the half vector // eq. 7 (taking care around discontinuities to keep //ttoutput angle in the right quadrant) // we take advantage of cos(atan(x)) == 1/sqrt(1+x^2) //tttt and sin(atan(x)) == x/sqrt(1+x^2) float alphaRatio = m_ay / m_ax; float cosPhi, sinPhi; if(randu < 0.25f) { float val = 4 * randu; float tanPhi = alphaRatio * tanf(M_PI_2_F * val); cosPhi = 1 / sqrtf(1 + tanPhi * tanPhi); sinPhi = tanPhi * cosPhi; } else if(randu < 0.5f) { float val = 1 - 4 * (0.5f - randu); float tanPhi = alphaRatio * tanf(M_PI_2_F * val); // phi = M_PI_F - phi; cosPhi = -1 / sqrtf(1 + tanPhi * tanPhi); sinPhi = -tanPhi * cosPhi; } else if(randu < 0.75f) { float val = 4 * (randu - 0.5f); float tanPhi = alphaRatio * tanf(M_PI_2_F * val); //phi = M_PI_F + phi; cosPhi = -1 / sqrtf(1 + tanPhi * tanPhi); sinPhi = tanPhi * cosPhi; } else { float val = 1 - 4 * (1 - randu); float tanPhi = alphaRatio * tanf(M_PI_2_F * val); // phi = 2 * M_PI_F - phi; cosPhi = 1 / sqrtf(1 + tanPhi * tanPhi); sinPhi = -tanPhi * cosPhi; } // eq. 6 // we take advantage of cos(atan(x)) == 1/sqrt(1+x^2) //tttt and sin(atan(x)) == x/sqrt(1+x^2) float thetaDenom = (cosPhi * cosPhi) / (m_ax * m_ax) + (sinPhi * sinPhi) / (m_ay * m_ay); float tanTheta2 = -logf(1 - randv) / thetaDenom; float cosTheta = 1 / sqrtf(1 + tanTheta2); float sinTheta = cosTheta * sqrtf(tanTheta2); float3 h; // already normalized becaused expressed from spherical coordinates h.x = sinTheta * cosPhi; h.y = sinTheta * sinPhi; h.z = cosTheta; // compute terms that are easier in local space float dotx = h.x / m_ax; float doty = h.y / m_ay; float dotn = h.z; // transform to world space h = h.x * X + h.y * Y + h.z * m_N; // generate the final sample float oh = dot(h, sd->I); *omega_in = 2.0f * oh * h - sd->I; if(dot(sd->Ng, *omega_in) > 0) { float cosNI = dot(m_N, *omega_in); if(cosNI > 0) { // eq. 9 float exp_arg = (dotx * dotx + doty * doty) / (dotn * dotn); float denom = 4 * M_PI_F * m_ax * m_ay * oh * dotn * dotn * dotn; *pdf = expf(-exp_arg) / denom; // compiler will reuse expressions already computed denom = (4 * M_PI_F * m_ax * m_ay * sqrtf(cosNO * cosNI)); float power = cosNI * expf(-exp_arg) / denom; *eval = make_float3(power, power, power); #ifdef __RAY_DIFFERENTIALS__ *domega_in_dx = (2 * dot(m_N, sd->dI.dx)) * m_N - sd->dI.dx; *domega_in_dy = (2 * dot(m_N, sd->dI.dy)) * m_N - sd->dI.dy; // Since there is some blur to this reflection, make the // derivatives a bit bigger. In theory this varies with the // roughness but the exact relationship is complex and // requires more ops than are practical. *domega_in_dx *= 10.0f; *domega_in_dy *= 10.0f; #endif } } } return LABEL_REFLECT|LABEL_GLOSSY; } CCL_NAMESPACE_END #endif /* __BSDF_WARD_H__ */