/* * Adapted from Open Shading Language with this license: * * Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al. * All Rights Reserved. * * Modifications Copyright 2011, Blender Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Sony Pictures Imageworks nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __BSDF_WESTIN_H__ #define __BSDF_WESTIN_H__ CCL_NAMESPACE_BEGIN /* WESTIN BACKSCATTER */ typedef struct BsdfWestinBackscatterClosure { //float3 m_N; float m_invroughness; } BsdfWestinBackscatterClosure; __device void bsdf_westin_backscatter_setup(ShaderData *sd, ShaderClosure *sc, float roughness) { roughness = clamp(roughness, 1e-5f, 1.0f); float m_invroughness = 1.0f/roughness; sc->type = CLOSURE_BSDF_WESTIN_BACKSCATTER_ID; sd->flag |= SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY; sc->data0 = m_invroughness; } __device void bsdf_westin_backscatter_blur(ShaderClosure *sc, float roughness) { float m_invroughness = sc->data0; m_invroughness = min(1.0f/roughness, m_invroughness); sc->data0 = m_invroughness; } __device float3 bsdf_westin_backscatter_eval_reflect(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { float m_invroughness = sc->data0; float3 m_N = sd->N; // pdf is implicitly 0 (no indirect sampling) float cosNO = dot(m_N, I); float cosNI = dot(m_N, omega_in); if(cosNO > 0 && cosNI > 0) { float cosine = dot(I, omega_in); *pdf = cosine > 0 ? (m_invroughness + 1) * powf(cosine, m_invroughness) : 0; *pdf *= 0.5f * M_1_PI_F; return make_float3 (*pdf, *pdf, *pdf); } return make_float3 (0, 0, 0); } __device float3 bsdf_westin_backscatter_eval_transmit(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { return make_float3(0.0f, 0.0f, 0.0f); } __device float bsdf_westin_backscatter_albedo(const ShaderData *sd, const ShaderClosure *sc, const float3 I) { return 1.0f; } __device int bsdf_westin_backscatter_sample(const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf) { float m_invroughness = sc->data0; float3 m_N = sd->N; float cosNO = dot(m_N, sd->I); if(cosNO > 0) { #ifdef __RAY_DIFFERENTIALS__ *domega_in_dx = sd->dI.dx; *domega_in_dy = sd->dI.dy; #endif float3 T, B; make_orthonormals (sd->I, &T, &B); float phi = 2 * M_PI_F * randu; float cosTheta = powf(randv, 1 / (m_invroughness + 1)); float sinTheta2 = 1 - cosTheta * cosTheta; float sinTheta = sinTheta2 > 0 ? sqrtf(sinTheta2) : 0; *omega_in = (cosf(phi) * sinTheta) * T + (sinf(phi) * sinTheta) * B + (cosTheta) * sd->I; if(dot(sd->Ng, *omega_in) > 0) { // common terms for pdf and eval float cosNI = dot(m_N, *omega_in); // make sure the direction we chose is still in the right hemisphere if(cosNI > 0) { *pdf = 0.5f * M_1_PI_F * powf(cosTheta, m_invroughness); *pdf = (m_invroughness + 1) * (*pdf); *eval = make_float3(*pdf, *pdf, *pdf); #ifdef __RAY_DIFFERENTIALS__ // Since there is some blur to this reflection, make the // derivatives a bit bigger. In theory this varies with the // exponent but the exact relationship is complex and // requires more ops than are practical. *domega_in_dx *= 10.0f; *domega_in_dy *= 10.0f; #endif } } } return LABEL_REFLECT|LABEL_GLOSSY; } /* WESTIN SHEEN */ typedef struct BsdfWestinSheenClosure { //float3 m_N; float m_edginess; } BsdfWestinSheenClosure; __device void bsdf_westin_sheen_setup(ShaderData *sd, ShaderClosure *sc, float edginess) { sc->type = CLOSURE_BSDF_WESTIN_SHEEN_ID; sd->flag |= SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY; sc->data0 = edginess; } __device void bsdf_westin_sheen_blur(ShaderClosure *sc, float roughness) { } __device float3 bsdf_westin_sheen_eval_reflect(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { float m_edginess = sc->data0; float3 m_N = sd->N; // pdf is implicitly 0 (no indirect sampling) float cosNO = dot(m_N, I); float cosNI = dot(m_N, omega_in); if(cosNO > 0 && cosNI > 0) { float sinNO2 = 1 - cosNO * cosNO; *pdf = cosNI * M_1_PI_F; float westin = sinNO2 > 0 ? powf(sinNO2, 0.5f * m_edginess) * (*pdf) : 0; return make_float3 (westin, westin, westin); } return make_float3 (0, 0, 0); } __device float3 bsdf_westin_sheen_eval_transmit(const ShaderData *sd, const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf) { return make_float3(0.0f, 0.0f, 0.0f); } __device float bsdf_westin_sheen_albedo(const ShaderData *sd, const ShaderClosure *sc, const float3 I) { return 1.0f; } __device int bsdf_westin_sheen_sample(const ShaderData *sd, const ShaderClosure *sc, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf) { float m_edginess = sc->data0; float3 m_N = sd->N; // we are viewing the surface from the right side - send a ray out with cosine // distribution over the hemisphere sample_cos_hemisphere(m_N, randu, randv, omega_in, pdf); if(dot(sd->Ng, *omega_in) > 0) { // TODO: account for sheen when sampling float cosNO = dot(m_N, sd->I); float sinNO2 = 1 - cosNO * cosNO; float westin = sinNO2 > 0 ? powf(sinNO2, 0.5f * m_edginess) * (*pdf) : 0; *eval = make_float3(westin, westin, westin); #ifdef __RAY_DIFFERENTIALS__ // TODO: find a better approximation for the diffuse bounce *domega_in_dx = (2 * dot(m_N, sd->dI.dx)) * m_N - sd->dI.dx; *domega_in_dy = (2 * dot(m_N, sd->dI.dy)) * m_N - sd->dI.dy; *domega_in_dx *= 125.0f; *domega_in_dy *= 125.0f; #endif } else pdf = 0; return LABEL_REFLECT|LABEL_DIFFUSE; } CCL_NAMESPACE_END #endif /* __BSDF_WESTIN_H__ */