/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ CCL_NAMESPACE_BEGIN ccl_device float4 svm_image_texture(KernelGlobals *kg, int id, float x, float y, uint flags) { float4 r = kernel_tex_image_interp(kg, id, x, y); const float alpha = r.w; if ((flags & NODE_IMAGE_ALPHA_UNASSOCIATE) && alpha != 1.0f && alpha != 0.0f) { r /= alpha; const int texture_type = kernel_tex_type(id); if (texture_type == IMAGE_DATA_TYPE_BYTE4 || texture_type == IMAGE_DATA_TYPE_BYTE) { r = min(r, make_float4(1.0f, 1.0f, 1.0f, 1.0f)); } r.w = alpha; } if (flags & NODE_IMAGE_COMPRESS_AS_SRGB) { r = color_srgb_to_linear_v4(r); } return r; } /* Remap coordnate from 0..1 box to -1..-1 */ ccl_device_inline float3 texco_remap_square(float3 co) { return (co - make_float3(0.5f, 0.5f, 0.5f)) * 2.0f; } ccl_device void svm_node_tex_image(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node) { uint id = node.y; uint co_offset, out_offset, alpha_offset, flags; decode_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &flags); float3 co = stack_load_float3(stack, co_offset); float2 tex_co; if (node.w == NODE_IMAGE_PROJ_SPHERE) { co = texco_remap_square(co); tex_co = map_to_sphere(co); } else if (node.w == NODE_IMAGE_PROJ_TUBE) { co = texco_remap_square(co); tex_co = map_to_tube(co); } else { tex_co = make_float2(co.x, co.y); } float4 f = svm_image_texture(kg, id, tex_co.x, tex_co.y, flags); if (stack_valid(out_offset)) stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z)); if (stack_valid(alpha_offset)) stack_store_float(stack, alpha_offset, f.w); } ccl_device void svm_node_tex_image_box(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node) { /* get object space normal */ float3 N = sd->N; N = sd->N; object_inverse_normal_transform(kg, sd, &N); /* project from direction vector to barycentric coordinates in triangles */ float3 signed_N = N; N.x = fabsf(N.x); N.y = fabsf(N.y); N.z = fabsf(N.z); N /= (N.x + N.y + N.z); /* basic idea is to think of this as a triangle, each corner representing * one of the 3 faces of the cube. in the corners we have single textures, * in between we blend between two textures, and in the middle we a blend * between three textures. * * the Nxyz values are the barycentric coordinates in an equilateral * triangle, which in case of blending, in the middle has a smaller * equilateral triangle where 3 textures blend. this divides things into * 7 zones, with an if() test for each zone */ float3 weight = make_float3(0.0f, 0.0f, 0.0f); float blend = __int_as_float(node.w); float limit = 0.5f * (1.0f + blend); /* first test for corners with single texture */ if (N.x > limit * (N.x + N.y) && N.x > limit * (N.x + N.z)) { weight.x = 1.0f; } else if (N.y > limit * (N.x + N.y) && N.y > limit * (N.y + N.z)) { weight.y = 1.0f; } else if (N.z > limit * (N.x + N.z) && N.z > limit * (N.y + N.z)) { weight.z = 1.0f; } else if (blend > 0.0f) { /* in case of blending, test for mixes between two textures */ if (N.z < (1.0f - limit) * (N.y + N.x)) { weight.x = N.x / (N.x + N.y); weight.x = saturate((weight.x - 0.5f * (1.0f - blend)) / blend); weight.y = 1.0f - weight.x; } else if (N.x < (1.0f - limit) * (N.y + N.z)) { weight.y = N.y / (N.y + N.z); weight.y = saturate((weight.y - 0.5f * (1.0f - blend)) / blend); weight.z = 1.0f - weight.y; } else if (N.y < (1.0f - limit) * (N.x + N.z)) { weight.x = N.x / (N.x + N.z); weight.x = saturate((weight.x - 0.5f * (1.0f - blend)) / blend); weight.z = 1.0f - weight.x; } else { /* last case, we have a mix between three */ weight.x = ((2.0f - limit) * N.x + (limit - 1.0f)) / (2.0f * limit - 1.0f); weight.y = ((2.0f - limit) * N.y + (limit - 1.0f)) / (2.0f * limit - 1.0f); weight.z = ((2.0f - limit) * N.z + (limit - 1.0f)) / (2.0f * limit - 1.0f); } } else { /* Desperate mode, no valid choice anyway, fallback to one side.*/ weight.x = 1.0f; } /* now fetch textures */ uint co_offset, out_offset, alpha_offset, flags; decode_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &flags); float3 co = stack_load_float3(stack, co_offset); uint id = node.y; float4 f = make_float4(0.0f, 0.0f, 0.0f, 0.0f); /* Map so that no textures are flipped, rotation is somewhat arbitrary. */ if (weight.x > 0.0f) { float2 uv = make_float2((signed_N.x < 0.0f) ? 1.0f - co.y : co.y, co.z); f += weight.x * svm_image_texture(kg, id, uv.x, uv.y, flags); } if (weight.y > 0.0f) { float2 uv = make_float2((signed_N.y > 0.0f) ? 1.0f - co.x : co.x, co.z); f += weight.y * svm_image_texture(kg, id, uv.x, uv.y, flags); } if (weight.z > 0.0f) { float2 uv = make_float2((signed_N.z > 0.0f) ? 1.0f - co.y : co.y, co.x); f += weight.z * svm_image_texture(kg, id, uv.x, uv.y, flags); } if (stack_valid(out_offset)) stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z)); if (stack_valid(alpha_offset)) stack_store_float(stack, alpha_offset, f.w); } ccl_device void svm_node_tex_environment(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node) { uint id = node.y; uint co_offset, out_offset, alpha_offset, flags; uint projection = node.w; decode_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &flags); float3 co = stack_load_float3(stack, co_offset); float2 uv; co = safe_normalize(co); if (projection == 0) uv = direction_to_equirectangular(co); else uv = direction_to_mirrorball(co); float4 f = svm_image_texture(kg, id, uv.x, uv.y, flags); if (stack_valid(out_offset)) stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z)); if (stack_valid(alpha_offset)) stack_store_float(stack, alpha_offset, f.w); } CCL_NAMESPACE_END