/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "camera.h" #include "mesh.h" #include "object.h" #include "scene.h" #include "device.h" #include "util_foreach.h" #include "util_vector.h" CCL_NAMESPACE_BEGIN Camera::Camera() { shuttertime = 1.0f; aperturesize = 0.0f; focaldistance = 10.0f; blades = 0; bladesrotation = 0.0f; matrix = transform_identity(); motion.pre = transform_identity(); motion.post = transform_identity(); use_motion = false; aperture_ratio = 1.0f; type = CAMERA_PERSPECTIVE; panorama_type = PANORAMA_EQUIRECTANGULAR; fisheye_fov = M_PI_F; fisheye_lens = 10.5f; latitude_min = -M_PI_2_F; latitude_max = M_PI_2_F; longitude_min = -M_PI_F; longitude_max = M_PI_F; fov = M_PI_4_F; sensorwidth = 0.036f; sensorheight = 0.024f; nearclip = 1e-5f; farclip = 1e5f; width = 1024; height = 512; resolution = 1; viewplane.left = -((float)width/(float)height); viewplane.right = (float)width/(float)height; viewplane.bottom = -1.0f; viewplane.top = 1.0f; screentoworld = transform_identity(); rastertoworld = transform_identity(); ndctoworld = transform_identity(); rastertocamera = transform_identity(); cameratoworld = transform_identity(); worldtoraster = transform_identity(); dx = make_float3(0.0f, 0.0f, 0.0f); dy = make_float3(0.0f, 0.0f, 0.0f); need_update = true; need_device_update = true; need_flags_update = true; previous_need_motion = -1; } Camera::~Camera() { } void Camera::compute_auto_viewplane() { float aspect = (float)width/(float)height; if(width >= height) { viewplane.left = -aspect; viewplane.right = aspect; viewplane.bottom = -1.0f; viewplane.top = 1.0f; } else { viewplane.left = -1.0f; viewplane.right = 1.0f; viewplane.bottom = -1.0f/aspect; viewplane.top = 1.0f/aspect; } } void Camera::update() { if(!need_update) return; /* Full viewport to camera border in the viewport. */ Transform fulltoborder = transform_from_viewplane(viewport_camera_border); Transform bordertofull = transform_inverse(fulltoborder); /* ndc to raster */ Transform screentocamera; Transform ndctoraster = transform_scale(width, height, 1.0f) * bordertofull; /* raster to screen */ Transform screentondc = fulltoborder * transform_from_viewplane(viewplane); Transform screentoraster = ndctoraster * screentondc; Transform rastertoscreen = transform_inverse(screentoraster); /* screen to camera */ if(type == CAMERA_PERSPECTIVE) screentocamera = transform_inverse(transform_perspective(fov, nearclip, farclip)); else if(type == CAMERA_ORTHOGRAPHIC) screentocamera = transform_inverse(transform_orthographic(nearclip, farclip)); else screentocamera = transform_identity(); Transform cameratoscreen = transform_inverse(screentocamera); rastertocamera = screentocamera * rastertoscreen; cameratoraster = screentoraster * cameratoscreen; cameratoworld = matrix; screentoworld = cameratoworld * screentocamera; rastertoworld = cameratoworld * rastertocamera; ndctoworld = rastertoworld * ndctoraster; /* note we recompose matrices instead of taking inverses of the above, this * is needed to avoid inverting near degenerate matrices that happen due to * precision issues with large scenes */ worldtocamera = transform_inverse(matrix); worldtoscreen = cameratoscreen * worldtocamera; worldtondc = screentondc * worldtoscreen; worldtoraster = ndctoraster * worldtondc; /* differentials */ if(type == CAMERA_ORTHOGRAPHIC) { dx = transform_direction(&rastertocamera, make_float3(1, 0, 0)); dy = transform_direction(&rastertocamera, make_float3(0, 1, 0)); } else if(type == CAMERA_PERSPECTIVE) { dx = transform_perspective(&rastertocamera, make_float3(1, 0, 0)) - transform_perspective(&rastertocamera, make_float3(0, 0, 0)); dy = transform_perspective(&rastertocamera, make_float3(0, 1, 0)) - transform_perspective(&rastertocamera, make_float3(0, 0, 0)); } else { dx = make_float3(0.0f, 0.0f, 0.0f); dy = make_float3(0.0f, 0.0f, 0.0f); } dx = transform_direction(&cameratoworld, dx); dy = transform_direction(&cameratoworld, dy); need_update = false; need_device_update = true; need_flags_update = true; } void Camera::device_update(Device *device, DeviceScene *dscene, Scene *scene) { Scene::MotionType need_motion = scene->need_motion(device->info.advanced_shading); update(); if(previous_need_motion != need_motion) { /* scene's motion model could have been changed since previous device * camera update this could happen for example in case when one render * layer has got motion pass and another not */ need_device_update = true; } if(!need_device_update) return; KernelCamera *kcam = &dscene->data.cam; /* store matrices */ kcam->screentoworld = screentoworld; kcam->rastertoworld = rastertoworld; kcam->rastertocamera = rastertocamera; kcam->cameratoworld = cameratoworld; kcam->worldtocamera = worldtocamera; kcam->worldtoscreen = worldtoscreen; kcam->worldtoraster = worldtoraster; kcam->worldtondc = worldtondc; /* camera motion */ kcam->have_motion = 0; if(need_motion == Scene::MOTION_PASS) { if(type == CAMERA_PANORAMA) { if(use_motion) { kcam->motion.pre = transform_inverse(motion.pre); kcam->motion.post = transform_inverse(motion.post); } else { kcam->motion.pre = kcam->worldtocamera; kcam->motion.post = kcam->worldtocamera; } } else { if(use_motion) { kcam->motion.pre = cameratoraster * transform_inverse(motion.pre); kcam->motion.post = cameratoraster * transform_inverse(motion.post); } else { kcam->motion.pre = worldtoraster; kcam->motion.post = worldtoraster; } } } #ifdef __CAMERA_MOTION__ else if(need_motion == Scene::MOTION_BLUR) { if(use_motion) { transform_motion_decompose((DecompMotionTransform*)&kcam->motion, &motion, &matrix); kcam->have_motion = 1; } } #endif /* depth of field */ kcam->aperturesize = aperturesize; kcam->focaldistance = focaldistance; kcam->blades = (blades < 3)? 0.0f: blades; kcam->bladesrotation = bladesrotation; /* motion blur */ #ifdef __CAMERA_MOTION__ kcam->shuttertime = (need_motion == Scene::MOTION_BLUR) ? shuttertime: -1.0f; #else kcam->shuttertime = -1.0f; #endif /* type */ kcam->type = type; /* anamorphic lens bokeh */ kcam->inv_aperture_ratio = 1.0f / aperture_ratio; /* panorama */ kcam->panorama_type = panorama_type; kcam->fisheye_fov = fisheye_fov; kcam->fisheye_lens = fisheye_lens; kcam->equirectangular_range = make_float4(longitude_min - longitude_max, -longitude_min, latitude_min - latitude_max, -latitude_min + M_PI_2_F); /* sensor size */ kcam->sensorwidth = sensorwidth; kcam->sensorheight = sensorheight; /* render size */ kcam->width = width; kcam->height = height; kcam->resolution = resolution; /* store differentials */ kcam->dx = float3_to_float4(dx); kcam->dy = float3_to_float4(dy); /* clipping */ kcam->nearclip = nearclip; kcam->cliplength = (farclip == FLT_MAX)? FLT_MAX: farclip - nearclip; /* Camera in volume. */ kcam->is_inside_volume = 0; previous_need_motion = need_motion; } void Camera::device_update_volume(Device * /*device*/, DeviceScene *dscene, Scene *scene) { if(!need_device_update && !need_flags_update) { return; } KernelCamera *kcam = &dscene->data.cam; BoundBox viewplane_boundbox = viewplane_bounds_get(); for(size_t i = 0; i < scene->objects.size(); ++i) { Object *object = scene->objects[i]; if(object->mesh->has_volume && viewplane_boundbox.intersects(object->bounds)) { /* TODO(sergey): Consider adding more grained check. */ kcam->is_inside_volume = 1; break; } } need_device_update = false; need_flags_update = false; } void Camera::device_free(Device * /*device*/, DeviceScene * /*dscene*/) { /* nothing to free, only writing to constant memory */ } bool Camera::modified(const Camera& cam) { return !((shuttertime == cam.shuttertime) && (aperturesize == cam.aperturesize) && (blades == cam.blades) && (bladesrotation == cam.bladesrotation) && (focaldistance == cam.focaldistance) && (type == cam.type) && (fov == cam.fov) && (nearclip == cam.nearclip) && (farclip == cam.farclip) && (sensorwidth == cam.sensorwidth) && (sensorheight == cam.sensorheight) && // modified for progressive render // (width == cam.width) && // (height == cam.height) && (viewplane == cam.viewplane) && (border == cam.border) && (matrix == cam.matrix) && (aperture_ratio == cam.aperture_ratio) && (panorama_type == cam.panorama_type) && (fisheye_fov == cam.fisheye_fov) && (fisheye_lens == cam.fisheye_lens) && (latitude_min == cam.latitude_min) && (latitude_max == cam.latitude_max) && (longitude_min == cam.longitude_min) && (longitude_max == cam.longitude_max)); } bool Camera::motion_modified(const Camera& cam) { return !((motion == cam.motion) && (use_motion == cam.use_motion)); } void Camera::tag_update() { need_update = true; } float3 Camera::transform_raster_to_world(float raster_x, float raster_y) { float3 D, P; if(type == CAMERA_PERSPECTIVE) { D = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f)); float3 Pclip = normalize(D); P = make_float3(0.0f, 0.0f, 0.0f); /* TODO(sergey): Aperture support? */ P = transform_point(&cameratoworld, P); D = normalize(transform_direction(&cameratoworld, D)); /* TODO(sergey): Clipping is conditional in kernel, and hence it could * be mistakes in here, currently leading to wrong camera-in-volume * detection. */ P += nearclip * D / Pclip.z; } else if(type == CAMERA_ORTHOGRAPHIC) { D = make_float3(0.0f, 0.0f, 1.0f); /* TODO(sergey): Aperture support? */ P = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f)); P = transform_point(&cameratoworld, P); D = normalize(transform_direction(&cameratoworld, D)); } else { assert(!"unsupported camera type"); } return P; } BoundBox Camera::viewplane_bounds_get() { /* TODO(sergey): This is all rather stupid, but is there a way to perform * checks we need in a more clear and smart fasion? */ BoundBox bounds = BoundBox::empty; if(type == CAMERA_PANORAMA) { bounds.grow(make_float3(cameratoworld.w.x, cameratoworld.w.y, cameratoworld.w.z)); } else { bounds.grow(transform_raster_to_world(0.0f, 0.0f)); bounds.grow(transform_raster_to_world(0.0f, (float)height)); bounds.grow(transform_raster_to_world((float)width, (float)height)); bounds.grow(transform_raster_to_world((float)width, 0.0f)); if(type == CAMERA_PERSPECTIVE) { /* Center point has the most distance in local Z axis, * use it to construct bounding box/ */ bounds.grow(transform_raster_to_world(0.5f*width, 0.5f*height)); } } return bounds; } CCL_NAMESPACE_END