/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "render/integrator.h" #include "device/device.h" #include "render/background.h" #include "render/film.h" #include "render/jitter.h" #include "render/light.h" #include "render/scene.h" #include "render/shader.h" #include "render/sobol.h" #include "kernel/kernel_types.h" #include "util/util_foreach.h" #include "util/util_hash.h" #include "util/util_logging.h" #include "util/util_task.h" CCL_NAMESPACE_BEGIN NODE_DEFINE(Integrator) { NodeType *type = NodeType::add("integrator", create); SOCKET_INT(min_bounce, "Min Bounce", 0); SOCKET_INT(max_bounce, "Max Bounce", 7); SOCKET_INT(max_diffuse_bounce, "Max Diffuse Bounce", 7); SOCKET_INT(max_glossy_bounce, "Max Glossy Bounce", 7); SOCKET_INT(max_transmission_bounce, "Max Transmission Bounce", 7); SOCKET_INT(max_volume_bounce, "Max Volume Bounce", 7); SOCKET_INT(transparent_min_bounce, "Transparent Min Bounce", 0); SOCKET_INT(transparent_max_bounce, "Transparent Max Bounce", 7); SOCKET_INT(ao_bounces, "AO Bounces", 0); SOCKET_INT(volume_max_steps, "Volume Max Steps", 1024); SOCKET_FLOAT(volume_step_rate, "Volume Step Rate", 1.0f); SOCKET_BOOLEAN(caustics_reflective, "Reflective Caustics", true); SOCKET_BOOLEAN(caustics_refractive, "Refractive Caustics", true); SOCKET_FLOAT(filter_glossy, "Filter Glossy", 0.0f); SOCKET_INT(seed, "Seed", 0); SOCKET_FLOAT(sample_clamp_direct, "Sample Clamp Direct", 0.0f); SOCKET_FLOAT(sample_clamp_indirect, "Sample Clamp Indirect", 0.0f); SOCKET_BOOLEAN(motion_blur, "Motion Blur", false); SOCKET_INT(aa_samples, "AA Samples", 0); SOCKET_INT(diffuse_samples, "Diffuse Samples", 1); SOCKET_INT(glossy_samples, "Glossy Samples", 1); SOCKET_INT(transmission_samples, "Transmission Samples", 1); SOCKET_INT(ao_samples, "AO Samples", 1); SOCKET_INT(mesh_light_samples, "Mesh Light Samples", 1); SOCKET_INT(subsurface_samples, "Subsurface Samples", 1); SOCKET_INT(volume_samples, "Volume Samples", 1); SOCKET_INT(start_sample, "Start Sample", 0); SOCKET_FLOAT(adaptive_threshold, "Adaptive Threshold", 0.0f); SOCKET_INT(adaptive_min_samples, "Adaptive Min Samples", 0); SOCKET_BOOLEAN(sample_all_lights_direct, "Sample All Lights Direct", true); SOCKET_BOOLEAN(sample_all_lights_indirect, "Sample All Lights Indirect", true); SOCKET_FLOAT(light_sampling_threshold, "Light Sampling Threshold", 0.05f); static NodeEnum method_enum; method_enum.insert("path", PATH); method_enum.insert("branched_path", BRANCHED_PATH); SOCKET_ENUM(method, "Method", method_enum, PATH); static NodeEnum sampling_pattern_enum; sampling_pattern_enum.insert("sobol", SAMPLING_PATTERN_SOBOL); sampling_pattern_enum.insert("cmj", SAMPLING_PATTERN_CMJ); sampling_pattern_enum.insert("pmj", SAMPLING_PATTERN_PMJ); SOCKET_ENUM(sampling_pattern, "Sampling Pattern", sampling_pattern_enum, SAMPLING_PATTERN_SOBOL); return type; } Integrator::Integrator() : Node(node_type) { need_update = true; } Integrator::~Integrator() { } void Integrator::device_update(Device *device, DeviceScene *dscene, Scene *scene) { if (!need_update) return; device_free(device, dscene); KernelIntegrator *kintegrator = &dscene->data.integrator; /* integrator parameters */ kintegrator->min_bounce = min_bounce + 1; kintegrator->max_bounce = max_bounce + 1; kintegrator->max_diffuse_bounce = max_diffuse_bounce + 1; kintegrator->max_glossy_bounce = max_glossy_bounce + 1; kintegrator->max_transmission_bounce = max_transmission_bounce + 1; kintegrator->max_volume_bounce = max_volume_bounce + 1; kintegrator->transparent_min_bounce = transparent_min_bounce + 1; kintegrator->transparent_max_bounce = transparent_max_bounce + 1; if (ao_bounces == 0) { kintegrator->ao_bounces = INT_MAX; } else { kintegrator->ao_bounces = ao_bounces - 1; } /* Transparent Shadows * We only need to enable transparent shadows, if we actually have * transparent shaders in the scene. Otherwise we can disable it * to improve performance a bit. */ kintegrator->transparent_shadows = false; foreach (Shader *shader, scene->shaders) { /* keep this in sync with SD_HAS_TRANSPARENT_SHADOW in shader.cpp */ if ((shader->has_surface_transparent && shader->use_transparent_shadow) || shader->has_volume) { kintegrator->transparent_shadows = true; break; } } kintegrator->volume_max_steps = volume_max_steps; kintegrator->volume_step_rate = volume_step_rate; kintegrator->caustics_reflective = caustics_reflective; kintegrator->caustics_refractive = caustics_refractive; kintegrator->filter_glossy = (filter_glossy == 0.0f) ? FLT_MAX : 1.0f / filter_glossy; kintegrator->seed = hash_uint2(seed, 0); kintegrator->use_ambient_occlusion = ((Pass::contains(scene->film->passes, PASS_AO)) || dscene->data.background.ao_factor != 0.0f); kintegrator->sample_clamp_direct = (sample_clamp_direct == 0.0f) ? FLT_MAX : sample_clamp_direct * 3.0f; kintegrator->sample_clamp_indirect = (sample_clamp_indirect == 0.0f) ? FLT_MAX : sample_clamp_indirect * 3.0f; kintegrator->branched = (method == BRANCHED_PATH); kintegrator->volume_decoupled = device->info.has_volume_decoupled; kintegrator->diffuse_samples = diffuse_samples; kintegrator->glossy_samples = glossy_samples; kintegrator->transmission_samples = transmission_samples; kintegrator->ao_samples = ao_samples; kintegrator->mesh_light_samples = mesh_light_samples; kintegrator->subsurface_samples = subsurface_samples; kintegrator->volume_samples = volume_samples; kintegrator->start_sample = start_sample; if (method == BRANCHED_PATH) { kintegrator->sample_all_lights_direct = sample_all_lights_direct; kintegrator->sample_all_lights_indirect = sample_all_lights_indirect; } else { kintegrator->sample_all_lights_direct = false; kintegrator->sample_all_lights_indirect = false; } kintegrator->sampling_pattern = sampling_pattern; kintegrator->aa_samples = aa_samples; if (aa_samples > 0 && adaptive_min_samples == 0) { kintegrator->adaptive_min_samples = max(4, (int)sqrtf(aa_samples)); VLOG(1) << "Cycles adaptive sampling: automatic min samples = " << kintegrator->adaptive_min_samples; } else { kintegrator->adaptive_min_samples = max(4, adaptive_min_samples); } kintegrator->adaptive_step = 4; kintegrator->adaptive_stop_per_sample = device->info.has_adaptive_stop_per_sample; /* Adaptive step must be a power of two for bitwise operations to work. */ assert((kintegrator->adaptive_step & (kintegrator->adaptive_step - 1)) == 0); if (aa_samples > 0 && adaptive_threshold == 0.0f) { kintegrator->adaptive_threshold = max(0.001f, 1.0f / (float)aa_samples); VLOG(1) << "Cycles adaptive sampling: automatic threshold = " << kintegrator->adaptive_threshold; } else { kintegrator->adaptive_threshold = adaptive_threshold; } if (light_sampling_threshold > 0.0f) { kintegrator->light_inv_rr_threshold = 1.0f / light_sampling_threshold; } else { kintegrator->light_inv_rr_threshold = 0.0f; } /* sobol directions table */ int max_samples = 1; if (method == BRANCHED_PATH) { foreach (Light *light, scene->lights) max_samples = max(max_samples, light->samples); max_samples = max(max_samples, max(diffuse_samples, max(glossy_samples, transmission_samples))); max_samples = max(max_samples, max(ao_samples, max(mesh_light_samples, subsurface_samples))); max_samples = max(max_samples, volume_samples); } uint total_bounces = max_bounce + transparent_max_bounce + 3 + VOLUME_BOUNDS_MAX + max(BSSRDF_MAX_HITS, BSSRDF_MAX_BOUNCES); max_samples *= total_bounces; int dimensions = PRNG_BASE_NUM + max_samples * PRNG_BOUNCE_NUM; dimensions = min(dimensions, SOBOL_MAX_DIMENSIONS); if (sampling_pattern == SAMPLING_PATTERN_SOBOL) { uint *directions = dscene->sample_pattern_lut.alloc(SOBOL_BITS * dimensions); sobol_generate_direction_vectors((uint(*)[SOBOL_BITS])directions, dimensions); dscene->sample_pattern_lut.copy_to_device(); } else { constexpr int sequence_size = NUM_PMJ_SAMPLES; constexpr int num_sequences = NUM_PMJ_PATTERNS; float2 *directions = (float2 *)dscene->sample_pattern_lut.alloc(sequence_size * num_sequences * 2); TaskPool pool; for (int j = 0; j < num_sequences; ++j) { float2 *sequence = directions + j * sequence_size; pool.push( function_bind(&progressive_multi_jitter_02_generate_2D, sequence, sequence_size, j)); } pool.wait_work(); dscene->sample_pattern_lut.copy_to_device(); } need_update = false; } void Integrator::device_free(Device *, DeviceScene *dscene) { dscene->sample_pattern_lut.free(); } bool Integrator::modified(const Integrator &integrator) { return !Node::equals(integrator); } void Integrator::tag_update(Scene *scene) { foreach (Shader *shader, scene->shaders) { if (shader->has_integrator_dependency) { scene->shader_manager->need_update = true; break; } } need_update = true; } CCL_NAMESPACE_END