/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License */ #include "bvh.h" #include "bvh_build.h" #include "camera.h" #include "curves.h" #include "device.h" #include "shader.h" #include "light.h" #include "mesh.h" #include "object.h" #include "scene.h" #include "osl_globals.h" #include "util_cache.h" #include "util_foreach.h" #include "util_progress.h" #include "util_set.h" CCL_NAMESPACE_BEGIN /* Triangle */ void Mesh::Triangle::bounds_grow(const float3 *verts, BoundBox& bounds) const { bounds.grow(verts[v[0]]); bounds.grow(verts[v[1]]); bounds.grow(verts[v[2]]); } /* Curve */ void Mesh::Curve::bounds_grow(const int k, const float4 *curve_keys, BoundBox& bounds) const { float3 P[4]; P[0] = float4_to_float3(curve_keys[max(first_key + k - 1,first_key)]); P[1] = float4_to_float3(curve_keys[first_key + k]); P[2] = float4_to_float3(curve_keys[first_key + k + 1]); P[3] = float4_to_float3(curve_keys[min(first_key + k + 2, first_key + num_keys - 1)]); float3 lower; float3 upper; curvebounds(&lower.x, &upper.x, P, 0); curvebounds(&lower.y, &upper.y, P, 1); curvebounds(&lower.z, &upper.z, P, 2); float mr = max(curve_keys[first_key + k].w, curve_keys[first_key + k + 1].w); bounds.grow(lower, mr); bounds.grow(upper, mr); } /* Mesh */ Mesh::Mesh() { need_update = true; need_update_rebuild = false; transform_applied = false; transform_negative_scaled = false; transform_normal = transform_identity(); displacement_method = DISPLACE_BUMP; bounds = BoundBox::empty; motion_steps = 3; use_motion_blur = false; bvh = NULL; tri_offset = 0; vert_offset = 0; curve_offset = 0; curvekey_offset = 0; attributes.triangle_mesh = this; curve_attributes.curve_mesh = this; has_volume = false; } Mesh::~Mesh() { delete bvh; } void Mesh::reserve(int numverts, int numtris, int numcurves, int numcurvekeys) { /* reserve space to add verts and triangles later */ verts.resize(numverts); triangles.resize(numtris); shader.resize(numtris); smooth.resize(numtris); curve_keys.resize(numcurvekeys); curves.resize(numcurves); attributes.reserve(); curve_attributes.reserve(); } void Mesh::clear() { /* clear all verts and triangles */ verts.clear(); triangles.clear(); shader.clear(); smooth.clear(); curve_keys.clear(); curves.clear(); attributes.clear(); curve_attributes.clear(); used_shaders.clear(); transform_applied = false; transform_negative_scaled = false; transform_normal = transform_identity(); geometry_synced = false; } int Mesh::split_vertex(int vertex) { /* copy vertex location and vertex attributes */ verts.push_back(verts[vertex]); foreach(Attribute& attr, attributes.attributes) { if(attr.element == ATTR_ELEMENT_VERTEX) { vector tmp(attr.data_sizeof()); memcpy(&tmp[0], attr.data() + tmp.size()*vertex, tmp.size()); attr.add(&tmp[0]); } } return verts.size() - 1; } void Mesh::set_triangle(int i, int v0, int v1, int v2, int shader_, bool smooth_) { Triangle tri; tri.v[0] = v0; tri.v[1] = v1; tri.v[2] = v2; triangles[i] = tri; shader[i] = shader_; smooth[i] = smooth_; } void Mesh::add_triangle(int v0, int v1, int v2, int shader_, bool smooth_) { Triangle tri; tri.v[0] = v0; tri.v[1] = v1; tri.v[2] = v2; triangles.push_back(tri); shader.push_back(shader_); smooth.push_back(smooth_); } void Mesh::add_curve_key(float3 co, float radius) { float4 key = float3_to_float4(co); key.w = radius; curve_keys.push_back(key); } void Mesh::add_curve(int first_key, int num_keys, int shader) { Curve curve; curve.first_key = first_key; curve.num_keys = num_keys; curve.shader = shader; curves.push_back(curve); } void Mesh::compute_bounds() { BoundBox bnds = BoundBox::empty; size_t verts_size = verts.size(); size_t curve_keys_size = curve_keys.size(); if(verts_size + curve_keys_size > 0) { for(size_t i = 0; i < verts_size; i++) bnds.grow(verts[i]); for(size_t i = 0; i < curve_keys_size; i++) bnds.grow(float4_to_float3(curve_keys[i]), curve_keys[i].w); Attribute *attr = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if (use_motion_blur && attr) { size_t steps_size = verts.size() * (motion_steps - 1); float3 *vert_steps = attr->data_float3(); for (size_t i = 0; i < steps_size; i++) bnds.grow(vert_steps[i]); } Attribute *curve_attr = curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if(use_motion_blur && curve_attr) { size_t steps_size = curve_keys.size() * (motion_steps - 1); float3 *key_steps = curve_attr->data_float3(); for (size_t i = 0; i < steps_size; i++) bnds.grow(key_steps[i]); } if(!bnds.valid()) { bnds = BoundBox::empty; /* skip nan or inf coordinates */ for(size_t i = 0; i < verts_size; i++) bnds.grow_safe(verts[i]); for(size_t i = 0; i < curve_keys_size; i++) bnds.grow_safe(float4_to_float3(curve_keys[i]), curve_keys[i].w); if (use_motion_blur && attr) { size_t steps_size = verts.size() * (motion_steps - 1); float3 *vert_steps = attr->data_float3(); for (size_t i = 0; i < steps_size; i++) bnds.grow_safe(vert_steps[i]); } if (use_motion_blur && curve_attr) { size_t steps_size = curve_keys.size() * (motion_steps - 1); float3 *key_steps = curve_attr->data_float3(); for (size_t i = 0; i < steps_size; i++) bnds.grow_safe(key_steps[i]); } } } if(!bnds.valid()) { /* empty mesh */ bnds.grow(make_float3(0.0f, 0.0f, 0.0f)); } bounds = bnds; } static float3 compute_face_normal(const Mesh::Triangle& t, float3 *verts) { float3 v0 = verts[t.v[0]]; float3 v1 = verts[t.v[1]]; float3 v2 = verts[t.v[2]]; float3 norm = cross(v1 - v0, v2 - v0); float normlen = len(norm); if(normlen == 0.0f) return make_float3(0.0f, 0.0f, 0.0f); return norm / normlen; } void Mesh::add_face_normals() { /* don't compute if already there */ if(attributes.find(ATTR_STD_FACE_NORMAL)) return; /* get attributes */ Attribute *attr_fN = attributes.add(ATTR_STD_FACE_NORMAL); float3 *fN = attr_fN->data_float3(); /* compute face normals */ size_t triangles_size = triangles.size(); bool flip = transform_negative_scaled; if(triangles_size) { float3 *verts_ptr = &verts[0]; Triangle *triangles_ptr = &triangles[0]; for(size_t i = 0; i < triangles_size; i++) { fN[i] = compute_face_normal(triangles_ptr[i], verts_ptr); if(flip) fN[i] = -fN[i]; } } /* expected to be in local space */ if(transform_applied) { Transform ntfm = transform_inverse(transform_normal); for(size_t i = 0; i < triangles_size; i++) fN[i] = normalize(transform_direction(&ntfm, fN[i])); } } void Mesh::add_vertex_normals() { bool flip = transform_negative_scaled; size_t verts_size = verts.size(); size_t triangles_size = triangles.size(); /* static vertex normals */ if(!attributes.find(ATTR_STD_VERTEX_NORMAL)) { /* get attributes */ Attribute *attr_fN = attributes.find(ATTR_STD_FACE_NORMAL); Attribute *attr_vN = attributes.add(ATTR_STD_VERTEX_NORMAL); float3 *fN = attr_fN->data_float3(); float3 *vN = attr_vN->data_float3(); /* compute vertex normals */ memset(vN, 0, verts.size()*sizeof(float3)); if(triangles_size) { Triangle *triangles_ptr = &triangles[0]; for(size_t i = 0; i < triangles_size; i++) for(size_t j = 0; j < 3; j++) vN[triangles_ptr[i].v[j]] += fN[i]; } for(size_t i = 0; i < verts_size; i++) { vN[i] = normalize(vN[i]); if(flip) vN[i] = -vN[i]; } } /* motion vertex normals */ Attribute *attr_mP = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); Attribute *attr_mN = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL); if(has_motion_blur() && attr_mP && !attr_mN) { /* create attribute */ attr_mN = attributes.add(ATTR_STD_MOTION_VERTEX_NORMAL); for(int step = 0; step < motion_steps - 1; step++) { float3 *mP = attr_mP->data_float3() + step*verts.size(); float3 *mN = attr_mN->data_float3() + step*verts.size(); /* compute */ memset(mN, 0, verts.size()*sizeof(float3)); if(triangles_size) { Triangle *triangles_ptr = &triangles[0]; for(size_t i = 0; i < triangles_size; i++) { for(size_t j = 0; j < 3; j++) { float3 fN = compute_face_normal(triangles_ptr[i], mP); mN[triangles_ptr[i].v[j]] += fN; } } } for(size_t i = 0; i < verts_size; i++) { mN[i] = normalize(mN[i]); if(flip) mN[i] = -mN[i]; } } } } void Mesh::pack_normals(Scene *scene, uint *tri_shader, float4 *vnormal) { Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL); float3 *vN = attr_vN->data_float3(); uint shader_id = 0; uint last_shader = -1; bool last_smooth = false; size_t triangles_size = triangles.size(); uint *shader_ptr = (shader.size())? &shader[0]: NULL; bool do_transform = transform_applied; Transform ntfm = transform_normal; /* save shader */ for(size_t i = 0; i < triangles_size; i++) { if(shader_ptr[i] != last_shader || last_smooth != smooth[i]) { last_shader = shader_ptr[i]; last_smooth = smooth[i]; shader_id = scene->shader_manager->get_shader_id(last_shader, this, last_smooth); } tri_shader[i] = shader_id; } size_t verts_size = verts.size(); for(size_t i = 0; i < verts_size; i++) { float3 vNi = vN[i]; if(do_transform) vNi = normalize(transform_direction(&ntfm, vNi)); vnormal[i] = make_float4(vNi.x, vNi.y, vNi.z, 0.0f); } } void Mesh::pack_verts(float4 *tri_verts, float4 *tri_vindex, size_t vert_offset) { size_t verts_size = verts.size(); if(verts_size) { float3 *verts_ptr = &verts[0]; for(size_t i = 0; i < verts_size; i++) { float3 p = verts_ptr[i]; tri_verts[i] = make_float4(p.x, p.y, p.z, 0.0f); } } size_t triangles_size = triangles.size(); if(triangles_size) { Triangle *triangles_ptr = &triangles[0]; for(size_t i = 0; i < triangles_size; i++) { Triangle t = triangles_ptr[i]; tri_vindex[i] = make_float4( __int_as_float(t.v[0] + vert_offset), __int_as_float(t.v[1] + vert_offset), __int_as_float(t.v[2] + vert_offset), 0); } } } void Mesh::pack_curves(Scene *scene, float4 *curve_key_co, float4 *curve_data, size_t curvekey_offset) { size_t curve_keys_size = curve_keys.size(); float4 *keys_ptr = NULL; /* pack curve keys */ if(curve_keys_size) { keys_ptr = &curve_keys[0]; for(size_t i = 0; i < curve_keys_size; i++) curve_key_co[i] = keys_ptr[i]; } /* pack curve segments */ size_t curve_num = curves.size(); if(curve_num) { Curve *curve_ptr = &curves[0]; int shader_id = 0; for(size_t i = 0; i < curve_num; i++) { Curve curve = curve_ptr[i]; shader_id = scene->shader_manager->get_shader_id(curve.shader, this, false); curve_data[i] = make_float4( __int_as_float(curve.first_key + curvekey_offset), __int_as_float(curve.num_keys), __int_as_float(shader_id), 0.0f); } } } void Mesh::compute_bvh(SceneParams *params, Progress *progress, int n, int total) { if(progress->get_cancel()) return; compute_bounds(); if(!transform_applied) { string msg = "Updating Mesh BVH "; if(name == "") msg += string_printf("%u/%u", (uint)(n+1), (uint)total); else msg += string_printf("%s %u/%u", name.c_str(), (uint)(n+1), (uint)total); Object object; object.mesh = this; vector objects; objects.push_back(&object); if(bvh && !need_update_rebuild) { progress->set_status(msg, "Refitting BVH"); bvh->objects = objects; bvh->refit(*progress); } else { progress->set_status(msg, "Building BVH"); BVHParams bparams; bparams.use_cache = params->use_bvh_cache; bparams.use_spatial_split = params->use_bvh_spatial_split; bparams.use_qbvh = params->use_qbvh; delete bvh; bvh = BVH::create(bparams, objects); bvh->build(*progress); } } need_update = false; need_update_rebuild = false; } void Mesh::tag_update(Scene *scene, bool rebuild) { need_update = true; if(rebuild) { need_update_rebuild = true; scene->light_manager->need_update = true; } else { foreach(uint sindex, used_shaders) if(scene->shaders[sindex]->has_surface_emission) scene->light_manager->need_update = true; } scene->mesh_manager->need_update = true; scene->object_manager->need_update = true; } bool Mesh::has_motion_blur() const { return (use_motion_blur && (attributes.find(ATTR_STD_MOTION_VERTEX_POSITION) || curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION))); } /* Mesh Manager */ MeshManager::MeshManager() { bvh = NULL; need_update = true; } MeshManager::~MeshManager() { delete bvh; } void MeshManager::update_osl_attributes(Device *device, Scene *scene, vector& mesh_attributes) { #ifdef WITH_OSL /* for OSL, a hash map is used to lookup the attribute by name. */ OSLGlobals *og = (OSLGlobals*)device->osl_memory(); og->object_name_map.clear(); og->attribute_map.clear(); og->object_names.clear(); og->attribute_map.resize(scene->objects.size()*ATTR_PRIM_TYPES); for(size_t i = 0; i < scene->objects.size(); i++) { /* set object name to object index map */ Object *object = scene->objects[i]; og->object_name_map[object->name] = i; og->object_names.push_back(object->name); /* set object attributes */ foreach(ParamValue& attr, object->attributes) { OSLGlobals::Attribute osl_attr; osl_attr.type = attr.type(); osl_attr.elem = ATTR_ELEMENT_OBJECT; osl_attr.value = attr; osl_attr.offset = 0; og->attribute_map[i*ATTR_PRIM_TYPES][attr.name()] = osl_attr; og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][attr.name()] = osl_attr; } /* find mesh attributes */ size_t j; for(j = 0; j < scene->meshes.size(); j++) if(scene->meshes[j] == object->mesh) break; AttributeRequestSet& attributes = mesh_attributes[j]; /* set object attributes */ foreach(AttributeRequest& req, attributes.requests) { OSLGlobals::Attribute osl_attr; if(req.triangle_element != ATTR_ELEMENT_NONE) { osl_attr.elem = req.triangle_element; osl_attr.offset = req.triangle_offset; if(req.triangle_type == TypeDesc::TypeFloat) osl_attr.type = TypeDesc::TypeFloat; else if(req.triangle_type == TypeDesc::TypeMatrix) osl_attr.type = TypeDesc::TypeMatrix; else osl_attr.type = TypeDesc::TypeColor; if(req.std != ATTR_STD_NONE) { /* if standard attribute, add lookup by geom: name convention */ ustring stdname(string("geom:") + string(Attribute::standard_name(req.std))); og->attribute_map[i*ATTR_PRIM_TYPES][stdname] = osl_attr; } else if(req.name != ustring()) { /* add lookup by mesh attribute name */ og->attribute_map[i*ATTR_PRIM_TYPES][req.name] = osl_attr; } } if(req.curve_element != ATTR_ELEMENT_NONE) { osl_attr.elem = req.curve_element; osl_attr.offset = req.curve_offset; if(req.curve_type == TypeDesc::TypeFloat) osl_attr.type = TypeDesc::TypeFloat; else if(req.curve_type == TypeDesc::TypeMatrix) osl_attr.type = TypeDesc::TypeMatrix; else osl_attr.type = TypeDesc::TypeColor; if(req.std != ATTR_STD_NONE) { /* if standard attribute, add lookup by geom: name convention */ ustring stdname(string("geom:") + string(Attribute::standard_name(req.std))); og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][stdname] = osl_attr; } else if(req.name != ustring()) { /* add lookup by mesh attribute name */ og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][req.name] = osl_attr; } } } } #endif } void MeshManager::update_svm_attributes(Device *device, DeviceScene *dscene, Scene *scene, vector& mesh_attributes) { /* for SVM, the attributes_map table is used to lookup the offset of an * attribute, based on a unique shader attribute id. */ /* compute array stride */ int attr_map_stride = 0; for(size_t i = 0; i < scene->meshes.size(); i++) attr_map_stride = max(attr_map_stride, (mesh_attributes[i].size() + 1)*ATTR_PRIM_TYPES); if(attr_map_stride == 0) return; /* create attribute map */ uint4 *attr_map = dscene->attributes_map.resize(attr_map_stride*scene->objects.size()); memset(attr_map, 0, dscene->attributes_map.size()*sizeof(uint)); for(size_t i = 0; i < scene->objects.size(); i++) { Object *object = scene->objects[i]; Mesh *mesh = object->mesh; /* find mesh attributes */ size_t j; for(j = 0; j < scene->meshes.size(); j++) if(scene->meshes[j] == mesh) break; AttributeRequestSet& attributes = mesh_attributes[j]; /* set object attributes */ int index = i*attr_map_stride; foreach(AttributeRequest& req, attributes.requests) { uint id; if(req.std == ATTR_STD_NONE) id = scene->shader_manager->get_attribute_id(req.name); else id = scene->shader_manager->get_attribute_id(req.std); if(mesh->triangles.size()) { attr_map[index].x = id; attr_map[index].y = req.triangle_element; attr_map[index].z = as_uint(req.triangle_offset); if(req.triangle_type == TypeDesc::TypeFloat) attr_map[index].w = NODE_ATTR_FLOAT; else if(req.triangle_type == TypeDesc::TypeMatrix) attr_map[index].w = NODE_ATTR_MATRIX; else attr_map[index].w = NODE_ATTR_FLOAT3; } index++; if(mesh->curves.size()) { attr_map[index].x = id; attr_map[index].y = req.curve_element; attr_map[index].z = as_uint(req.curve_offset); if(req.curve_type == TypeDesc::TypeFloat) attr_map[index].w = NODE_ATTR_FLOAT; else if(req.curve_type == TypeDesc::TypeMatrix) attr_map[index].w = NODE_ATTR_MATRIX; else attr_map[index].w = NODE_ATTR_FLOAT3; } index++; } /* terminator */ attr_map[index].x = ATTR_STD_NONE; attr_map[index].y = 0; attr_map[index].z = 0; attr_map[index].w = 0; index++; attr_map[index].x = ATTR_STD_NONE; attr_map[index].y = 0; attr_map[index].z = 0; attr_map[index].w = 0; index++; } /* copy to device */ dscene->data.bvh.attributes_map_stride = attr_map_stride; device->tex_alloc("__attributes_map", dscene->attributes_map); } static void update_attribute_element_offset(Mesh *mesh, vector& attr_float, vector& attr_float3, vector& attr_uchar4, Attribute *mattr, TypeDesc& type, int& offset, AttributeElement& element) { if(mattr) { /* store element and type */ element = mattr->element; type = mattr->type; /* store attribute data in arrays */ size_t size = mattr->element_size( mesh->verts.size(), mesh->triangles.size(), mesh->motion_steps, mesh->curves.size(), mesh->curve_keys.size()); if(mattr->element == ATTR_ELEMENT_VOXEL) { /* store slot in offset value */ VoxelAttribute *voxel_data = mattr->data_voxel(); offset = voxel_data->slot; } else if(mattr->element == ATTR_ELEMENT_CORNER_BYTE) { uchar4 *data = mattr->data_uchar4(); offset = attr_uchar4.size(); attr_uchar4.resize(attr_uchar4.size() + size); for(size_t k = 0; k < size; k++) attr_uchar4[offset+k] = data[k]; } else if(mattr->type == TypeDesc::TypeFloat) { float *data = mattr->data_float(); offset = attr_float.size(); attr_float.resize(attr_float.size() + size); for(size_t k = 0; k < size; k++) attr_float[offset+k] = data[k]; } else if(mattr->type == TypeDesc::TypeMatrix) { Transform *tfm = mattr->data_transform(); offset = attr_float3.size(); attr_float3.resize(attr_float3.size() + size*4); for(size_t k = 0; k < size*4; k++) attr_float3[offset+k] = (&tfm->x)[k]; } else { float4 *data = mattr->data_float4(); offset = attr_float3.size(); attr_float3.resize(attr_float3.size() + size); for(size_t k = 0; k < size; k++) attr_float3[offset+k] = data[k]; } /* mesh vertex/curve index is global, not per object, so we sneak * a correction for that in here */ if(element == ATTR_ELEMENT_VERTEX) offset -= mesh->vert_offset; else if(element == ATTR_ELEMENT_VERTEX_MOTION) offset -= mesh->vert_offset; else if(element == ATTR_ELEMENT_FACE) offset -= mesh->tri_offset; else if(element == ATTR_ELEMENT_CORNER || element == ATTR_ELEMENT_CORNER_BYTE) offset -= 3*mesh->tri_offset; else if(element == ATTR_ELEMENT_CURVE) offset -= mesh->curve_offset; else if(element == ATTR_ELEMENT_CURVE_KEY) offset -= mesh->curvekey_offset; else if(element == ATTR_ELEMENT_CURVE_KEY_MOTION) offset -= mesh->curvekey_offset; } else { /* attribute not found */ element = ATTR_ELEMENT_NONE; offset = 0; } } void MeshManager::device_update_attributes(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress) { progress.set_status("Updating Mesh", "Computing attributes"); /* gather per mesh requested attributes. as meshes may have multiple * shaders assigned, this merges the requested attributes that have * been set per shader by the shader manager */ vector mesh_attributes(scene->meshes.size()); for(size_t i = 0; i < scene->meshes.size(); i++) { Mesh *mesh = scene->meshes[i]; scene->need_global_attributes(mesh_attributes[i]); foreach(uint sindex, mesh->used_shaders) { Shader *shader = scene->shaders[sindex]; mesh_attributes[i].add(shader->attributes); } } /* mesh attribute are stored in a single array per data type. here we fill * those arrays, and set the offset and element type to create attribute * maps next */ vector attr_float; vector attr_float3; vector attr_uchar4; for(size_t i = 0; i < scene->meshes.size(); i++) { Mesh *mesh = scene->meshes[i]; AttributeRequestSet& attributes = mesh_attributes[i]; /* todo: we now store std and name attributes from requests even if * they actually refer to the same mesh attributes, optimize */ foreach(AttributeRequest& req, attributes.requests) { Attribute *triangle_mattr = mesh->attributes.find(req); Attribute *curve_mattr = mesh->curve_attributes.find(req); /* todo: get rid of this exception, it's only here for giving some * working texture coordinate for subdivision as we can't preserve * any attributes yet */ if(!triangle_mattr && req.std == ATTR_STD_GENERATED) { triangle_mattr = mesh->attributes.add(ATTR_STD_GENERATED); if(mesh->verts.size()) memcpy(triangle_mattr->data_float3(), &mesh->verts[0], sizeof(float3)*mesh->verts.size()); } update_attribute_element_offset(mesh, attr_float, attr_float3, attr_uchar4, triangle_mattr, req.triangle_type, req.triangle_offset, req.triangle_element); update_attribute_element_offset(mesh, attr_float, attr_float3, attr_uchar4, curve_mattr, req.curve_type, req.curve_offset, req.curve_element); if(progress.get_cancel()) return; } } /* create attribute lookup maps */ if(scene->shader_manager->use_osl()) update_osl_attributes(device, scene, mesh_attributes); update_svm_attributes(device, dscene, scene, mesh_attributes); if(progress.get_cancel()) return; /* copy to device */ progress.set_status("Updating Mesh", "Copying Attributes to device"); if(attr_float.size()) { dscene->attributes_float.copy(&attr_float[0], attr_float.size()); device->tex_alloc("__attributes_float", dscene->attributes_float); } if(attr_float3.size()) { dscene->attributes_float3.copy(&attr_float3[0], attr_float3.size()); device->tex_alloc("__attributes_float3", dscene->attributes_float3); } if(attr_uchar4.size()) { dscene->attributes_uchar4.copy(&attr_uchar4[0], attr_uchar4.size()); device->tex_alloc("__attributes_uchar4", dscene->attributes_uchar4); } } void MeshManager::device_update_mesh(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress) { /* count and update offsets */ size_t vert_size = 0; size_t tri_size = 0; size_t curve_key_size = 0; size_t curve_size = 0; foreach(Mesh *mesh, scene->meshes) { mesh->vert_offset = vert_size; mesh->tri_offset = tri_size; mesh->curvekey_offset = curve_key_size; mesh->curve_offset = curve_size; vert_size += mesh->verts.size(); tri_size += mesh->triangles.size(); curve_key_size += mesh->curve_keys.size(); curve_size += mesh->curves.size(); } if(tri_size != 0) { /* normals */ progress.set_status("Updating Mesh", "Computing normals"); uint *tri_shader = dscene->tri_shader.resize(tri_size); float4 *vnormal = dscene->tri_vnormal.resize(vert_size); float4 *tri_verts = dscene->tri_verts.resize(vert_size); float4 *tri_vindex = dscene->tri_vindex.resize(tri_size); foreach(Mesh *mesh, scene->meshes) { mesh->pack_normals(scene, &tri_shader[mesh->tri_offset], &vnormal[mesh->vert_offset]); mesh->pack_verts(&tri_verts[mesh->vert_offset], &tri_vindex[mesh->tri_offset], mesh->vert_offset); if(progress.get_cancel()) return; } /* vertex coordinates */ progress.set_status("Updating Mesh", "Copying Mesh to device"); device->tex_alloc("__tri_shader", dscene->tri_shader); device->tex_alloc("__tri_vnormal", dscene->tri_vnormal); device->tex_alloc("__tri_verts", dscene->tri_verts); device->tex_alloc("__tri_vindex", dscene->tri_vindex); } if(curve_size != 0) { progress.set_status("Updating Mesh", "Copying Strands to device"); float4 *curve_keys = dscene->curve_keys.resize(curve_key_size); float4 *curves = dscene->curves.resize(curve_size); foreach(Mesh *mesh, scene->meshes) { mesh->pack_curves(scene, &curve_keys[mesh->curvekey_offset], &curves[mesh->curve_offset], mesh->curvekey_offset); if(progress.get_cancel()) return; } device->tex_alloc("__curve_keys", dscene->curve_keys); device->tex_alloc("__curves", dscene->curves); } } void MeshManager::device_update_bvh(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress) { /* bvh build */ progress.set_status("Updating Scene BVH", "Building"); BVHParams bparams; bparams.top_level = true; bparams.use_qbvh = scene->params.use_qbvh; bparams.use_spatial_split = scene->params.use_bvh_spatial_split; bparams.use_cache = scene->params.use_bvh_cache; delete bvh; bvh = BVH::create(bparams, scene->objects); bvh->build(progress); if(progress.get_cancel()) return; /* copy to device */ progress.set_status("Updating Scene BVH", "Copying BVH to device"); PackedBVH& pack = bvh->pack; if(pack.nodes.size()) { dscene->bvh_nodes.reference((float4*)&pack.nodes[0], pack.nodes.size()); device->tex_alloc("__bvh_nodes", dscene->bvh_nodes); } if(pack.object_node.size()) { dscene->object_node.reference((uint*)&pack.object_node[0], pack.object_node.size()); device->tex_alloc("__object_node", dscene->object_node); } if(pack.tri_woop.size()) { dscene->tri_woop.reference(&pack.tri_woop[0], pack.tri_woop.size()); device->tex_alloc("__tri_woop", dscene->tri_woop); } if(pack.prim_type.size()) { dscene->prim_type.reference((uint*)&pack.prim_type[0], pack.prim_type.size()); device->tex_alloc("__prim_type", dscene->prim_type); } if(pack.prim_visibility.size()) { dscene->prim_visibility.reference((uint*)&pack.prim_visibility[0], pack.prim_visibility.size()); device->tex_alloc("__prim_visibility", dscene->prim_visibility); } if(pack.prim_index.size()) { dscene->prim_index.reference((uint*)&pack.prim_index[0], pack.prim_index.size()); device->tex_alloc("__prim_index", dscene->prim_index); } if(pack.prim_object.size()) { dscene->prim_object.reference((uint*)&pack.prim_object[0], pack.prim_object.size()); device->tex_alloc("__prim_object", dscene->prim_object); } dscene->data.bvh.root = pack.root_index; } void MeshManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress) { if(!need_update) return; /* update normals and flags */ foreach(Mesh *mesh, scene->meshes) { mesh->has_volume = false; foreach(uint shader, mesh->used_shaders) { if(scene->shaders[shader]->need_update_attributes) mesh->need_update = true; if(scene->shaders[shader]->has_volume) { mesh->has_volume = true; } } if(mesh->need_update) { mesh->add_face_normals(); mesh->add_vertex_normals(); if(progress.get_cancel()) return; } } /* device update */ device_free(device, dscene); device_update_mesh(device, dscene, scene, progress); if(progress.get_cancel()) return; device_update_attributes(device, dscene, scene, progress); if(progress.get_cancel()) return; /* update displacement */ bool displacement_done = false; foreach(Mesh *mesh, scene->meshes) if(mesh->need_update && displace(device, dscene, scene, mesh, progress)) displacement_done = true; /* todo: properly handle cancel halfway displacement */ if(progress.get_cancel()) return; /* device re-update after displacement */ if(displacement_done) { device_free(device, dscene); device_update_mesh(device, dscene, scene, progress); if(progress.get_cancel()) return; device_update_attributes(device, dscene, scene, progress); if(progress.get_cancel()) return; } /* update bvh */ size_t i = 0, num_bvh = 0; foreach(Mesh *mesh, scene->meshes) if(mesh->need_update && !mesh->transform_applied) num_bvh++; TaskPool pool; foreach(Mesh *mesh, scene->meshes) { if(mesh->need_update) { pool.push(function_bind(&Mesh::compute_bvh, mesh, &scene->params, &progress, i, num_bvh)); i++; } } pool.wait_work(); foreach(Shader *shader, scene->shaders) shader->need_update_attributes = false; #ifdef __OBJECT_MOTION__ Scene::MotionType need_motion = scene->need_motion(device->info.advanced_shading); bool motion_blur = need_motion == Scene::MOTION_BLUR; #else bool motion_blur = false; #endif /* update obejcts */ vector volume_objects; foreach(Object *object, scene->objects) object->compute_bounds(motion_blur); if(progress.get_cancel()) return; device_update_bvh(device, dscene, scene, progress); need_update = false; } void MeshManager::device_free(Device *device, DeviceScene *dscene) { device->tex_free(dscene->bvh_nodes); device->tex_free(dscene->object_node); device->tex_free(dscene->tri_woop); device->tex_free(dscene->prim_type); device->tex_free(dscene->prim_visibility); device->tex_free(dscene->prim_index); device->tex_free(dscene->prim_object); device->tex_free(dscene->tri_shader); device->tex_free(dscene->tri_vnormal); device->tex_free(dscene->tri_vindex); device->tex_free(dscene->tri_verts); device->tex_free(dscene->curves); device->tex_free(dscene->curve_keys); device->tex_free(dscene->attributes_map); device->tex_free(dscene->attributes_float); device->tex_free(dscene->attributes_float3); device->tex_free(dscene->attributes_uchar4); dscene->bvh_nodes.clear(); dscene->object_node.clear(); dscene->tri_woop.clear(); dscene->prim_type.clear(); dscene->prim_visibility.clear(); dscene->prim_index.clear(); dscene->prim_object.clear(); dscene->tri_shader.clear(); dscene->tri_vnormal.clear(); dscene->tri_vindex.clear(); dscene->tri_verts.clear(); dscene->curves.clear(); dscene->curve_keys.clear(); dscene->attributes_map.clear(); dscene->attributes_float.clear(); dscene->attributes_float3.clear(); dscene->attributes_uchar4.clear(); #ifdef WITH_OSL OSLGlobals *og = (OSLGlobals*)device->osl_memory(); if(og) { og->object_name_map.clear(); og->attribute_map.clear(); og->object_names.clear(); } #endif } void MeshManager::tag_update(Scene *scene) { need_update = true; scene->object_manager->need_update = true; } bool Mesh::need_attribute(Scene *scene, AttributeStandard std) { if(std == ATTR_STD_NONE) return false; if(scene->need_global_attribute(std)) return true; foreach(uint shader, used_shaders) if(scene->shaders[shader]->attributes.find(std)) return true; return false; } bool Mesh::need_attribute(Scene *scene, ustring name) { if(name == ustring()) return false; foreach(uint shader, used_shaders) if(scene->shaders[shader]->attributes.find(name)) return true; return false; } CCL_NAMESPACE_END