/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "image.h" #include "integrator.h" #include "nodes.h" #include "scene.h" #include "svm.h" #include "svm_math_util.h" #include "osl.h" #include "util_sky_model.h" #include "util_foreach.h" #include "util_transform.h" CCL_NAMESPACE_BEGIN /* Texture Mapping */ static NodeEnum texture_mapping_type_init() { NodeEnum enm; enm.insert("Point", TextureMapping::POINT); enm.insert("Texture", TextureMapping::TEXTURE); enm.insert("Vector", TextureMapping::VECTOR); enm.insert("Normal", TextureMapping::NORMAL); return enm; } static NodeEnum texture_mapping_mapping_init() { NodeEnum enm; enm.insert("None", TextureMapping::NONE); enm.insert("X", TextureMapping::X); enm.insert("Y", TextureMapping::Y); enm.insert("Z", TextureMapping::Z); return enm; } static NodeEnum texture_mapping_projection_init() { NodeEnum enm; enm.insert("Flat", TextureMapping::FLAT); enm.insert("Cube", TextureMapping::CUBE); enm.insert("Tube", TextureMapping::TUBE); enm.insert("Sphere", TextureMapping::SPHERE); return enm; } NodeEnum TextureMapping::type_enum = texture_mapping_type_init(); NodeEnum TextureMapping::mapping_enum = texture_mapping_mapping_init(); NodeEnum TextureMapping::projection_enum = texture_mapping_projection_init(); TextureMapping::TextureMapping() { translation = make_float3(0.0f, 0.0f, 0.0f); rotation = make_float3(0.0f, 0.0f, 0.0f); scale = make_float3(1.0f, 1.0f, 1.0f); min = make_float3(-FLT_MAX, -FLT_MAX, -FLT_MAX); max = make_float3(FLT_MAX, FLT_MAX, FLT_MAX); use_minmax = false; x_mapping = X; y_mapping = Y; z_mapping = Z; type = TEXTURE; projection = FLAT; } Transform TextureMapping::compute_transform() { Transform mmat = transform_scale(make_float3(0.0f, 0.0f, 0.0f)); if(x_mapping != NONE) mmat[0][x_mapping-1] = 1.0f; if(y_mapping != NONE) mmat[1][y_mapping-1] = 1.0f; if(z_mapping != NONE) mmat[2][z_mapping-1] = 1.0f; float3 scale_clamped = scale; if(type == TEXTURE || type == NORMAL) { /* keep matrix invertible */ if(fabsf(scale.x) < 1e-5f) scale_clamped.x = signf(scale.x)*1e-5f; if(fabsf(scale.y) < 1e-5f) scale_clamped.y = signf(scale.y)*1e-5f; if(fabsf(scale.z) < 1e-5f) scale_clamped.z = signf(scale.z)*1e-5f; } Transform smat = transform_scale(scale_clamped); Transform rmat = transform_euler(rotation); Transform tmat = transform_translate(translation); Transform mat; switch(type) { case TEXTURE: /* inverse transform on texture coordinate gives * forward transform on texture */ mat = tmat*rmat*smat; mat = transform_inverse(mat); break; case POINT: /* full transform */ mat = tmat*rmat*smat; break; case VECTOR: /* no translation for vectors */ mat = rmat*smat; break; case NORMAL: /* no translation for normals, and inverse transpose */ mat = rmat*smat; mat = transform_inverse(mat); mat = transform_transpose(mat); break; } /* projection last */ mat = mat*mmat; return mat; } bool TextureMapping::skip() { if(translation != make_float3(0.0f, 0.0f, 0.0f)) return false; if(rotation != make_float3(0.0f, 0.0f, 0.0f)) return false; if(scale != make_float3(1.0f, 1.0f, 1.0f)) return false; if(x_mapping != X || y_mapping != Y || z_mapping != Z) return false; if(use_minmax) return false; return true; } void TextureMapping::compile(SVMCompiler& compiler, int offset_in, int offset_out) { compiler.add_node(NODE_MAPPING, offset_in, offset_out); Transform tfm = compute_transform(); compiler.add_node(tfm.x); compiler.add_node(tfm.y); compiler.add_node(tfm.z); compiler.add_node(tfm.w); if(use_minmax) { compiler.add_node(NODE_MIN_MAX, offset_out, offset_out); compiler.add_node(float3_to_float4(min)); compiler.add_node(float3_to_float4(max)); } if(type == NORMAL) { compiler.add_node(NODE_VECTOR_MATH, NODE_VECTOR_MATH_NORMALIZE, offset_out, offset_out); compiler.add_node(NODE_VECTOR_MATH, SVM_STACK_INVALID, offset_out); } } /* Convenience function for texture nodes, allocating stack space to output * a modified vector and returning its offset */ int TextureMapping::compile_begin(SVMCompiler& compiler, ShaderInput *vector_in) { if(!skip()) { int offset_in = compiler.stack_assign(vector_in); int offset_out = compiler.stack_find_offset(SocketType::VECTOR); compile(compiler, offset_in, offset_out); return offset_out; } return compiler.stack_assign(vector_in); } void TextureMapping::compile_end(SVMCompiler& compiler, ShaderInput *vector_in, int vector_offset) { if(!skip()) { compiler.stack_clear_offset(vector_in->type(), vector_offset); } } void TextureMapping::compile(OSLCompiler &compiler) { if(!skip()) { Transform tfm = transform_transpose(compute_transform()); compiler.parameter("mapping", tfm); compiler.parameter("use_mapping", 1); } } /* Image Texture */ static NodeEnum color_space_init() { NodeEnum enm; enm.insert("None", 0); enm.insert("Color", 1); return enm; } static NodeEnum image_projection_init() { NodeEnum enm; enm.insert("Flat", NODE_IMAGE_PROJ_FLAT); enm.insert("Box", NODE_IMAGE_PROJ_BOX); enm.insert("Sphere", NODE_IMAGE_PROJ_SPHERE); enm.insert("Tube", NODE_IMAGE_PROJ_TUBE); return enm; } static const char* get_osl_interpolation_parameter(InterpolationType interpolation) { switch(interpolation) { case INTERPOLATION_CLOSEST: return "closest"; case INTERPOLATION_CUBIC: return "cubic"; case INTERPOLATION_SMART: return "smart"; case INTERPOLATION_LINEAR: default: return "linear"; } } NodeEnum ImageTextureNode::color_space_enum = color_space_init(); NodeEnum ImageTextureNode::projection_enum = image_projection_init(); ImageTextureNode::ImageTextureNode() : ImageSlotTextureNode("image_texture") { image_manager = NULL; slot = -1; is_float = -1; is_linear = false; use_alpha = true; filename = ""; builtin_data = NULL; color_space = NODE_COLOR_SPACE_COLOR; projection = NODE_IMAGE_PROJ_FLAT; interpolation = INTERPOLATION_LINEAR; extension = EXTENSION_REPEAT; projection_blend = 0.0f; animated = false; add_input("Vector", SocketType::POINT, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_UV); add_output("Color", SocketType::COLOR); add_output("Alpha", SocketType::FLOAT); } ImageTextureNode::~ImageTextureNode() { if(image_manager) { image_manager->remove_image(filename, builtin_data, interpolation, extension); } } ShaderNode *ImageTextureNode::clone() const { ImageTextureNode *node = new ImageTextureNode(*this); node->image_manager = NULL; node->slot = -1; node->is_float = -1; node->is_linear = false; return node; } void ImageTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes) { #ifdef WITH_PTEX /* todo: avoid loading other texture coordinates when using ptex, * and hide texture coordinate socket in the UI */ if(shader->has_surface && string_endswith(filename, ".ptx")) { /* ptex */ attributes->add(ATTR_STD_PTEX_FACE_ID); attributes->add(ATTR_STD_PTEX_UV); } #endif ShaderNode::attributes(shader, attributes); } void ImageTextureNode::compile(SVMCompiler& compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *color_out = output("Color"); ShaderOutput *alpha_out = output("Alpha"); image_manager = compiler.image_manager; if(is_float == -1) { bool is_float_bool; slot = image_manager->add_image(filename, builtin_data, animated, 0, is_float_bool, is_linear, interpolation, extension, use_alpha); is_float = (int)is_float_bool; } if(slot != -1) { int srgb = (is_linear || color_space != NODE_COLOR_SPACE_COLOR)? 0: 1; int vector_offset = tex_mapping.compile_begin(compiler, vector_in); if(projection != NODE_IMAGE_PROJ_BOX) { compiler.add_node(NODE_TEX_IMAGE, slot, compiler.encode_uchar4( vector_offset, compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(alpha_out), srgb), projection); } else { compiler.add_node(NODE_TEX_IMAGE_BOX, slot, compiler.encode_uchar4( vector_offset, compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(alpha_out), srgb), __float_as_int(projection_blend)); } tex_mapping.compile_end(compiler, vector_in, vector_offset); } else { /* image not found */ if(!color_out->links.empty()) { compiler.add_node(NODE_VALUE_V, compiler.stack_assign(color_out)); compiler.add_node(NODE_VALUE_V, make_float3(TEX_IMAGE_MISSING_R, TEX_IMAGE_MISSING_G, TEX_IMAGE_MISSING_B)); } if(!alpha_out->links.empty()) compiler.add_node(NODE_VALUE_F, __float_as_int(TEX_IMAGE_MISSING_A), compiler.stack_assign(alpha_out)); } } void ImageTextureNode::compile(OSLCompiler& compiler) { ShaderOutput *alpha_out = output("Alpha"); tex_mapping.compile(compiler); image_manager = compiler.image_manager; if(is_float == -1) { if(builtin_data == NULL) { ImageManager::ImageDataType type; type = image_manager->get_image_metadata(filename, NULL, is_linear); if(type == ImageManager::IMAGE_DATA_TYPE_FLOAT || type == ImageManager::IMAGE_DATA_TYPE_FLOAT4) is_float = 1; } else { bool is_float_bool; slot = image_manager->add_image(filename, builtin_data, animated, 0, is_float_bool, is_linear, interpolation, extension, use_alpha); is_float = (int)is_float_bool; } } if(slot == -1) { compiler.parameter("filename", filename.c_str()); } else { /* TODO(sergey): It's not so simple to pass custom attribute * to the texture() function in order to make builtin images * support more clear. So we use special file name which is * "@" and check whether file name matches this * mask in the OSLRenderServices::texture(). */ compiler.parameter("filename", string_printf("@%d", slot).c_str()); } if(is_linear || color_space != NODE_COLOR_SPACE_COLOR) compiler.parameter("color_space", "Linear"); else compiler.parameter("color_space", "sRGB"); compiler.parameter("projection", projection); compiler.parameter("projection_blend", projection_blend); compiler.parameter("is_float", is_float); compiler.parameter("use_alpha", !alpha_out->links.empty()); compiler.parameter("interpolation", get_osl_interpolation_parameter(interpolation)); switch(extension) { case EXTENSION_EXTEND: compiler.parameter("extension", "clamp"); break; case EXTENSION_CLIP: compiler.parameter("extension", "black"); break; case EXTENSION_REPEAT: default: compiler.parameter("extension", "periodic"); break; } compiler.add(this, "node_image_texture"); } /* Environment Texture */ static NodeEnum env_projection_init() { NodeEnum enm; enm.insert("Equirectangular", 0); enm.insert("Mirror Ball", 1); return enm; } NodeEnum EnvironmentTextureNode::color_space_enum = color_space_init(); NodeEnum EnvironmentTextureNode::projection_enum = env_projection_init(); EnvironmentTextureNode::EnvironmentTextureNode() : ImageSlotTextureNode("environment_texture") { image_manager = NULL; slot = -1; is_float = -1; is_linear = false; use_alpha = true; filename = ""; builtin_data = NULL; color_space = NODE_COLOR_SPACE_COLOR; interpolation = INTERPOLATION_LINEAR; projection = NODE_ENVIRONMENT_EQUIRECTANGULAR; animated = false; add_input("Vector", SocketType::VECTOR, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_POSITION); add_output("Color", SocketType::COLOR); add_output("Alpha", SocketType::FLOAT); } EnvironmentTextureNode::~EnvironmentTextureNode() { if(image_manager) { image_manager->remove_image(filename, builtin_data, interpolation, EXTENSION_REPEAT); } } ShaderNode *EnvironmentTextureNode::clone() const { EnvironmentTextureNode *node = new EnvironmentTextureNode(*this); node->image_manager = NULL; node->slot = -1; node->is_float = -1; node->is_linear = false; return node; } void EnvironmentTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes) { #ifdef WITH_PTEX if(shader->has_surface && string_endswith(filename, ".ptx")) { /* ptex */ attributes->add(ATTR_STD_PTEX_FACE_ID); attributes->add(ATTR_STD_PTEX_UV); } #endif ShaderNode::attributes(shader, attributes); } void EnvironmentTextureNode::compile(SVMCompiler& compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *color_out = output("Color"); ShaderOutput *alpha_out = output("Alpha"); image_manager = compiler.image_manager; if(slot == -1) { bool is_float_bool; slot = image_manager->add_image(filename, builtin_data, animated, 0, is_float_bool, is_linear, interpolation, EXTENSION_REPEAT, use_alpha); is_float = (int)is_float_bool; } if(slot != -1) { int srgb = (is_linear || color_space != NODE_COLOR_SPACE_COLOR)? 0: 1; int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.add_node(NODE_TEX_ENVIRONMENT, slot, compiler.encode_uchar4( vector_offset, compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(alpha_out), srgb), projection); tex_mapping.compile_end(compiler, vector_in, vector_offset); } else { /* image not found */ if(!color_out->links.empty()) { compiler.add_node(NODE_VALUE_V, compiler.stack_assign(color_out)); compiler.add_node(NODE_VALUE_V, make_float3(TEX_IMAGE_MISSING_R, TEX_IMAGE_MISSING_G, TEX_IMAGE_MISSING_B)); } if(!alpha_out->links.empty()) compiler.add_node(NODE_VALUE_F, __float_as_int(TEX_IMAGE_MISSING_A), compiler.stack_assign(alpha_out)); } } void EnvironmentTextureNode::compile(OSLCompiler& compiler) { ShaderOutput *alpha_out = output("Alpha"); tex_mapping.compile(compiler); /* See comments in ImageTextureNode::compile about support * of builtin images. */ image_manager = compiler.image_manager; if(is_float == -1) { if(builtin_data == NULL) { ImageManager::ImageDataType type; type = image_manager->get_image_metadata(filename, NULL, is_linear); if(type == ImageManager::IMAGE_DATA_TYPE_FLOAT || type == ImageManager::IMAGE_DATA_TYPE_FLOAT4) is_float = 1; } else { bool is_float_bool; slot = image_manager->add_image(filename, builtin_data, animated, 0, is_float_bool, is_linear, interpolation, EXTENSION_REPEAT, use_alpha); is_float = (int)is_float_bool; } } if(slot == -1) { compiler.parameter("filename", filename.c_str()); } else { compiler.parameter("filename", string_printf("@%d", slot).c_str()); } compiler.parameter("projection", projection_enum[projection]); if(is_linear || color_space != NODE_COLOR_SPACE_COLOR) compiler.parameter("color_space", "Linear"); else compiler.parameter("color_space", "sRGB"); compiler.parameter("interpolation", get_osl_interpolation_parameter(interpolation)); compiler.parameter("is_float", is_float); compiler.parameter("use_alpha", !alpha_out->links.empty()); compiler.add(this, "node_environment_texture"); } /* Sky Texture */ static float2 sky_spherical_coordinates(float3 dir) { return make_float2(acosf(dir.z), atan2f(dir.x, dir.y)); } typedef struct SunSky { /* sun direction in spherical and cartesian */ float theta, phi; /* Parameter */ float radiance_x, radiance_y, radiance_z; float config_x[9], config_y[9], config_z[9]; } SunSky; /* Preetham model */ static float sky_perez_function(float lam[6], float theta, float gamma) { return (1.0f + lam[0]*expf(lam[1]/cosf(theta))) * (1.0f + lam[2]*expf(lam[3]*gamma) + lam[4]*cosf(gamma)*cosf(gamma)); } static void sky_texture_precompute_old(SunSky *sunsky, float3 dir, float turbidity) { /* * We re-use the SunSky struct of the new model, to avoid extra variables * zenith_Y/x/y is now radiance_x/y/z * perez_Y/x/y is now config_x/y/z */ float2 spherical = sky_spherical_coordinates(dir); float theta = spherical.x; float phi = spherical.y; sunsky->theta = theta; sunsky->phi = phi; float theta2 = theta*theta; float theta3 = theta2*theta; float T = turbidity; float T2 = T * T; float chi = (4.0f / 9.0f - T / 120.0f) * (M_PI_F - 2.0f * theta); sunsky->radiance_x = (4.0453f * T - 4.9710f) * tanf(chi) - 0.2155f * T + 2.4192f; sunsky->radiance_x *= 0.06f; sunsky->radiance_y = (0.00166f * theta3 - 0.00375f * theta2 + 0.00209f * theta) * T2 + (-0.02903f * theta3 + 0.06377f * theta2 - 0.03202f * theta + 0.00394f) * T + (0.11693f * theta3 - 0.21196f * theta2 + 0.06052f * theta + 0.25886f); sunsky->radiance_z = (0.00275f * theta3 - 0.00610f * theta2 + 0.00317f * theta) * T2 + (-0.04214f * theta3 + 0.08970f * theta2 - 0.04153f * theta + 0.00516f) * T + (0.15346f * theta3 - 0.26756f * theta2 + 0.06670f * theta + 0.26688f); sunsky->config_x[0] = (0.1787f * T - 1.4630f); sunsky->config_x[1] = (-0.3554f * T + 0.4275f); sunsky->config_x[2] = (-0.0227f * T + 5.3251f); sunsky->config_x[3] = (0.1206f * T - 2.5771f); sunsky->config_x[4] = (-0.0670f * T + 0.3703f); sunsky->config_y[0] = (-0.0193f * T - 0.2592f); sunsky->config_y[1] = (-0.0665f * T + 0.0008f); sunsky->config_y[2] = (-0.0004f * T + 0.2125f); sunsky->config_y[3] = (-0.0641f * T - 0.8989f); sunsky->config_y[4] = (-0.0033f * T + 0.0452f); sunsky->config_z[0] = (-0.0167f * T - 0.2608f); sunsky->config_z[1] = (-0.0950f * T + 0.0092f); sunsky->config_z[2] = (-0.0079f * T + 0.2102f); sunsky->config_z[3] = (-0.0441f * T - 1.6537f); sunsky->config_z[4] = (-0.0109f * T + 0.0529f); /* unused for old sky model */ for(int i = 5; i < 9; i++) { sunsky->config_x[i] = 0.0f; sunsky->config_y[i] = 0.0f; sunsky->config_z[i] = 0.0f; } sunsky->radiance_x /= sky_perez_function(sunsky->config_x, 0, theta); sunsky->radiance_y /= sky_perez_function(sunsky->config_y, 0, theta); sunsky->radiance_z /= sky_perez_function(sunsky->config_z, 0, theta); } /* Hosek / Wilkie */ static void sky_texture_precompute_new(SunSky *sunsky, float3 dir, float turbidity, float ground_albedo) { /* Calculate Sun Direction and save coordinates */ float2 spherical = sky_spherical_coordinates(dir); float theta = spherical.x; float phi = spherical.y; /* Clamp Turbidity */ turbidity = clamp(turbidity, 0.0f, 10.0f); /* Clamp to Horizon */ theta = clamp(theta, 0.0f, M_PI_2_F); sunsky->theta = theta; sunsky->phi = phi; float solarElevation = M_PI_2_F - theta; /* Initialize Sky Model */ ArHosekSkyModelState *sky_state; sky_state = arhosek_xyz_skymodelstate_alloc_init((double)turbidity, (double)ground_albedo, (double)solarElevation); /* Copy values from sky_state to SunSky */ for(int i = 0; i < 9; ++i) { sunsky->config_x[i] = (float)sky_state->configs[0][i]; sunsky->config_y[i] = (float)sky_state->configs[1][i]; sunsky->config_z[i] = (float)sky_state->configs[2][i]; } sunsky->radiance_x = (float)sky_state->radiances[0]; sunsky->radiance_y = (float)sky_state->radiances[1]; sunsky->radiance_z = (float)sky_state->radiances[2]; /* Free sky_state */ arhosekskymodelstate_free(sky_state); } static NodeEnum sky_type_init() { NodeEnum enm; enm.insert("Preetham", NODE_SKY_OLD); enm.insert("Hosek / Wilkie", NODE_SKY_NEW); return enm; } NodeEnum SkyTextureNode::type_enum = sky_type_init(); SkyTextureNode::SkyTextureNode() : TextureNode("sky_texture") { type = NODE_SKY_NEW; sun_direction = make_float3(0.0f, 0.0f, 1.0f); turbidity = 2.2f; ground_albedo = 0.3f; add_input("Vector", SocketType::VECTOR, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_POSITION); add_output("Color", SocketType::COLOR); } void SkyTextureNode::compile(SVMCompiler& compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *color_out = output("Color"); SunSky sunsky; if(type == NODE_SKY_OLD) sky_texture_precompute_old(&sunsky, sun_direction, turbidity); else if(type == NODE_SKY_NEW) sky_texture_precompute_new(&sunsky, sun_direction, turbidity, ground_albedo); else assert(false); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); int sky_model = type; compiler.stack_assign(color_out); compiler.add_node(NODE_TEX_SKY, vector_offset, compiler.stack_assign(color_out), sky_model); compiler.add_node(__float_as_uint(sunsky.phi), __float_as_uint(sunsky.theta), __float_as_uint(sunsky.radiance_x), __float_as_uint(sunsky.radiance_y)); compiler.add_node(__float_as_uint(sunsky.radiance_z), __float_as_uint(sunsky.config_x[0]), __float_as_uint(sunsky.config_x[1]), __float_as_uint(sunsky.config_x[2])); compiler.add_node(__float_as_uint(sunsky.config_x[3]), __float_as_uint(sunsky.config_x[4]), __float_as_uint(sunsky.config_x[5]), __float_as_uint(sunsky.config_x[6])); compiler.add_node(__float_as_uint(sunsky.config_x[7]), __float_as_uint(sunsky.config_x[8]), __float_as_uint(sunsky.config_y[0]), __float_as_uint(sunsky.config_y[1])); compiler.add_node(__float_as_uint(sunsky.config_y[2]), __float_as_uint(sunsky.config_y[3]), __float_as_uint(sunsky.config_y[4]), __float_as_uint(sunsky.config_y[5])); compiler.add_node(__float_as_uint(sunsky.config_y[6]), __float_as_uint(sunsky.config_y[7]), __float_as_uint(sunsky.config_y[8]), __float_as_uint(sunsky.config_z[0])); compiler.add_node(__float_as_uint(sunsky.config_z[1]), __float_as_uint(sunsky.config_z[2]), __float_as_uint(sunsky.config_z[3]), __float_as_uint(sunsky.config_z[4])); compiler.add_node(__float_as_uint(sunsky.config_z[5]), __float_as_uint(sunsky.config_z[6]), __float_as_uint(sunsky.config_z[7]), __float_as_uint(sunsky.config_z[8])); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void SkyTextureNode::compile(OSLCompiler& compiler) { tex_mapping.compile(compiler); SunSky sunsky; if(type == NODE_SKY_OLD) sky_texture_precompute_old(&sunsky, sun_direction, turbidity); else if(type == NODE_SKY_NEW) sky_texture_precompute_new(&sunsky, sun_direction, turbidity, ground_albedo); else assert(false); compiler.parameter("sky_model", type_enum[type]); compiler.parameter("theta", sunsky.theta); compiler.parameter("phi", sunsky.phi); compiler.parameter_color("radiance", make_float3(sunsky.radiance_x, sunsky.radiance_y, sunsky.radiance_z)); compiler.parameter_array("config_x", sunsky.config_x, 9); compiler.parameter_array("config_y", sunsky.config_y, 9); compiler.parameter_array("config_z", sunsky.config_z, 9); compiler.add(this, "node_sky_texture"); } /* Gradient Texture */ static NodeEnum gradient_type_init() { NodeEnum enm; enm.insert("Linear", NODE_BLEND_LINEAR); enm.insert("Quadratic", NODE_BLEND_QUADRATIC); enm.insert("Easing", NODE_BLEND_EASING); enm.insert("Diagonal", NODE_BLEND_DIAGONAL); enm.insert("Radial", NODE_BLEND_RADIAL); enm.insert("Quadratic Sphere", NODE_BLEND_QUADRATIC_SPHERE); enm.insert("Spherical", NODE_BLEND_SPHERICAL); return enm; } NodeEnum GradientTextureNode::type_enum = gradient_type_init(); GradientTextureNode::GradientTextureNode() : TextureNode("gradient_texture") { type = NODE_BLEND_LINEAR; add_input("Vector", SocketType::POINT, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED); add_output("Color", SocketType::COLOR); add_output("Fac", SocketType::FLOAT); } void GradientTextureNode::compile(SVMCompiler& compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *color_out = output("Color"); ShaderOutput *fac_out = output("Fac"); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.add_node(NODE_TEX_GRADIENT, compiler.encode_uchar4( type, vector_offset, compiler.stack_assign_if_linked(fac_out), compiler.stack_assign_if_linked(color_out))); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void GradientTextureNode::compile(OSLCompiler& compiler) { tex_mapping.compile(compiler); compiler.parameter("type", type_enum[type]); compiler.add(this, "node_gradient_texture"); } /* Noise Texture */ NoiseTextureNode::NoiseTextureNode() : TextureNode("noise_texture") { add_input("Vector", SocketType::POINT, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED); add_input("Scale", SocketType::FLOAT, 1.0f); add_input("Detail", SocketType::FLOAT, 2.0f); add_input("Distortion", SocketType::FLOAT, 0.0f); add_output("Color", SocketType::COLOR); add_output("Fac", SocketType::FLOAT); } void NoiseTextureNode::compile(SVMCompiler& compiler) { ShaderInput *distortion_in = input("Distortion"); ShaderInput *detail_in = input("Detail"); ShaderInput *scale_in = input("Scale"); ShaderInput *vector_in = input("Vector"); ShaderOutput *color_out = output("Color"); ShaderOutput *fac_out = output("Fac"); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.add_node(NODE_TEX_NOISE, compiler.encode_uchar4( vector_offset, compiler.stack_assign_if_linked(scale_in), compiler.stack_assign_if_linked(detail_in), compiler.stack_assign_if_linked(distortion_in)), compiler.encode_uchar4( compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(fac_out))); compiler.add_node( __float_as_int(scale_in->value_float()), __float_as_int(detail_in->value_float()), __float_as_int(distortion_in->value_float())); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void NoiseTextureNode::compile(OSLCompiler& compiler) { tex_mapping.compile(compiler); compiler.add(this, "node_noise_texture"); } /* Voronoi Texture */ static NodeEnum voronoi_coloring_init() { NodeEnum enm; enm.insert("Intensity", NODE_VORONOI_INTENSITY); enm.insert("Cells", NODE_VORONOI_CELLS); return enm; } NodeEnum VoronoiTextureNode::coloring_enum = voronoi_coloring_init(); VoronoiTextureNode::VoronoiTextureNode() : TextureNode("voronoi_texture") { coloring = NODE_VORONOI_INTENSITY; add_input("Scale", SocketType::FLOAT, 1.0f); add_input("Vector", SocketType::POINT, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED); add_output("Color", SocketType::COLOR); add_output("Fac", SocketType::FLOAT); } void VoronoiTextureNode::compile(SVMCompiler& compiler) { ShaderInput *scale_in = input("Scale"); ShaderInput *vector_in = input("Vector"); ShaderOutput *color_out = output("Color"); ShaderOutput *fac_out = output("Fac"); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.add_node(NODE_TEX_VORONOI, coloring, compiler.encode_uchar4( compiler.stack_assign_if_linked(scale_in), vector_offset, compiler.stack_assign(fac_out), compiler.stack_assign(color_out)), __float_as_int(scale_in->value_float())); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void VoronoiTextureNode::compile(OSLCompiler& compiler) { tex_mapping.compile(compiler); compiler.parameter("coloring", coloring_enum[coloring]); compiler.add(this, "node_voronoi_texture"); } /* Musgrave Texture */ static NodeEnum musgrave_type_init() { NodeEnum enm; enm.insert("Multifractal", NODE_MUSGRAVE_MULTIFRACTAL); enm.insert("fBM", NODE_MUSGRAVE_FBM); enm.insert("Hybrid Multifractal", NODE_MUSGRAVE_HYBRID_MULTIFRACTAL); enm.insert("Ridged Multifractal", NODE_MUSGRAVE_RIDGED_MULTIFRACTAL); enm.insert("Hetero Terrain", NODE_MUSGRAVE_HETERO_TERRAIN); return enm; } NodeEnum MusgraveTextureNode::type_enum = musgrave_type_init(); MusgraveTextureNode::MusgraveTextureNode() : TextureNode("musgrave_texture") { type = NODE_MUSGRAVE_FBM; add_input("Scale", SocketType::FLOAT, 1.0f); add_input("Detail", SocketType::FLOAT, 2.0f); add_input("Vector", SocketType::POINT, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED); add_input("Dimension", SocketType::FLOAT, 2.0f); add_input("Lacunarity", SocketType::FLOAT, 1.0f); add_input("Offset", SocketType::FLOAT, 0.0f); add_input("Gain", SocketType::FLOAT, 1.0f); add_output("Fac", SocketType::FLOAT); add_output("Color", SocketType::COLOR); } void MusgraveTextureNode::compile(SVMCompiler& compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *scale_in = input("Scale"); ShaderInput *dimension_in = input("Dimension"); ShaderInput *lacunarity_in = input("Lacunarity"); ShaderInput *detail_in = input("Detail"); ShaderInput *offset_in = input("Offset"); ShaderInput *gain_in = input("Gain"); ShaderOutput *fac_out = output("Fac"); ShaderOutput *color_out = output("Color"); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.add_node(NODE_TEX_MUSGRAVE, compiler.encode_uchar4( type, vector_offset, compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(fac_out)), compiler.encode_uchar4( compiler.stack_assign_if_linked(dimension_in), compiler.stack_assign_if_linked(lacunarity_in), compiler.stack_assign_if_linked(detail_in), compiler.stack_assign_if_linked(offset_in)), compiler.encode_uchar4( compiler.stack_assign_if_linked(gain_in), compiler.stack_assign_if_linked(scale_in))); compiler.add_node(__float_as_int(dimension_in->value_float()), __float_as_int(lacunarity_in->value_float()), __float_as_int(detail_in->value_float()), __float_as_int(offset_in->value_float())); compiler.add_node(__float_as_int(gain_in->value_float()), __float_as_int(scale_in->value_float())); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void MusgraveTextureNode::compile(OSLCompiler& compiler) { tex_mapping.compile(compiler); compiler.parameter("type", type_enum[type]); compiler.add(this, "node_musgrave_texture"); } /* Wave Texture */ static NodeEnum wave_type_init() { NodeEnum enm; enm.insert("Bands", NODE_WAVE_BANDS); enm.insert("Rings", NODE_WAVE_RINGS); return enm; } static NodeEnum wave_profile_init() { NodeEnum enm; enm.insert("Sine", NODE_WAVE_PROFILE_SIN); enm.insert("Saw", NODE_WAVE_PROFILE_SAW); return enm; } NodeEnum WaveTextureNode::type_enum = wave_type_init(); NodeEnum WaveTextureNode::profile_enum = wave_profile_init(); WaveTextureNode::WaveTextureNode() : TextureNode("wave_texture") { type = NODE_WAVE_BANDS; profile = NODE_WAVE_PROFILE_SIN; add_input("Scale", SocketType::FLOAT, 1.0f); add_input("Distortion", SocketType::FLOAT, 0.0f); add_input("Detail", SocketType::FLOAT, 2.0f); add_input("Detail Scale", SocketType::FLOAT, 1.0f); add_input("Vector", SocketType::POINT, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED); add_output("Color", SocketType::COLOR); add_output("Fac", SocketType::FLOAT); } void WaveTextureNode::compile(SVMCompiler& compiler) { ShaderInput *scale_in = input("Scale"); ShaderInput *distortion_in = input("Distortion"); ShaderInput *dscale_in = input("Detail Scale"); ShaderInput *detail_in = input("Detail"); ShaderInput *vector_in = input("Vector"); ShaderOutput *fac_out = output("Fac"); ShaderOutput *color_out = output("Color"); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.add_node(NODE_TEX_WAVE, compiler.encode_uchar4( type, compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(fac_out), compiler.stack_assign_if_linked(dscale_in)), compiler.encode_uchar4( vector_offset, compiler.stack_assign_if_linked(scale_in), compiler.stack_assign_if_linked(detail_in), compiler.stack_assign_if_linked(distortion_in)), profile); compiler.add_node( __float_as_int(scale_in->value_float()), __float_as_int(detail_in->value_float()), __float_as_int(distortion_in->value_float()), __float_as_int(dscale_in->value_float())); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void WaveTextureNode::compile(OSLCompiler& compiler) { tex_mapping.compile(compiler); compiler.parameter("type", type_enum[type]); compiler.parameter("profile", profile_enum[profile]); compiler.add(this, "node_wave_texture"); } /* Magic Texture */ MagicTextureNode::MagicTextureNode() : TextureNode("magic_texture") { depth = 2; add_input("Vector", SocketType::POINT, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED); add_input("Scale", SocketType::FLOAT, 5.0f); add_input("Distortion", SocketType::FLOAT, 1.0f); add_output("Color", SocketType::COLOR); add_output("Fac", SocketType::FLOAT); } void MagicTextureNode::compile(SVMCompiler& compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *scale_in = input("Scale"); ShaderInput *distortion_in = input("Distortion"); ShaderOutput *color_out = output("Color"); ShaderOutput *fac_out = output("Fac"); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.add_node(NODE_TEX_MAGIC, compiler.encode_uchar4( depth, compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(fac_out)), compiler.encode_uchar4( vector_offset, compiler.stack_assign_if_linked(scale_in), compiler.stack_assign_if_linked(distortion_in))); compiler.add_node( __float_as_int(scale_in->value_float()), __float_as_int(distortion_in->value_float())); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void MagicTextureNode::compile(OSLCompiler& compiler) { tex_mapping.compile(compiler); compiler.parameter("depth", depth); compiler.add(this, "node_magic_texture"); } /* Checker Texture */ CheckerTextureNode::CheckerTextureNode() : TextureNode("checker_texture") { add_input("Vector", SocketType::POINT, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED); add_input("Color1", SocketType::COLOR); add_input("Color2", SocketType::COLOR); add_input("Scale", SocketType::FLOAT, 1.0f); add_output("Color", SocketType::COLOR); add_output("Fac", SocketType::FLOAT); } void CheckerTextureNode::compile(SVMCompiler& compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *color1_in = input("Color1"); ShaderInput *color2_in = input("Color2"); ShaderInput *scale_in = input("Scale"); ShaderOutput *color_out = output("Color"); ShaderOutput *fac_out = output("Fac"); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.add_node(NODE_TEX_CHECKER, compiler.encode_uchar4( vector_offset, compiler.stack_assign(color1_in), compiler.stack_assign(color2_in), compiler.stack_assign_if_linked(scale_in)), compiler.encode_uchar4( compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(fac_out)), __float_as_int(scale_in->value_float())); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void CheckerTextureNode::compile(OSLCompiler& compiler) { tex_mapping.compile(compiler); compiler.add(this, "node_checker_texture"); } /* Brick Texture */ BrickTextureNode::BrickTextureNode() : TextureNode("brick_texture") { offset = 0.5f; offset_frequency = 2; squash = 1.0f; squash_frequency = 2; add_input("Vector", SocketType::POINT, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED); add_input("Color1", SocketType::COLOR); add_input("Color2", SocketType::COLOR); add_input("Mortar", SocketType::COLOR); add_input("Scale", SocketType::FLOAT, 5.0f); add_input("Mortar Size", SocketType::FLOAT, 0.02f); add_input("Bias", SocketType::FLOAT, 0.0f); add_input("Brick Width", SocketType::FLOAT, 0.5f); add_input("Row Height", SocketType::FLOAT, 0.25f); add_output("Color", SocketType::COLOR); add_output("Fac", SocketType::FLOAT); } void BrickTextureNode::compile(SVMCompiler& compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *color1_in = input("Color1"); ShaderInput *color2_in = input("Color2"); ShaderInput *mortar_in = input("Mortar"); ShaderInput *scale_in = input("Scale"); ShaderInput *mortar_size_in = input("Mortar Size"); ShaderInput *bias_in = input("Bias"); ShaderInput *brick_width_in = input("Brick Width"); ShaderInput *row_height_in = input("Row Height"); ShaderOutput *color_out = output("Color"); ShaderOutput *fac_out = output("Fac"); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.add_node(NODE_TEX_BRICK, compiler.encode_uchar4( vector_offset, compiler.stack_assign(color1_in), compiler.stack_assign(color2_in), compiler.stack_assign(mortar_in)), compiler.encode_uchar4( compiler.stack_assign_if_linked(scale_in), compiler.stack_assign_if_linked(mortar_size_in), compiler.stack_assign_if_linked(bias_in), compiler.stack_assign_if_linked(brick_width_in)), compiler.encode_uchar4( compiler.stack_assign_if_linked(row_height_in), compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(fac_out))); compiler.add_node(compiler.encode_uchar4(offset_frequency, squash_frequency), __float_as_int(scale_in->value_float()), __float_as_int(mortar_size_in->value_float()), __float_as_int(bias_in->value_float())); compiler.add_node(__float_as_int(brick_width_in->value_float()), __float_as_int(row_height_in->value_float()), __float_as_int(offset), __float_as_int(squash)); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void BrickTextureNode::compile(OSLCompiler& compiler) { tex_mapping.compile(compiler); compiler.parameter("offset", offset); compiler.parameter("offset_frequency", offset_frequency); compiler.parameter("squash", squash); compiler.parameter("squash_frequency", squash_frequency); compiler.add(this, "node_brick_texture"); } /* Point Density Texture */ static NodeEnum point_density_space_init() { NodeEnum enm; enm.insert("Object", NODE_TEX_VOXEL_SPACE_OBJECT); enm.insert("World", NODE_TEX_VOXEL_SPACE_WORLD); return enm; } NodeEnum PointDensityTextureNode::space_enum = point_density_space_init(); PointDensityTextureNode::PointDensityTextureNode() : ShaderNode("point_density") { image_manager = NULL; slot = -1; filename = ""; space = NODE_TEX_VOXEL_SPACE_OBJECT; builtin_data = NULL; interpolation = INTERPOLATION_LINEAR; tfm = transform_identity(); add_input("Vector", SocketType::POINT, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_POSITION); add_output("Density", SocketType::FLOAT); add_output("Color", SocketType::COLOR); } PointDensityTextureNode::~PointDensityTextureNode() { if(image_manager) { image_manager->remove_image(filename, builtin_data, interpolation, EXTENSION_CLIP); } } ShaderNode *PointDensityTextureNode::clone() const { PointDensityTextureNode *node = new PointDensityTextureNode(*this); node->image_manager = NULL; node->slot = -1; return node; } void PointDensityTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if(shader->has_volume) attributes->add(ATTR_STD_GENERATED_TRANSFORM); ShaderNode::attributes(shader, attributes); } void PointDensityTextureNode::compile(SVMCompiler& compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *density_out = output("Density"); ShaderOutput *color_out = output("Color"); const bool use_density = !density_out->links.empty(); const bool use_color = !color_out->links.empty(); image_manager = compiler.image_manager; if(use_density || use_color) { if(slot == -1) { bool is_float, is_linear; slot = image_manager->add_image(filename, builtin_data, false, 0, is_float, is_linear, interpolation, EXTENSION_CLIP, true); } if(slot != -1) { compiler.stack_assign(vector_in); compiler.add_node(NODE_TEX_VOXEL, slot, compiler.encode_uchar4(compiler.stack_assign(vector_in), compiler.stack_assign_if_linked(density_out), compiler.stack_assign_if_linked(color_out), space)); if(space == NODE_TEX_VOXEL_SPACE_WORLD) { compiler.add_node(tfm.x); compiler.add_node(tfm.y); compiler.add_node(tfm.z); compiler.add_node(tfm.w); } } else { if(use_density) { compiler.add_node(NODE_VALUE_F, __float_as_int(0.0f), compiler.stack_assign(density_out)); } if(use_color) { compiler.add_node(NODE_VALUE_V, compiler.stack_assign(color_out)); compiler.add_node(NODE_VALUE_V, make_float3(TEX_IMAGE_MISSING_R, TEX_IMAGE_MISSING_G, TEX_IMAGE_MISSING_B)); } } } } void PointDensityTextureNode::compile(OSLCompiler& compiler) { ShaderOutput *density_out = output("Density"); ShaderOutput *color_out = output("Color"); const bool use_density = !density_out->links.empty(); const bool use_color = !color_out->links.empty(); image_manager = compiler.image_manager; if(use_density || use_color) { if(slot == -1) { bool is_float, is_linear; slot = image_manager->add_image(filename, builtin_data, false, 0, is_float, is_linear, interpolation, EXTENSION_CLIP, true); } if(slot != -1) { compiler.parameter("filename", string_printf("@%d", slot).c_str()); } if(space == NODE_TEX_VOXEL_SPACE_WORLD) { compiler.parameter("mapping", transform_transpose(tfm)); compiler.parameter("use_mapping", 1); } switch(interpolation) { case INTERPOLATION_CLOSEST: compiler.parameter("interpolation", "closest"); break; case INTERPOLATION_CUBIC: compiler.parameter("interpolation", "cubic"); break; case INTERPOLATION_LINEAR: default: compiler.parameter("interpolation", "linear"); break; } compiler.add(this, "node_voxel_texture"); } } /* Normal */ NormalNode::NormalNode() : ShaderNode("normal") { direction = make_float3(0.0f, 0.0f, 1.0f); add_input("Normal", SocketType::NORMAL); add_output("Normal", SocketType::NORMAL); add_output("Dot", SocketType::FLOAT); } void NormalNode::compile(SVMCompiler& compiler) { ShaderInput *normal_in = input("Normal"); ShaderOutput *normal_out = output("Normal"); ShaderOutput *dot_out = output("Dot"); compiler.add_node(NODE_NORMAL, compiler.stack_assign(normal_in), compiler.stack_assign(normal_out), compiler.stack_assign(dot_out)); compiler.add_node( __float_as_int(direction.x), __float_as_int(direction.y), __float_as_int(direction.z)); } void NormalNode::compile(OSLCompiler& compiler) { compiler.parameter_normal("direction", direction); compiler.add(this, "node_normal"); } /* Mapping */ MappingNode::MappingNode() : ShaderNode("mapping") { add_input("Vector", SocketType::POINT); add_output("Vector", SocketType::POINT); } void MappingNode::compile(SVMCompiler& compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *vector_out = output("Vector"); tex_mapping.compile(compiler, compiler.stack_assign(vector_in), compiler.stack_assign(vector_out)); } void MappingNode::compile(OSLCompiler& compiler) { Transform tfm = transform_transpose(tex_mapping.compute_transform()); compiler.parameter("Matrix", tfm); compiler.parameter_point("mapping_min", tex_mapping.min); compiler.parameter_point("mapping_max", tex_mapping.max); compiler.parameter("use_minmax", tex_mapping.use_minmax); compiler.add(this, "node_mapping"); } /* RGBToBW */ RGBToBWNode::RGBToBWNode() : ShaderNode("rgb_to_bw") { add_input("Color", SocketType::COLOR); add_output("Val", SocketType::FLOAT); } bool RGBToBWNode::constant_fold(ShaderGraph *, ShaderOutput *, ShaderInput *optimized) { if(inputs[0]->link == NULL) { optimized->set(linear_rgb_to_gray(inputs[0]->value())); return true; } return false; } void RGBToBWNode::compile(SVMCompiler& compiler) { compiler.add_node(NODE_CONVERT, NODE_CONVERT_CF, compiler.stack_assign(inputs[0]), compiler.stack_assign(outputs[0])); } void RGBToBWNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_convert_from_color"); } /* Convert */ ConvertNode::ConvertNode(SocketType::Type from_, SocketType::Type to_, bool autoconvert) : ShaderNode("convert") { from = from_; to = to_; if(autoconvert) { if(from == to) special_type = SHADER_SPECIAL_TYPE_PROXY; else special_type = SHADER_SPECIAL_TYPE_AUTOCONVERT; } if(from == SocketType::FLOAT) add_input("value_float", SocketType::FLOAT); else if(from == SocketType::INT) add_input("value_int", SocketType::INT); else if(from == SocketType::COLOR) add_input("value_color", SocketType::COLOR); else if(from == SocketType::VECTOR) add_input("value_vector", SocketType::VECTOR); else if(from == SocketType::POINT) add_input("value_point", SocketType::POINT); else if(from == SocketType::NORMAL) add_input("value_normal", SocketType::NORMAL); else if(from == SocketType::STRING) add_input("value_string", SocketType::STRING); else if(from == SocketType::CLOSURE) add_input("value_closure", SocketType::CLOSURE); else assert(0); if(to == SocketType::FLOAT) add_output("value_float", SocketType::FLOAT); else if(to == SocketType::INT) add_output("value_int", SocketType::INT); else if(to == SocketType::COLOR) add_output("value_color", SocketType::COLOR); else if(to == SocketType::VECTOR) add_output("value_vector", SocketType::VECTOR); else if(to == SocketType::POINT) add_output("value_point", SocketType::POINT); else if(to == SocketType::NORMAL) add_output("value_normal", SocketType::NORMAL); else if(to == SocketType::STRING) add_output("value_string", SocketType::STRING); else if(to == SocketType::CLOSURE) add_output("value_closure", SocketType::CLOSURE); else assert(0); } bool ConvertNode::constant_fold(ShaderGraph *, ShaderOutput *, ShaderInput *optimized) { ShaderInput *in = inputs[0]; float3 value = in->value(); /* TODO(DingTo): conversion from/to int is not supported yet, don't fold in that case */ if(in->link == NULL) { if(from == SocketType::FLOAT) { if(SocketType::is_float3(to)) { optimized->set(make_float3(value.x, value.x, value.x)); return true; } } else if(SocketType::is_float3(from)) { if(to == SocketType::FLOAT) { if(from == SocketType::COLOR) optimized->set(linear_rgb_to_gray(value)); else optimized->set(average(value)); return true; } else if(SocketType::is_float3(to)) { optimized->set(value); return true; } } } return false; } void ConvertNode::compile(SVMCompiler& compiler) { /* constant folding should eliminate proxy nodes */ assert(from != to); ShaderInput *in = inputs[0]; ShaderOutput *out = outputs[0]; if(from == SocketType::FLOAT) { if(to == SocketType::INT) /* float to int */ compiler.add_node(NODE_CONVERT, NODE_CONVERT_FI, compiler.stack_assign(in), compiler.stack_assign(out)); else /* float to float3 */ compiler.add_node(NODE_CONVERT, NODE_CONVERT_FV, compiler.stack_assign(in), compiler.stack_assign(out)); } else if(from == SocketType::INT) { if(to == SocketType::FLOAT) /* int to float */ compiler.add_node(NODE_CONVERT, NODE_CONVERT_IF, compiler.stack_assign(in), compiler.stack_assign(out)); else /* int to vector/point/normal */ compiler.add_node(NODE_CONVERT, NODE_CONVERT_IV, compiler.stack_assign(in), compiler.stack_assign(out)); } else if(to == SocketType::FLOAT) { if(from == SocketType::COLOR) /* color to float */ compiler.add_node(NODE_CONVERT, NODE_CONVERT_CF, compiler.stack_assign(in), compiler.stack_assign(out)); else /* vector/point/normal to float */ compiler.add_node(NODE_CONVERT, NODE_CONVERT_VF, compiler.stack_assign(in), compiler.stack_assign(out)); } else if(to == SocketType::INT) { if(from == SocketType::COLOR) /* color to int */ compiler.add_node(NODE_CONVERT, NODE_CONVERT_CI, compiler.stack_assign(in), compiler.stack_assign(out)); else /* vector/point/normal to int */ compiler.add_node(NODE_CONVERT, NODE_CONVERT_VI, compiler.stack_assign(in), compiler.stack_assign(out)); } else { /* float3 to float3 */ if(in->link) { /* no op in SVM */ compiler.stack_link(in, out); } else { /* set 0,0,0 value */ compiler.add_node(NODE_VALUE_V, compiler.stack_assign(out)); compiler.add_node(NODE_VALUE_V, in->value()); } } } void ConvertNode::compile(OSLCompiler& compiler) { /* constant folding should eliminate proxy nodes */ assert(from != to); if(from == SocketType::FLOAT) compiler.add(this, "node_convert_from_float"); else if(from == SocketType::INT) compiler.add(this, "node_convert_from_int"); else if(from == SocketType::COLOR) compiler.add(this, "node_convert_from_color"); else if(from == SocketType::VECTOR) compiler.add(this, "node_convert_from_vector"); else if(from == SocketType::POINT) compiler.add(this, "node_convert_from_point"); else if(from == SocketType::NORMAL) compiler.add(this, "node_convert_from_normal"); else assert(0); } /* BSDF Closure */ BsdfNode::BsdfNode(bool scattering_) : ShaderNode("bsdf"), scattering(scattering_) { special_type = SHADER_SPECIAL_TYPE_CLOSURE; add_input("Color", SocketType::COLOR, make_float3(0.8f, 0.8f, 0.8f)); add_input("Normal", SocketType::NORMAL, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL); add_input("SurfaceMixWeight", SocketType::FLOAT, 0.0f, SocketType::SVM_INTERNAL); if(scattering) { closure = CLOSURE_BSSRDF_CUBIC_ID; add_output("BSSRDF", SocketType::CLOSURE); } else { closure = CLOSURE_BSDF_DIFFUSE_ID; add_output("BSDF", SocketType::CLOSURE); } } void BsdfNode::compile(SVMCompiler& compiler, ShaderInput *param1, ShaderInput *param2, ShaderInput *param3, ShaderInput *param4) { ShaderInput *color_in = input("Color"); ShaderInput *normal_in = input("Normal"); ShaderInput *tangent_in = input("Tangent"); if(color_in->link) compiler.add_node(NODE_CLOSURE_WEIGHT, compiler.stack_assign(color_in)); else compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value()); int normal_offset = compiler.stack_assign_if_linked(normal_in); int tangent_offset = (tangent_in) ? compiler.stack_assign_if_linked(tangent_in) : SVM_STACK_INVALID; int param3_offset = (param3) ? compiler.stack_assign(param3) : SVM_STACK_INVALID; int param4_offset = (param4) ? compiler.stack_assign(param4) : SVM_STACK_INVALID; compiler.add_node(NODE_CLOSURE_BSDF, compiler.encode_uchar4(closure, (param1)? compiler.stack_assign(param1): SVM_STACK_INVALID, (param2)? compiler.stack_assign(param2): SVM_STACK_INVALID, compiler.closure_mix_weight_offset()), __float_as_int((param1)? param1->value_float(): 0.0f), __float_as_int((param2)? param2->value_float(): 0.0f)); compiler.add_node(normal_offset, tangent_offset, param3_offset, param4_offset); } void BsdfNode::compile(SVMCompiler& compiler) { compile(compiler, NULL, NULL); } void BsdfNode::compile(OSLCompiler& /*compiler*/) { assert(0); } /* Anisotropic BSDF Closure */ static NodeEnum aniso_distribution_init() { NodeEnum enm; enm.insert("Beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID); enm.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID); enm.insert("Ashikhmin-Shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID); return enm; } NodeEnum AnisotropicBsdfNode::distribution_enum = aniso_distribution_init(); AnisotropicBsdfNode::AnisotropicBsdfNode() { closure = CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID; distribution = CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID; add_input("Tangent", SocketType::VECTOR, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TANGENT); add_input("Roughness", SocketType::FLOAT, 0.2f); add_input("Anisotropy", SocketType::FLOAT, 0.5f); add_input("Rotation", SocketType::FLOAT, 0.0f); } void AnisotropicBsdfNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if(shader->has_surface) { ShaderInput *tangent_in = input("Tangent"); if(!tangent_in->link) attributes->add(ATTR_STD_GENERATED); } ShaderNode::attributes(shader, attributes); } void AnisotropicBsdfNode::compile(SVMCompiler& compiler) { closure = distribution; BsdfNode::compile(compiler, input("Roughness"), input("Anisotropy"), input("Rotation")); } void AnisotropicBsdfNode::compile(OSLCompiler& compiler) { compiler.parameter("distribution", distribution_enum[distribution]); compiler.add(this, "node_anisotropic_bsdf"); } /* Glossy BSDF Closure */ static NodeEnum glossy_distribution_init() { NodeEnum enm; enm.insert("Sharp", CLOSURE_BSDF_REFLECTION_ID); enm.insert("Beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ID); enm.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ID); enm.insert("Ashikhmin-Shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID); return enm; } NodeEnum GlossyBsdfNode::distribution_enum = glossy_distribution_init(); GlossyBsdfNode::GlossyBsdfNode() { closure = CLOSURE_BSDF_MICROFACET_GGX_ID; distribution = CLOSURE_BSDF_MICROFACET_GGX_ID; distribution_orig = NBUILTIN_CLOSURES; add_input("Roughness", SocketType::FLOAT, 0.2f); } void GlossyBsdfNode::simplify_settings(Scene *scene) { if(distribution_orig == NBUILTIN_CLOSURES) { distribution_orig = distribution; } Integrator *integrator = scene->integrator; if(integrator->filter_glossy == 0.0f) { /* Fallback to Sharp closure for Roughness close to 0. * Note: Keep the epsilon in sync with kernel! */ ShaderInput *roughness_input = input("Roughness"); if(!roughness_input->link && roughness_input->value_float() <= 1e-4f) { distribution = CLOSURE_BSDF_REFLECTION_ID; } } else { /* Rollback to original distribution when filter glossy is used. */ distribution = distribution_orig; } closure = distribution; } bool GlossyBsdfNode::has_integrator_dependency() { ShaderInput *roughness_input = input("Roughness"); return !roughness_input->link && roughness_input->value_float() <= 1e-4f; } void GlossyBsdfNode::compile(SVMCompiler& compiler) { closure = distribution; if(closure == CLOSURE_BSDF_REFLECTION_ID) BsdfNode::compile(compiler, NULL, NULL); else BsdfNode::compile(compiler, input("Roughness"), NULL); } void GlossyBsdfNode::compile(OSLCompiler& compiler) { compiler.parameter("distribution", distribution_enum[distribution]); compiler.add(this, "node_glossy_bsdf"); } /* Glass BSDF Closure */ static NodeEnum glass_distribution_init() { NodeEnum enm; enm.insert("Sharp", CLOSURE_BSDF_SHARP_GLASS_ID); enm.insert("Beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID); enm.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID); return enm; } NodeEnum GlassBsdfNode::distribution_enum = glass_distribution_init(); GlassBsdfNode::GlassBsdfNode() { closure = CLOSURE_BSDF_SHARP_GLASS_ID; distribution = CLOSURE_BSDF_SHARP_GLASS_ID; distribution_orig = NBUILTIN_CLOSURES; add_input("Roughness", SocketType::FLOAT, 0.0f); add_input("IOR", SocketType::FLOAT, 0.3f); } void GlassBsdfNode::simplify_settings(Scene *scene) { if(distribution_orig == NBUILTIN_CLOSURES) { distribution_orig = distribution; } Integrator *integrator = scene->integrator; if(integrator->filter_glossy == 0.0f) { /* Fallback to Sharp closure for Roughness close to 0. * Note: Keep the epsilon in sync with kernel! */ ShaderInput *roughness_input = input("Roughness"); if(!roughness_input->link && roughness_input->value_float() <= 1e-4f) { distribution = CLOSURE_BSDF_SHARP_GLASS_ID; } } else { /* Rollback to original distribution when filter glossy is used. */ distribution = distribution_orig; } closure = distribution; } bool GlassBsdfNode::has_integrator_dependency() { ShaderInput *roughness_input = input("Roughness"); return !roughness_input->link && roughness_input->value_float() <= 1e-4f; } void GlassBsdfNode::compile(SVMCompiler& compiler) { closure = distribution; if(closure == CLOSURE_BSDF_SHARP_GLASS_ID) BsdfNode::compile(compiler, NULL, input("IOR")); else BsdfNode::compile(compiler, input("Roughness"), input("IOR")); } void GlassBsdfNode::compile(OSLCompiler& compiler) { compiler.parameter("distribution", distribution_enum[distribution]); compiler.add(this, "node_glass_bsdf"); } /* Refraction BSDF Closure */ static NodeEnum refraction_distribution_init() { NodeEnum enm; enm.insert("Sharp", CLOSURE_BSDF_REFRACTION_ID); enm.insert("Beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID); enm.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID); return enm; } NodeEnum RefractionBsdfNode::distribution_enum = refraction_distribution_init(); RefractionBsdfNode::RefractionBsdfNode() { closure = CLOSURE_BSDF_REFRACTION_ID; distribution = CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID; distribution_orig = NBUILTIN_CLOSURES; add_input("Roughness", SocketType::FLOAT, 0.0f); add_input("IOR", SocketType::FLOAT, 0.3f); } void RefractionBsdfNode::simplify_settings(Scene *scene) { if(distribution_orig == NBUILTIN_CLOSURES) { distribution_orig = distribution; } Integrator *integrator = scene->integrator; if(integrator->filter_glossy == 0.0f) { /* Fallback to Sharp closure for Roughness close to 0. * Note: Keep the epsilon in sync with kernel! */ ShaderInput *roughness_input = input("Roughness"); if(!roughness_input->link && roughness_input->value_float() <= 1e-4f) { distribution = CLOSURE_BSDF_REFRACTION_ID; } } else { /* Rollback to original distribution when filter glossy is used. */ distribution = distribution_orig; } closure = distribution; } bool RefractionBsdfNode::has_integrator_dependency() { ShaderInput *roughness_input = input("Roughness"); return !roughness_input->link && roughness_input->value_float() <= 1e-4f; } void RefractionBsdfNode::compile(SVMCompiler& compiler) { closure = distribution; if(closure == CLOSURE_BSDF_REFRACTION_ID) BsdfNode::compile(compiler, NULL, input("IOR")); else BsdfNode::compile(compiler, input("Roughness"), input("IOR")); } void RefractionBsdfNode::compile(OSLCompiler& compiler) { compiler.parameter("distribution", distribution_enum[distribution]); compiler.add(this, "node_refraction_bsdf"); } /* Toon BSDF Closure */ static NodeEnum toon_component_init() { NodeEnum enm; enm.insert("Diffuse", CLOSURE_BSDF_DIFFUSE_TOON_ID); enm.insert("Glossy", CLOSURE_BSDF_GLOSSY_TOON_ID); return enm; } NodeEnum ToonBsdfNode::component_enum = toon_component_init(); ToonBsdfNode::ToonBsdfNode() { closure = CLOSURE_BSDF_DIFFUSE_TOON_ID; component = CLOSURE_BSDF_DIFFUSE_TOON_ID; add_input("Size", SocketType::FLOAT, 0.5f); add_input("Smooth", SocketType::FLOAT, 0.0f); } void ToonBsdfNode::compile(SVMCompiler& compiler) { closure = component; BsdfNode::compile(compiler, input("Size"), input("Smooth")); } void ToonBsdfNode::compile(OSLCompiler& compiler) { compiler.parameter("component", component_enum[component]); compiler.add(this, "node_toon_bsdf"); } /* Velvet BSDF Closure */ VelvetBsdfNode::VelvetBsdfNode() { closure = CLOSURE_BSDF_ASHIKHMIN_VELVET_ID; add_input("Sigma", SocketType::FLOAT, 1.0f); } void VelvetBsdfNode::compile(SVMCompiler& compiler) { BsdfNode::compile(compiler, input("Sigma"), NULL); } void VelvetBsdfNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_velvet_bsdf"); } /* Diffuse BSDF Closure */ DiffuseBsdfNode::DiffuseBsdfNode() { closure = CLOSURE_BSDF_DIFFUSE_ID; add_input("Roughness", SocketType::FLOAT, 0.0f); } void DiffuseBsdfNode::compile(SVMCompiler& compiler) { BsdfNode::compile(compiler, input("Roughness"), NULL); } void DiffuseBsdfNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_diffuse_bsdf"); } /* Translucent BSDF Closure */ TranslucentBsdfNode::TranslucentBsdfNode() { closure = CLOSURE_BSDF_TRANSLUCENT_ID; } void TranslucentBsdfNode::compile(SVMCompiler& compiler) { BsdfNode::compile(compiler, NULL, NULL); } void TranslucentBsdfNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_translucent_bsdf"); } /* Transparent BSDF Closure */ TransparentBsdfNode::TransparentBsdfNode() { name = "transparent"; closure = CLOSURE_BSDF_TRANSPARENT_ID; } void TransparentBsdfNode::compile(SVMCompiler& compiler) { BsdfNode::compile(compiler, NULL, NULL); } void TransparentBsdfNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_transparent_bsdf"); } /* Subsurface Scattering Closure */ static NodeEnum subsurface_falloff_init() { NodeEnum enm; enm.insert("Cubic", CLOSURE_BSSRDF_CUBIC_ID); enm.insert("Gaussian", CLOSURE_BSSRDF_GAUSSIAN_ID); enm.insert("Burley", CLOSURE_BSSRDF_BURLEY_ID); return enm; } NodeEnum SubsurfaceScatteringNode::falloff_enum = subsurface_falloff_init(); SubsurfaceScatteringNode::SubsurfaceScatteringNode() : BsdfNode(true) { name = "subsurface_scattering"; falloff = CLOSURE_BSSRDF_CUBIC_ID; add_input("Scale", SocketType::FLOAT, 0.01f); add_input("Radius", SocketType::VECTOR, make_float3(0.1f, 0.1f, 0.1f)); add_input("Sharpness", SocketType::FLOAT, 0.0f); add_input("Texture Blur", SocketType::FLOAT, 1.0f); } void SubsurfaceScatteringNode::compile(SVMCompiler& compiler) { closure = falloff; BsdfNode::compile(compiler, input("Scale"), input("Texture Blur"), input("Radius"), input("Sharpness")); } void SubsurfaceScatteringNode::compile(OSLCompiler& compiler) { compiler.parameter("falloff", falloff_enum[closure]); compiler.add(this, "node_subsurface_scattering"); } bool SubsurfaceScatteringNode::has_bssrdf_bump() { /* detect if anything is plugged into the normal input besides the default */ ShaderInput *normal_in = input("Normal"); return (normal_in->link && normal_in->link->parent->special_type != SHADER_SPECIAL_TYPE_GEOMETRY); } /* Emissive Closure */ EmissionNode::EmissionNode() : ShaderNode("emission") { add_input("Color", SocketType::COLOR, make_float3(0.8f, 0.8f, 0.8f)); add_input("Strength", SocketType::FLOAT, 10.0f); add_input("SurfaceMixWeight", SocketType::FLOAT, 0.0f, SocketType::SVM_INTERNAL); add_output("Emission", SocketType::CLOSURE); } void EmissionNode::compile(SVMCompiler& compiler) { ShaderInput *color_in = input("Color"); ShaderInput *strength_in = input("Strength"); if(color_in->link || strength_in->link) { compiler.add_node(NODE_EMISSION_WEIGHT, compiler.stack_assign(color_in), compiler.stack_assign(strength_in)); } else compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value() * strength_in->value_float()); compiler.add_node(NODE_CLOSURE_EMISSION, compiler.closure_mix_weight_offset()); } void EmissionNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_emission"); } bool EmissionNode::constant_fold(ShaderGraph *, ShaderOutput *, ShaderInput *) { ShaderInput *color_in = input("Color"); ShaderInput *strength_in = input("Strength"); return ((!color_in->link && color_in->value() == make_float3(0.0f, 0.0f, 0.0f)) || (!strength_in->link && strength_in->value_float() == 0.0f)); } /* Background Closure */ BackgroundNode::BackgroundNode() : ShaderNode("background") { add_input("Color", SocketType::COLOR, make_float3(0.8f, 0.8f, 0.8f)); add_input("Strength", SocketType::FLOAT, 1.0f); add_input("SurfaceMixWeight", SocketType::FLOAT, 0.0f, SocketType::SVM_INTERNAL); add_output("Background", SocketType::CLOSURE); } void BackgroundNode::compile(SVMCompiler& compiler) { ShaderInput *color_in = input("Color"); ShaderInput *strength_in = input("Strength"); if(color_in->link || strength_in->link) { compiler.add_node(NODE_EMISSION_WEIGHT, compiler.stack_assign(color_in), compiler.stack_assign(strength_in)); } else compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value()*strength_in->value_float()); compiler.add_node(NODE_CLOSURE_BACKGROUND, compiler.closure_mix_weight_offset()); } void BackgroundNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_background"); } bool BackgroundNode::constant_fold(ShaderGraph *, ShaderOutput *, ShaderInput *) { ShaderInput *color_in = input("Color"); ShaderInput *strength_in = input("Strength"); return ((!color_in->link && color_in->value() == make_float3(0.0f, 0.0f, 0.0f)) || (!strength_in->link && strength_in->value_float() == 0.0f)); } /* Holdout Closure */ HoldoutNode::HoldoutNode() : ShaderNode("holdout") { add_input("SurfaceMixWeight", SocketType::FLOAT, 0.0f, SocketType::SVM_INTERNAL); add_input("VolumeMixWeight", SocketType::FLOAT, 0.0f, SocketType::SVM_INTERNAL); add_output("Holdout", SocketType::CLOSURE); } void HoldoutNode::compile(SVMCompiler& compiler) { float3 value = make_float3(1.0f, 1.0f, 1.0f); compiler.add_node(NODE_CLOSURE_SET_WEIGHT, value); compiler.add_node(NODE_CLOSURE_HOLDOUT, compiler.closure_mix_weight_offset()); } void HoldoutNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_holdout"); } /* Ambient Occlusion */ AmbientOcclusionNode::AmbientOcclusionNode() : ShaderNode("ambient_occlusion") { add_input("NormalIn", SocketType::NORMAL, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL); add_input("Color", SocketType::COLOR, make_float3(0.8f, 0.8f, 0.8f)); add_input("SurfaceMixWeight", SocketType::FLOAT, 0.0f, SocketType::SVM_INTERNAL); add_output("AO", SocketType::CLOSURE); } void AmbientOcclusionNode::compile(SVMCompiler& compiler) { ShaderInput *color_in = input("Color"); if(color_in->link) compiler.add_node(NODE_CLOSURE_WEIGHT, compiler.stack_assign(color_in)); else compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value()); compiler.add_node(NODE_CLOSURE_AMBIENT_OCCLUSION, compiler.closure_mix_weight_offset()); } void AmbientOcclusionNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_ambient_occlusion"); } /* Volume Closure */ VolumeNode::VolumeNode() : ShaderNode("volume") { closure = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID; add_input("Color", SocketType::COLOR, make_float3(0.8f, 0.8f, 0.8f)); add_input("Density", SocketType::FLOAT, 1.0f); add_input("VolumeMixWeight", SocketType::FLOAT, 0.0f, SocketType::SVM_INTERNAL); add_output("Volume", SocketType::CLOSURE); } void VolumeNode::compile(SVMCompiler& compiler, ShaderInput *param1, ShaderInput *param2) { ShaderInput *color_in = input("Color"); if(color_in->link) compiler.add_node(NODE_CLOSURE_WEIGHT, compiler.stack_assign(color_in)); else compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value()); compiler.add_node(NODE_CLOSURE_VOLUME, compiler.encode_uchar4(closure, (param1)? compiler.stack_assign(param1): SVM_STACK_INVALID, (param2)? compiler.stack_assign(param2): SVM_STACK_INVALID, compiler.closure_mix_weight_offset()), __float_as_int((param1)? param1->value_float(): 0.0f), __float_as_int((param2)? param2->value_float(): 0.0f)); } void VolumeNode::compile(SVMCompiler& compiler) { compile(compiler, NULL, NULL); } void VolumeNode::compile(OSLCompiler& /*compiler*/) { assert(0); } /* Absorption Volume Closure */ AbsorptionVolumeNode::AbsorptionVolumeNode() { closure = CLOSURE_VOLUME_ABSORPTION_ID; } void AbsorptionVolumeNode::compile(SVMCompiler& compiler) { VolumeNode::compile(compiler, input("Density"), NULL); } void AbsorptionVolumeNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_absorption_volume"); } /* Scatter Volume Closure */ ScatterVolumeNode::ScatterVolumeNode() { closure = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID; add_input("Anisotropy", SocketType::FLOAT, 0.0f); } void ScatterVolumeNode::compile(SVMCompiler& compiler) { VolumeNode::compile(compiler, input("Density"), input("Anisotropy")); } void ScatterVolumeNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_scatter_volume"); } /* Hair BSDF Closure */ static NodeEnum hair_component_init() { NodeEnum enm; enm.insert("Reflection", CLOSURE_BSDF_HAIR_REFLECTION_ID); enm.insert("Transmission", CLOSURE_BSDF_HAIR_TRANSMISSION_ID); return enm; } NodeEnum HairBsdfNode::component_enum = hair_component_init(); HairBsdfNode::HairBsdfNode() { closure = CLOSURE_BSDF_HAIR_REFLECTION_ID; component = CLOSURE_BSDF_HAIR_REFLECTION_ID; add_input("Offset", SocketType::FLOAT); add_input("RoughnessU", SocketType::FLOAT); add_input("RoughnessV", SocketType::FLOAT); add_input("Tangent", SocketType::VECTOR); } void HairBsdfNode::compile(SVMCompiler& compiler) { closure = component; BsdfNode::compile(compiler, input("RoughnessU"), input("RoughnessV"), input("Offset")); } void HairBsdfNode::compile(OSLCompiler& compiler) { compiler.parameter("component", component_enum[component]); compiler.add(this, "node_hair_bsdf"); } /* Geometry */ GeometryNode::GeometryNode() : ShaderNode("geometry") { special_type = SHADER_SPECIAL_TYPE_GEOMETRY; add_input("NormalIn", SocketType::NORMAL, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL); add_output("Position", SocketType::POINT); add_output("Normal", SocketType::NORMAL); add_output("Tangent", SocketType::NORMAL); add_output("True Normal", SocketType::NORMAL); add_output("Incoming", SocketType::VECTOR); add_output("Parametric", SocketType::POINT); add_output("Backfacing", SocketType::FLOAT); add_output("Pointiness", SocketType::FLOAT); } void GeometryNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if(shader->has_surface) { if(!output("Tangent")->links.empty()) { attributes->add(ATTR_STD_GENERATED); } if(!output("Pointiness")->links.empty()) { attributes->add(ATTR_STD_POINTINESS); } } ShaderNode::attributes(shader, attributes); } void GeometryNode::compile(SVMCompiler& compiler) { ShaderOutput *out; ShaderNodeType geom_node = NODE_GEOMETRY; ShaderNodeType attr_node = NODE_ATTR; if(bump == SHADER_BUMP_DX) { geom_node = NODE_GEOMETRY_BUMP_DX; attr_node = NODE_ATTR_BUMP_DX; } else if(bump == SHADER_BUMP_DY) { geom_node = NODE_GEOMETRY_BUMP_DY; attr_node = NODE_ATTR_BUMP_DY; } out = output("Position"); if(!out->links.empty()) { compiler.add_node(geom_node, NODE_GEOM_P, compiler.stack_assign(out)); } out = output("Normal"); if(!out->links.empty()) { compiler.add_node(geom_node, NODE_GEOM_N, compiler.stack_assign(out)); } out = output("Tangent"); if(!out->links.empty()) { compiler.add_node(geom_node, NODE_GEOM_T, compiler.stack_assign(out)); } out = output("True Normal"); if(!out->links.empty()) { compiler.add_node(geom_node, NODE_GEOM_Ng, compiler.stack_assign(out)); } out = output("Incoming"); if(!out->links.empty()) { compiler.add_node(geom_node, NODE_GEOM_I, compiler.stack_assign(out)); } out = output("Parametric"); if(!out->links.empty()) { compiler.add_node(geom_node, NODE_GEOM_uv, compiler.stack_assign(out)); } out = output("Backfacing"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_backfacing, compiler.stack_assign(out)); } out = output("Pointiness"); if(!out->links.empty()) { if(compiler.output_type() != SHADER_TYPE_VOLUME) { compiler.add_node(attr_node, ATTR_STD_POINTINESS, compiler.stack_assign(out), NODE_ATTR_FLOAT); } else { compiler.add_node(NODE_VALUE_F, __float_as_int(0.0f), compiler.stack_assign(out)); } } } void GeometryNode::compile(OSLCompiler& compiler) { if(bump == SHADER_BUMP_DX) compiler.parameter("bump_offset", "dx"); else if(bump == SHADER_BUMP_DY) compiler.parameter("bump_offset", "dy"); else compiler.parameter("bump_offset", "center"); compiler.add(this, "node_geometry"); } /* TextureCoordinate */ TextureCoordinateNode::TextureCoordinateNode() : ShaderNode("texture_coordinate") { add_input("NormalIn", SocketType::NORMAL, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL); add_output("Generated", SocketType::POINT); add_output("Normal", SocketType::NORMAL); add_output("UV", SocketType::POINT); add_output("Object", SocketType::POINT); add_output("Camera", SocketType::POINT); add_output("Window", SocketType::POINT); add_output("Reflection", SocketType::NORMAL); from_dupli = false; use_transform = false; ob_tfm = transform_identity(); } void TextureCoordinateNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if(shader->has_surface) { if(!from_dupli) { if(!output("Generated")->links.empty()) attributes->add(ATTR_STD_GENERATED); if(!output("UV")->links.empty()) attributes->add(ATTR_STD_UV); } } if(shader->has_volume) { if(!from_dupli) { if(!output("Generated")->links.empty()) { attributes->add(ATTR_STD_GENERATED_TRANSFORM); } } } ShaderNode::attributes(shader, attributes); } void TextureCoordinateNode::compile(SVMCompiler& compiler) { ShaderOutput *out; ShaderNodeType texco_node = NODE_TEX_COORD; ShaderNodeType attr_node = NODE_ATTR; ShaderNodeType geom_node = NODE_GEOMETRY; if(bump == SHADER_BUMP_DX) { texco_node = NODE_TEX_COORD_BUMP_DX; attr_node = NODE_ATTR_BUMP_DX; geom_node = NODE_GEOMETRY_BUMP_DX; } else if(bump == SHADER_BUMP_DY) { texco_node = NODE_TEX_COORD_BUMP_DY; attr_node = NODE_ATTR_BUMP_DY; geom_node = NODE_GEOMETRY_BUMP_DY; } out = output("Generated"); if(!out->links.empty()) { if(compiler.background) { compiler.add_node(geom_node, NODE_GEOM_P, compiler.stack_assign(out)); } else { if(from_dupli) { compiler.add_node(texco_node, NODE_TEXCO_DUPLI_GENERATED, compiler.stack_assign(out)); } else if(compiler.output_type() == SHADER_TYPE_VOLUME) { compiler.add_node(texco_node, NODE_TEXCO_VOLUME_GENERATED, compiler.stack_assign(out)); } else { int attr = compiler.attribute(ATTR_STD_GENERATED); compiler.add_node(attr_node, attr, compiler.stack_assign(out), NODE_ATTR_FLOAT3); } } } out = output("Normal"); if(!out->links.empty()) { compiler.add_node(texco_node, NODE_TEXCO_NORMAL, compiler.stack_assign(out)); } out = output("UV"); if(!out->links.empty()) { if(from_dupli) { compiler.add_node(texco_node, NODE_TEXCO_DUPLI_UV, compiler.stack_assign(out)); } else { int attr = compiler.attribute(ATTR_STD_UV); compiler.add_node(attr_node, attr, compiler.stack_assign(out), NODE_ATTR_FLOAT3); } } out = output("Object"); if(!out->links.empty()) { compiler.add_node(texco_node, NODE_TEXCO_OBJECT, compiler.stack_assign(out), use_transform); if(use_transform) { Transform ob_itfm = transform_inverse(ob_tfm); compiler.add_node(ob_itfm.x); compiler.add_node(ob_itfm.y); compiler.add_node(ob_itfm.z); compiler.add_node(ob_itfm.w); } } out = output("Camera"); if(!out->links.empty()) { compiler.add_node(texco_node, NODE_TEXCO_CAMERA, compiler.stack_assign(out)); } out = output("Window"); if(!out->links.empty()) { compiler.add_node(texco_node, NODE_TEXCO_WINDOW, compiler.stack_assign(out)); } out = output("Reflection"); if(!out->links.empty()) { if(compiler.background) { compiler.add_node(geom_node, NODE_GEOM_I, compiler.stack_assign(out)); } else { compiler.add_node(texco_node, NODE_TEXCO_REFLECTION, compiler.stack_assign(out)); } } } void TextureCoordinateNode::compile(OSLCompiler& compiler) { if(bump == SHADER_BUMP_DX) compiler.parameter("bump_offset", "dx"); else if(bump == SHADER_BUMP_DY) compiler.parameter("bump_offset", "dy"); else compiler.parameter("bump_offset", "center"); if(compiler.background) compiler.parameter("is_background", true); if(compiler.output_type() == SHADER_TYPE_VOLUME) compiler.parameter("is_volume", true); compiler.parameter("use_transform", use_transform); Transform ob_itfm = transform_transpose(transform_inverse(ob_tfm)); compiler.parameter("object_itfm", ob_itfm); compiler.parameter("from_dupli", from_dupli); compiler.add(this, "node_texture_coordinate"); } UVMapNode::UVMapNode() : ShaderNode("uvmap") { attribute = ""; from_dupli = false; add_output("UV", SocketType::POINT); } void UVMapNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if(shader->has_surface) { if(!from_dupli) { if(!output("UV")->links.empty()) { if(attribute != "") attributes->add(attribute); else attributes->add(ATTR_STD_UV); } } } ShaderNode::attributes(shader, attributes); } void UVMapNode::compile(SVMCompiler& compiler) { ShaderOutput *out = output("UV"); ShaderNodeType texco_node = NODE_TEX_COORD; ShaderNodeType attr_node = NODE_ATTR; int attr; if(bump == SHADER_BUMP_DX) { texco_node = NODE_TEX_COORD_BUMP_DX; attr_node = NODE_ATTR_BUMP_DX; } else if(bump == SHADER_BUMP_DY) { texco_node = NODE_TEX_COORD_BUMP_DY; attr_node = NODE_ATTR_BUMP_DY; } if(!out->links.empty()) { if(from_dupli) { compiler.add_node(texco_node, NODE_TEXCO_DUPLI_UV, compiler.stack_assign(out)); } else { if(attribute != "") attr = compiler.attribute(attribute); else attr = compiler.attribute(ATTR_STD_UV); compiler.add_node(attr_node, attr, compiler.stack_assign(out), NODE_ATTR_FLOAT3); } } } void UVMapNode::compile(OSLCompiler& compiler) { if(bump == SHADER_BUMP_DX) compiler.parameter("bump_offset", "dx"); else if(bump == SHADER_BUMP_DY) compiler.parameter("bump_offset", "dy"); else compiler.parameter("bump_offset", "center"); compiler.parameter("from_dupli", from_dupli); compiler.parameter("name", attribute.c_str()); compiler.add(this, "node_uv_map"); } /* Light Path */ LightPathNode::LightPathNode() : ShaderNode("light_path") { add_output("Is Camera Ray", SocketType::FLOAT); add_output("Is Shadow Ray", SocketType::FLOAT); add_output("Is Diffuse Ray", SocketType::FLOAT); add_output("Is Glossy Ray", SocketType::FLOAT); add_output("Is Singular Ray", SocketType::FLOAT); add_output("Is Reflection Ray", SocketType::FLOAT); add_output("Is Transmission Ray", SocketType::FLOAT); add_output("Is Volume Scatter Ray", SocketType::FLOAT); add_output("Ray Length", SocketType::FLOAT); add_output("Ray Depth", SocketType::FLOAT); add_output("Transparent Depth", SocketType::FLOAT); add_output("Transmission Depth", SocketType::FLOAT); } void LightPathNode::compile(SVMCompiler& compiler) { ShaderOutput *out; out = output("Is Camera Ray"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_camera, compiler.stack_assign(out)); } out = output("Is Shadow Ray"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_shadow, compiler.stack_assign(out)); } out = output("Is Diffuse Ray"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_diffuse, compiler.stack_assign(out)); } out = output("Is Glossy Ray"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_glossy, compiler.stack_assign(out)); } out = output("Is Singular Ray"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_singular, compiler.stack_assign(out)); } out = output("Is Reflection Ray"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_reflection, compiler.stack_assign(out)); } out = output("Is Transmission Ray"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_transmission, compiler.stack_assign(out)); } out = output("Is Volume Scatter Ray"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_volume_scatter, compiler.stack_assign(out)); } out = output("Ray Length"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_length, compiler.stack_assign(out)); } out = output("Ray Depth"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_depth, compiler.stack_assign(out)); } out = output("Transparent Depth"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_transparent, compiler.stack_assign(out)); } out = output("Transmission Depth"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_transmission, compiler.stack_assign(out)); } } void LightPathNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_light_path"); } /* Light Falloff */ LightFalloffNode::LightFalloffNode() : ShaderNode("light_fallof") { add_input("Strength", SocketType::FLOAT, 100.0f); add_input("Smooth", SocketType::FLOAT, 0.0f); add_output("Quadratic", SocketType::FLOAT); add_output("Linear", SocketType::FLOAT); add_output("Constant", SocketType::FLOAT); } void LightFalloffNode::compile(SVMCompiler& compiler) { ShaderInput *strength_in = input("Strength"); ShaderInput *smooth_in = input("Smooth"); ShaderOutput *out = output("Quadratic"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_QUADRATIC, compiler.encode_uchar4( compiler.stack_assign(strength_in), compiler.stack_assign(smooth_in), compiler.stack_assign(out))); } out = output("Linear"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_LINEAR, compiler.encode_uchar4( compiler.stack_assign(strength_in), compiler.stack_assign(smooth_in), compiler.stack_assign(out))); } out = output("Constant"); if(!out->links.empty()) { compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_CONSTANT, compiler.encode_uchar4( compiler.stack_assign(strength_in), compiler.stack_assign(smooth_in), compiler.stack_assign(out))); } } void LightFalloffNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_light_falloff"); } /* Object Info */ ObjectInfoNode::ObjectInfoNode() : ShaderNode("object_info") { add_output("Location", SocketType::VECTOR); add_output("Object Index", SocketType::FLOAT); add_output("Material Index", SocketType::FLOAT); add_output("Random", SocketType::FLOAT); } void ObjectInfoNode::compile(SVMCompiler& compiler) { ShaderOutput *out = output("Location"); if(!out->links.empty()) { compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_LOCATION, compiler.stack_assign(out)); } out = output("Object Index"); if(!out->links.empty()) { compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_INDEX, compiler.stack_assign(out)); } out = output("Material Index"); if(!out->links.empty()) { compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_MAT_INDEX, compiler.stack_assign(out)); } out = output("Random"); if(!out->links.empty()) { compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_RANDOM, compiler.stack_assign(out)); } } void ObjectInfoNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_object_info"); } /* Particle Info */ ParticleInfoNode::ParticleInfoNode() : ShaderNode("particle_info") { add_output("Index", SocketType::FLOAT); add_output("Age", SocketType::FLOAT); add_output("Lifetime", SocketType::FLOAT); add_output("Location", SocketType::POINT); #if 0 /* not yet supported */ add_output("Rotation", SHADER_SOCKET_QUATERNION); #endif add_output("Size", SocketType::FLOAT); add_output("Velocity", SocketType::VECTOR); add_output("Angular Velocity", SocketType::VECTOR); } void ParticleInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if(!output("Index")->links.empty()) attributes->add(ATTR_STD_PARTICLE); if(!output("Age")->links.empty()) attributes->add(ATTR_STD_PARTICLE); if(!output("Lifetime")->links.empty()) attributes->add(ATTR_STD_PARTICLE); if(!output("Location")->links.empty()) attributes->add(ATTR_STD_PARTICLE); #if 0 /* not yet supported */ if(!output("Rotation")->links.empty()) attributes->add(ATTR_STD_PARTICLE); #endif if(!output("Size")->links.empty()) attributes->add(ATTR_STD_PARTICLE); if(!output("Velocity")->links.empty()) attributes->add(ATTR_STD_PARTICLE); if(!output("Angular Velocity")->links.empty()) attributes->add(ATTR_STD_PARTICLE); ShaderNode::attributes(shader, attributes); } void ParticleInfoNode::compile(SVMCompiler& compiler) { ShaderOutput *out; out = output("Index"); if(!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_INDEX, compiler.stack_assign(out)); } out = output("Age"); if(!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_AGE, compiler.stack_assign(out)); } out = output("Lifetime"); if(!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_LIFETIME, compiler.stack_assign(out)); } out = output("Location"); if(!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_LOCATION, compiler.stack_assign(out)); } /* quaternion data is not yet supported by Cycles */ #if 0 out = output("Rotation"); if(!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_ROTATION, compiler.stack_assign(out)); } #endif out = output("Size"); if(!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_SIZE, compiler.stack_assign(out)); } out = output("Velocity"); if(!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_VELOCITY, compiler.stack_assign(out)); } out = output("Angular Velocity"); if(!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_ANGULAR_VELOCITY, compiler.stack_assign(out)); } } void ParticleInfoNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_particle_info"); } /* Hair Info */ HairInfoNode::HairInfoNode() : ShaderNode("hair_info") { add_output("Is Strand", SocketType::FLOAT); add_output("Intercept", SocketType::FLOAT); add_output("Thickness", SocketType::FLOAT); add_output("Tangent Normal", SocketType::NORMAL); /*output for minimum hair width transparency - deactivated*/ /*add_output("Fade", SocketType::FLOAT);*/ } void HairInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if(shader->has_surface) { ShaderOutput *intercept_out = output("Intercept"); if(!intercept_out->links.empty()) attributes->add(ATTR_STD_CURVE_INTERCEPT); } ShaderNode::attributes(shader, attributes); } void HairInfoNode::compile(SVMCompiler& compiler) { ShaderOutput *out; out = output("Is Strand"); if(!out->links.empty()) { compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_IS_STRAND, compiler.stack_assign(out)); } out = output("Intercept"); if(!out->links.empty()) { int attr = compiler.attribute(ATTR_STD_CURVE_INTERCEPT); compiler.add_node(NODE_ATTR, attr, compiler.stack_assign(out), NODE_ATTR_FLOAT); } out = output("Thickness"); if(!out->links.empty()) { compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_THICKNESS, compiler.stack_assign(out)); } out = output("Tangent Normal"); if(!out->links.empty()) { compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_TANGENT_NORMAL, compiler.stack_assign(out)); } /*out = output("Fade"); if(!out->links.empty()) { compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_FADE, compiler.stack_assign(out)); }*/ } void HairInfoNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_hair_info"); } /* Value */ ValueNode::ValueNode() : ShaderNode("value") { value = 0.0f; add_output("Value", SocketType::FLOAT); } bool ValueNode::constant_fold(ShaderGraph *, ShaderOutput *, ShaderInput *optimized) { optimized->set(value); return true; } void ValueNode::compile(SVMCompiler& compiler) { ShaderOutput *val_out = output("Value"); compiler.add_node(NODE_VALUE_F, __float_as_int(value), compiler.stack_assign(val_out)); } void ValueNode::compile(OSLCompiler& compiler) { compiler.parameter("value_value", value); compiler.add(this, "node_value"); } /* Color */ ColorNode::ColorNode() : ShaderNode("color") { value = make_float3(0.0f, 0.0f, 0.0f); add_output("Color", SocketType::COLOR); } bool ColorNode::constant_fold(ShaderGraph *, ShaderOutput *, ShaderInput *optimized) { optimized->set(value); return true; } void ColorNode::compile(SVMCompiler& compiler) { ShaderOutput *color_out = output("Color"); if(!color_out->links.empty()) { compiler.add_node(NODE_VALUE_V, compiler.stack_assign(color_out)); compiler.add_node(NODE_VALUE_V, value); } } void ColorNode::compile(OSLCompiler& compiler) { compiler.parameter_color("color_value", value); compiler.add(this, "node_value"); } /* Add Closure */ AddClosureNode::AddClosureNode() : ShaderNode("add_closure") { special_type = SHADER_SPECIAL_TYPE_COMBINE_CLOSURE; add_input("Closure1", SocketType::CLOSURE); add_input("Closure2", SocketType::CLOSURE); add_output("Closure", SocketType::CLOSURE); } void AddClosureNode::compile(SVMCompiler& /*compiler*/) { /* handled in the SVM compiler */ } void AddClosureNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_add_closure"); } /* Mix Closure */ MixClosureNode::MixClosureNode() : ShaderNode("mix_closure") { special_type = SHADER_SPECIAL_TYPE_COMBINE_CLOSURE; add_input("Fac", SocketType::FLOAT, 0.5f); add_input("Closure1", SocketType::CLOSURE); add_input("Closure2", SocketType::CLOSURE); add_output("Closure", SocketType::CLOSURE); } void MixClosureNode::compile(SVMCompiler& /*compiler*/) { /* handled in the SVM compiler */ } void MixClosureNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_mix_closure"); } bool MixClosureNode::constant_fold(ShaderGraph *graph, ShaderOutput *, ShaderInput *) { ShaderInput *fac_in = input("Fac"); ShaderInput *closure1_in = input("Closure1"); ShaderInput *closure2_in = input("Closure2"); ShaderOutput *closure_out = output("Closure"); /* remove useless mix closures nodes */ if(closure1_in->link == closure2_in->link) { graph->relink(this, closure_out, closure1_in->link); return true; } /* remove unused mix closure input when factor is 0.0 or 1.0 */ /* check for closure links and make sure factor link is disconnected */ if(closure1_in->link && closure2_in->link && !fac_in->link) { /* factor 0.0 */ if(fac_in->value_float() == 0.0f) { graph->relink(this, closure_out, closure1_in->link); return true; } /* factor 1.0 */ else if(fac_in->value_float() == 1.0f) { graph->relink(this, closure_out, closure2_in->link); return true; } } return false; } /* Mix Closure */ MixClosureWeightNode::MixClosureWeightNode() : ShaderNode("mix_closure_weight") { add_input("Weight", SocketType::FLOAT, 1.0f); add_input("Fac", SocketType::FLOAT, 1.0f); add_output("Weight1", SocketType::FLOAT); add_output("Weight2", SocketType::FLOAT); } void MixClosureWeightNode::compile(SVMCompiler& compiler) { ShaderInput *weight_in = input("Weight"); ShaderInput *fac_in = input("Fac"); ShaderOutput *weight1_out = output("Weight1"); ShaderOutput *weight2_out = output("Weight2"); compiler.add_node(NODE_MIX_CLOSURE, compiler.encode_uchar4( compiler.stack_assign(fac_in), compiler.stack_assign(weight_in), compiler.stack_assign(weight1_out), compiler.stack_assign(weight2_out))); } void MixClosureWeightNode::compile(OSLCompiler& /*compiler*/) { assert(0); } /* Invert */ InvertNode::InvertNode() : ShaderNode("invert") { add_input("Fac", SocketType::FLOAT, 1.0f); add_input("Color", SocketType::COLOR); add_output("Color", SocketType::COLOR); } void InvertNode::compile(SVMCompiler& compiler) { ShaderInput *fac_in = input("Fac"); ShaderInput *color_in = input("Color"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_INVERT, compiler.stack_assign(fac_in), compiler.stack_assign(color_in), compiler.stack_assign(color_out)); } void InvertNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_invert"); } /* Mix */ MixNode::MixNode() : ShaderNode("mix") { type = NODE_MIX_BLEND; use_clamp = false; add_input("Fac", SocketType::FLOAT, 0.5f); add_input("Color1", SocketType::COLOR); add_input("Color2", SocketType::COLOR); add_output("Color", SocketType::COLOR); } static NodeEnum mix_type_init() { NodeEnum enm; enm.insert("Mix", NODE_MIX_BLEND); enm.insert("Add", NODE_MIX_ADD); enm.insert("Multiply", NODE_MIX_MUL); enm.insert("Screen", NODE_MIX_SCREEN); enm.insert("Overlay", NODE_MIX_OVERLAY); enm.insert("Subtract", NODE_MIX_SUB); enm.insert("Divide", NODE_MIX_DIV); enm.insert("Difference", NODE_MIX_DIFF); enm.insert("Darken", NODE_MIX_DARK); enm.insert("Lighten", NODE_MIX_LIGHT); enm.insert("Dodge", NODE_MIX_DODGE); enm.insert("Burn", NODE_MIX_BURN); enm.insert("Hue", NODE_MIX_HUE); enm.insert("Saturation", NODE_MIX_SAT); enm.insert("Value", NODE_MIX_VAL); enm.insert("Color", NODE_MIX_COLOR); enm.insert("Soft Light", NODE_MIX_SOFT); enm.insert("Linear Light", NODE_MIX_LINEAR); return enm; } NodeEnum MixNode::type_enum = mix_type_init(); void MixNode::compile(SVMCompiler& compiler) { ShaderInput *fac_in = input("Fac"); ShaderInput *color1_in = input("Color1"); ShaderInput *color2_in = input("Color2"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_MIX, compiler.stack_assign(fac_in), compiler.stack_assign(color1_in), compiler.stack_assign(color2_in)); compiler.add_node(NODE_MIX, type, compiler.stack_assign(color_out)); if(use_clamp) { compiler.add_node(NODE_MIX, 0, compiler.stack_assign(color_out)); compiler.add_node(NODE_MIX, NODE_MIX_CLAMP, compiler.stack_assign(color_out)); } } void MixNode::compile(OSLCompiler& compiler) { compiler.parameter("type", type_enum[type]); compiler.parameter("use_clamp", use_clamp); compiler.add(this, "node_mix"); } bool MixNode::constant_fold(ShaderGraph *graph, ShaderOutput *, ShaderInput *optimized) { if(type != NODE_MIX_BLEND) { return false; } ShaderInput *fac_in = input("Fac"); ShaderInput *color1_in = input("Color1"); ShaderInput *color2_in = input("Color2"); ShaderOutput *color_out = output("Color"); /* remove useless mix colors nodes */ if(color1_in->link && color1_in->link == color2_in->link) { graph->relink(this, color_out, color1_in->link); return true; } /* remove unused mix color input when factor is 0.0 or 1.0 */ if(!fac_in->link) { /* factor 0.0 */ if(fac_in->value_float() == 0.0f) { if(color1_in->link) graph->relink(this, color_out, color1_in->link); else optimized->set(color1_in->value()); return true; } /* factor 1.0 */ else if(fac_in->value_float() == 1.0f) { if(color2_in->link) graph->relink(this, color_out, color2_in->link); else optimized->set(color2_in->value()); return true; } } return false; } /* Combine RGB */ CombineRGBNode::CombineRGBNode() : ShaderNode("combine_rgb") { add_input("R", SocketType::FLOAT); add_input("G", SocketType::FLOAT); add_input("B", SocketType::FLOAT); add_output("Image", SocketType::COLOR); } void CombineRGBNode::compile(SVMCompiler& compiler) { ShaderInput *red_in = input("R"); ShaderInput *green_in = input("G"); ShaderInput *blue_in = input("B"); ShaderOutput *color_out = output("Image"); compiler.add_node(NODE_COMBINE_VECTOR, compiler.stack_assign(red_in), 0, compiler.stack_assign(color_out)); compiler.add_node(NODE_COMBINE_VECTOR, compiler.stack_assign(green_in), 1, compiler.stack_assign(color_out)); compiler.add_node(NODE_COMBINE_VECTOR, compiler.stack_assign(blue_in), 2, compiler.stack_assign(color_out)); } void CombineRGBNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_combine_rgb"); } /* Combine XYZ */ CombineXYZNode::CombineXYZNode() : ShaderNode("combine_xyz") { add_input("X", SocketType::FLOAT); add_input("Y", SocketType::FLOAT); add_input("Z", SocketType::FLOAT); add_output("Vector", SocketType::VECTOR); } void CombineXYZNode::compile(SVMCompiler& compiler) { ShaderInput *x_in = input("X"); ShaderInput *y_in = input("Y"); ShaderInput *z_in = input("Z"); ShaderOutput *vector_out = output("Vector"); compiler.add_node(NODE_COMBINE_VECTOR, compiler.stack_assign(x_in), 0, compiler.stack_assign(vector_out)); compiler.add_node(NODE_COMBINE_VECTOR, compiler.stack_assign(y_in), 1, compiler.stack_assign(vector_out)); compiler.add_node(NODE_COMBINE_VECTOR, compiler.stack_assign(z_in), 2, compiler.stack_assign(vector_out)); } void CombineXYZNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_combine_xyz"); } /* Combine HSV */ CombineHSVNode::CombineHSVNode() : ShaderNode("combine_hsv") { add_input("H", SocketType::FLOAT); add_input("S", SocketType::FLOAT); add_input("V", SocketType::FLOAT); add_output("Color", SocketType::COLOR); } void CombineHSVNode::compile(SVMCompiler& compiler) { ShaderInput *hue_in = input("H"); ShaderInput *saturation_in = input("S"); ShaderInput *value_in = input("V"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_COMBINE_HSV, compiler.stack_assign(hue_in), compiler.stack_assign(saturation_in), compiler.stack_assign(value_in)); compiler.add_node(NODE_COMBINE_HSV, compiler.stack_assign(color_out)); } void CombineHSVNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_combine_hsv"); } /* Gamma */ GammaNode::GammaNode() : ShaderNode("gamma") { add_input("Color", SocketType::COLOR); add_input("Gamma", SocketType::FLOAT); add_output("Color", SocketType::COLOR); } bool GammaNode::constant_fold(ShaderGraph *, ShaderOutput *socket, ShaderInput *optimized) { ShaderInput *color_in = input("Color"); ShaderInput *gamma_in = input("Gamma"); if(socket == output("Color")) { if(color_in->link == NULL && gamma_in->link == NULL) { optimized->set(svm_math_gamma_color(color_in->value(), gamma_in->value_float())); return true; } } return false; } void GammaNode::compile(SVMCompiler& compiler) { ShaderInput *color_in = input("Color"); ShaderInput *gamma_in = input("Gamma"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_GAMMA, compiler.stack_assign(gamma_in), compiler.stack_assign(color_in), compiler.stack_assign(color_out)); } void GammaNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_gamma"); } /* Bright Contrast */ BrightContrastNode::BrightContrastNode() : ShaderNode("brightness") { add_input("Color", SocketType::COLOR); add_input("Bright", SocketType::FLOAT); add_input("Contrast", SocketType::FLOAT); add_output("Color", SocketType::COLOR); } void BrightContrastNode::compile(SVMCompiler& compiler) { ShaderInput *color_in = input("Color"); ShaderInput *bright_in = input("Bright"); ShaderInput *contrast_in = input("Contrast"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_BRIGHTCONTRAST, compiler.stack_assign(color_in), compiler.stack_assign(color_out), compiler.encode_uchar4( compiler.stack_assign(bright_in), compiler.stack_assign(contrast_in))); } void BrightContrastNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_brightness"); } /* Separate RGB */ SeparateRGBNode::SeparateRGBNode() : ShaderNode("separate_rgb") { add_input("Image", SocketType::COLOR); add_output("R", SocketType::FLOAT); add_output("G", SocketType::FLOAT); add_output("B", SocketType::FLOAT); } void SeparateRGBNode::compile(SVMCompiler& compiler) { ShaderInput *color_in = input("Image"); ShaderOutput *red_out = output("R"); ShaderOutput *green_out = output("G"); ShaderOutput *blue_out = output("B"); compiler.add_node(NODE_SEPARATE_VECTOR, compiler.stack_assign(color_in), 0, compiler.stack_assign(red_out)); compiler.add_node(NODE_SEPARATE_VECTOR, compiler.stack_assign(color_in), 1, compiler.stack_assign(green_out)); compiler.add_node(NODE_SEPARATE_VECTOR, compiler.stack_assign(color_in), 2, compiler.stack_assign(blue_out)); } void SeparateRGBNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_separate_rgb"); } /* Separate XYZ */ SeparateXYZNode::SeparateXYZNode() : ShaderNode("separate_xyz") { add_input("Vector", SocketType::VECTOR); add_output("X", SocketType::FLOAT); add_output("Y", SocketType::FLOAT); add_output("Z", SocketType::FLOAT); } void SeparateXYZNode::compile(SVMCompiler& compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *x_out = output("X"); ShaderOutput *y_out = output("Y"); ShaderOutput *z_out = output("Z"); compiler.add_node(NODE_SEPARATE_VECTOR, compiler.stack_assign(vector_in), 0, compiler.stack_assign(x_out)); compiler.add_node(NODE_SEPARATE_VECTOR, compiler.stack_assign(vector_in), 1, compiler.stack_assign(y_out)); compiler.add_node(NODE_SEPARATE_VECTOR, compiler.stack_assign(vector_in), 2, compiler.stack_assign(z_out)); } void SeparateXYZNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_separate_xyz"); } /* Separate HSV */ SeparateHSVNode::SeparateHSVNode() : ShaderNode("separate_hsv") { add_input("Color", SocketType::COLOR); add_output("H", SocketType::FLOAT); add_output("S", SocketType::FLOAT); add_output("V", SocketType::FLOAT); } void SeparateHSVNode::compile(SVMCompiler& compiler) { ShaderInput *color_in = input("Color"); ShaderOutput *hue_out = output("H"); ShaderOutput *saturation_out = output("S"); ShaderOutput *value_out = output("V"); compiler.add_node(NODE_SEPARATE_HSV, compiler.stack_assign(color_in), compiler.stack_assign(hue_out), compiler.stack_assign(saturation_out)); compiler.add_node(NODE_SEPARATE_HSV, compiler.stack_assign(value_out)); } void SeparateHSVNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_separate_hsv"); } /* Hue Saturation Value */ HSVNode::HSVNode() : ShaderNode("hsv") { add_input("Hue", SocketType::FLOAT); add_input("Saturation", SocketType::FLOAT); add_input("Value", SocketType::FLOAT); add_input("Fac", SocketType::FLOAT); add_input("Color", SocketType::COLOR); add_output("Color", SocketType::COLOR); } void HSVNode::compile(SVMCompiler& compiler) { ShaderInput *hue_in = input("Hue"); ShaderInput *saturation_in = input("Saturation"); ShaderInput *value_in = input("Value"); ShaderInput *fac_in = input("Fac"); ShaderInput *color_in = input("Color"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_HSV, compiler.encode_uchar4( compiler.stack_assign(color_in), compiler.stack_assign(fac_in), compiler.stack_assign(color_out)), compiler.encode_uchar4( compiler.stack_assign(hue_in), compiler.stack_assign(saturation_in), compiler.stack_assign(value_in))); } void HSVNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_hsv"); } /* Attribute */ AttributeNode::AttributeNode() : ShaderNode("attribute") { attribute = ""; add_output("Color", SocketType::COLOR); add_output("Vector", SocketType::VECTOR); add_output("Fac", SocketType::FLOAT); } void AttributeNode::attributes(Shader *shader, AttributeRequestSet *attributes) { ShaderOutput *color_out = output("Color"); ShaderOutput *vector_out = output("Vector"); ShaderOutput *fac_out = output("Fac"); if(!color_out->links.empty() || !vector_out->links.empty() || !fac_out->links.empty()) { AttributeStandard std = Attribute::name_standard(attribute.c_str()); if(std != ATTR_STD_NONE) attributes->add(std); else attributes->add(attribute); } if(shader->has_volume) attributes->add(ATTR_STD_GENERATED_TRANSFORM); ShaderNode::attributes(shader, attributes); } void AttributeNode::compile(SVMCompiler& compiler) { ShaderOutput *color_out = output("Color"); ShaderOutput *vector_out = output("Vector"); ShaderOutput *fac_out = output("Fac"); ShaderNodeType attr_node = NODE_ATTR; AttributeStandard std = Attribute::name_standard(attribute.c_str()); int attr; if(std != ATTR_STD_NONE) attr = compiler.attribute(std); else attr = compiler.attribute(attribute); if(bump == SHADER_BUMP_DX) attr_node = NODE_ATTR_BUMP_DX; else if(bump == SHADER_BUMP_DY) attr_node = NODE_ATTR_BUMP_DY; if(!color_out->links.empty() || !vector_out->links.empty()) { if(!color_out->links.empty()) { compiler.add_node(attr_node, attr, compiler.stack_assign(color_out), NODE_ATTR_FLOAT3); } if(!vector_out->links.empty()) { compiler.add_node(attr_node, attr, compiler.stack_assign(vector_out), NODE_ATTR_FLOAT3); } } if(!fac_out->links.empty()) { compiler.add_node(attr_node, attr, compiler.stack_assign(fac_out), NODE_ATTR_FLOAT); } } void AttributeNode::compile(OSLCompiler& compiler) { if(bump == SHADER_BUMP_DX) compiler.parameter("bump_offset", "dx"); else if(bump == SHADER_BUMP_DY) compiler.parameter("bump_offset", "dy"); else compiler.parameter("bump_offset", "center"); if(Attribute::name_standard(attribute.c_str()) != ATTR_STD_NONE) compiler.parameter("name", (string("geom:") + attribute.c_str()).c_str()); else compiler.parameter("name", attribute.c_str()); compiler.add(this, "node_attribute"); } /* Camera */ CameraNode::CameraNode() : ShaderNode("camera") { add_output("View Vector", SocketType::VECTOR); add_output("View Z Depth", SocketType::FLOAT); add_output("View Distance", SocketType::FLOAT); } void CameraNode::compile(SVMCompiler& compiler) { ShaderOutput *vector_out = output("View Vector"); ShaderOutput *z_depth_out = output("View Z Depth"); ShaderOutput *distance_out = output("View Distance"); compiler.add_node(NODE_CAMERA, compiler.stack_assign(vector_out), compiler.stack_assign(z_depth_out), compiler.stack_assign(distance_out)); } void CameraNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_camera"); } /* Fresnel */ FresnelNode::FresnelNode() : ShaderNode("fresnel") { add_input("Normal", SocketType::NORMAL, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL); add_input("IOR", SocketType::FLOAT, 1.45f); add_output("Fac", SocketType::FLOAT); } void FresnelNode::compile(SVMCompiler& compiler) { ShaderInput *normal_in = input("Normal"); ShaderInput *IOR_in = input("IOR"); ShaderOutput *fac_out = output("Fac"); compiler.add_node(NODE_FRESNEL, compiler.stack_assign(IOR_in), __float_as_int(IOR_in->value_float()), compiler.encode_uchar4( compiler.stack_assign_if_linked(normal_in), compiler.stack_assign(fac_out))); } void FresnelNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_fresnel"); } /* Layer Weight */ LayerWeightNode::LayerWeightNode() : ShaderNode("layer_weight") { add_input("Normal", SocketType::NORMAL, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL); add_input("Blend", SocketType::FLOAT, 0.5f); add_output("Fresnel", SocketType::FLOAT); add_output("Facing", SocketType::FLOAT); } void LayerWeightNode::compile(SVMCompiler& compiler) { ShaderInput *normal_in = input("Normal"); ShaderInput *blend_in = input("Blend"); ShaderOutput *fresnel_out = output("Fresnel"); ShaderOutput *facing_out = output("Facing"); if(!fresnel_out->links.empty()) { compiler.add_node(NODE_LAYER_WEIGHT, compiler.stack_assign_if_linked(blend_in), __float_as_int(blend_in->value_float()), compiler.encode_uchar4(NODE_LAYER_WEIGHT_FRESNEL, compiler.stack_assign_if_linked(normal_in), compiler.stack_assign(fresnel_out))); } if(!facing_out->links.empty()) { compiler.add_node(NODE_LAYER_WEIGHT, compiler.stack_assign_if_linked(blend_in), __float_as_int(blend_in->value_float()), compiler.encode_uchar4(NODE_LAYER_WEIGHT_FACING, compiler.stack_assign_if_linked(normal_in), compiler.stack_assign(facing_out))); } } void LayerWeightNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_layer_weight"); } /* Wireframe */ WireframeNode::WireframeNode() : ShaderNode("wireframe") { add_input("Size", SocketType::FLOAT, 0.01f); add_output("Fac", SocketType::FLOAT); use_pixel_size = false; } void WireframeNode::compile(SVMCompiler& compiler) { ShaderInput *size_in = input("Size"); ShaderOutput *fac_out = output("Fac"); NodeBumpOffset bump_offset = NODE_BUMP_OFFSET_CENTER; if(bump == SHADER_BUMP_DX) { bump_offset = NODE_BUMP_OFFSET_DX; } else if(bump == SHADER_BUMP_DY) { bump_offset = NODE_BUMP_OFFSET_DY; } compiler.add_node(NODE_WIREFRAME, compiler.stack_assign(size_in), compiler.stack_assign(fac_out), compiler.encode_uchar4(use_pixel_size, bump_offset, 0, 0)); } void WireframeNode::compile(OSLCompiler& compiler) { if(bump == SHADER_BUMP_DX) { compiler.parameter("bump_offset", "dx"); } else if(bump == SHADER_BUMP_DY) { compiler.parameter("bump_offset", "dy"); } else { compiler.parameter("bump_offset", "center"); } compiler.parameter("use_pixel_size", use_pixel_size); compiler.add(this, "node_wireframe"); } /* Wavelength */ WavelengthNode::WavelengthNode() : ShaderNode("wavelength") { add_input("Wavelength", SocketType::FLOAT, 500.0f); add_output("Color", SocketType::COLOR); } void WavelengthNode::compile(SVMCompiler& compiler) { ShaderInput *wavelength_in = input("Wavelength"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_WAVELENGTH, compiler.stack_assign(wavelength_in), compiler.stack_assign(color_out)); } void WavelengthNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_wavelength"); } /* Blackbody */ BlackbodyNode::BlackbodyNode() : ShaderNode("blackbody") { add_input("Temperature", SocketType::FLOAT, 1200.0f); add_output("Color", SocketType::COLOR); } bool BlackbodyNode::constant_fold(ShaderGraph *, ShaderOutput *socket, ShaderInput *optimized) { ShaderInput *temperature_in = input("Temperature"); if(socket == output("Color")) { if(temperature_in->link == NULL) { optimized->set(svm_math_blackbody_color(temperature_in->value_float())); return true; } } return false; } void BlackbodyNode::compile(SVMCompiler& compiler) { ShaderInput *temperature_in = input("Temperature"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_BLACKBODY, compiler.stack_assign(temperature_in), compiler.stack_assign(color_out)); } void BlackbodyNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_blackbody"); } /* Output */ OutputNode::OutputNode() : ShaderNode("output") { special_type = SHADER_SPECIAL_TYPE_OUTPUT; add_input("Surface", SocketType::CLOSURE); add_input("Volume", SocketType::CLOSURE); add_input("Displacement", SocketType::FLOAT); add_input("Normal", SocketType::NORMAL); } void OutputNode::compile(SVMCompiler& compiler) { if(compiler.output_type() == SHADER_TYPE_DISPLACEMENT) { ShaderInput *displacement_in = input("Displacement"); if(displacement_in->link) { compiler.add_node(NODE_SET_DISPLACEMENT, compiler.stack_assign(displacement_in)); } } } void OutputNode::compile(OSLCompiler& compiler) { if(compiler.output_type() == SHADER_TYPE_SURFACE) compiler.add(this, "node_output_surface"); else if(compiler.output_type() == SHADER_TYPE_VOLUME) compiler.add(this, "node_output_volume"); else if(compiler.output_type() == SHADER_TYPE_DISPLACEMENT) compiler.add(this, "node_output_displacement"); } /* Math */ MathNode::MathNode() : ShaderNode("math") { type = NODE_MATH_ADD; use_clamp = false; add_input("Value1", SocketType::FLOAT); add_input("Value2", SocketType::FLOAT); add_output("Value", SocketType::FLOAT); } static NodeEnum math_type_init() { NodeEnum enm; enm.insert("Add", NODE_MATH_ADD); enm.insert("Subtract", NODE_MATH_SUBTRACT); enm.insert("Multiply", NODE_MATH_MULTIPLY); enm.insert("Divide", NODE_MATH_DIVIDE); enm.insert("Sine", NODE_MATH_SINE); enm.insert("Cosine", NODE_MATH_COSINE); enm.insert("Tangent", NODE_MATH_TANGENT); enm.insert("Arcsine", NODE_MATH_ARCSINE); enm.insert("Arccosine", NODE_MATH_ARCCOSINE); enm.insert("Arctangent", NODE_MATH_ARCTANGENT); enm.insert("Power", NODE_MATH_POWER); enm.insert("Logarithm", NODE_MATH_LOGARITHM); enm.insert("Minimum", NODE_MATH_MINIMUM); enm.insert("Maximum", NODE_MATH_MAXIMUM); enm.insert("Round", NODE_MATH_ROUND); enm.insert("Less Than", NODE_MATH_LESS_THAN); enm.insert("Greater Than", NODE_MATH_GREATER_THAN); enm.insert("Modulo", NODE_MATH_MODULO); enm.insert("Absolute", NODE_MATH_ABSOLUTE); return enm; } NodeEnum MathNode::type_enum = math_type_init(); bool MathNode::constant_fold(ShaderGraph *, ShaderOutput *socket, ShaderInput *optimized) { ShaderInput *value1_in = input("Value1"); ShaderInput *value2_in = input("Value2"); if(socket == output("Value")) { if(value1_in->link == NULL && value2_in->link == NULL) { float value = svm_math(type, value1_in->value_float(), value2_in->value_float()); if(use_clamp) { value = saturate(value); } optimized->set(value); return true; } } return false; } void MathNode::compile(SVMCompiler& compiler) { ShaderInput *value1_in = input("Value1"); ShaderInput *value2_in = input("Value2"); ShaderOutput *value_out = output("Value"); compiler.add_node(NODE_MATH, type, compiler.stack_assign(value1_in), compiler.stack_assign(value2_in)); compiler.add_node(NODE_MATH, compiler.stack_assign(value_out)); if(use_clamp) { compiler.add_node(NODE_MATH, NODE_MATH_CLAMP, compiler.stack_assign(value_out)); compiler.add_node(NODE_MATH, compiler.stack_assign(value_out)); } } void MathNode::compile(OSLCompiler& compiler) { compiler.parameter("type", type_enum[type]); compiler.parameter("use_clamp", use_clamp); compiler.add(this, "node_math"); } /* VectorMath */ VectorMathNode::VectorMathNode() : ShaderNode("vector_math") { type = NODE_VECTOR_MATH_ADD; add_input("Vector1", SocketType::VECTOR); add_input("Vector2", SocketType::VECTOR); add_output("Value", SocketType::FLOAT); add_output("Vector", SocketType::VECTOR); } static NodeEnum vector_math_type_init() { NodeEnum enm; enm.insert("Add", NODE_VECTOR_MATH_ADD); enm.insert("Subtract", NODE_VECTOR_MATH_SUBTRACT); enm.insert("Average", NODE_VECTOR_MATH_AVERAGE); enm.insert("Dot Product", NODE_VECTOR_MATH_DOT_PRODUCT); enm.insert("Cross Product", NODE_VECTOR_MATH_CROSS_PRODUCT); enm.insert("Normalize", NODE_VECTOR_MATH_NORMALIZE); return enm; } NodeEnum VectorMathNode::type_enum = vector_math_type_init(); bool VectorMathNode::constant_fold(ShaderGraph *, ShaderOutput *socket, ShaderInput *optimized) { ShaderInput *vector1_in = input("Vector1"); ShaderInput *vector2_in = input("Vector2"); float value; float3 vector; if(vector1_in->link == NULL && vector2_in->link == NULL) { svm_vector_math(&value, &vector, type, vector1_in->value(), vector2_in->value()); if(socket == output("Value")) { optimized->set(value); return true; } else if(socket == output("Vector")) { optimized->set(vector); return true; } } return false; } void VectorMathNode::compile(SVMCompiler& compiler) { ShaderInput *vector1_in = input("Vector1"); ShaderInput *vector2_in = input("Vector2"); ShaderOutput *value_out = output("Value"); ShaderOutput *vector_out = output("Vector"); compiler.add_node(NODE_VECTOR_MATH, type, compiler.stack_assign(vector1_in), compiler.stack_assign(vector2_in)); compiler.add_node(NODE_VECTOR_MATH, compiler.stack_assign(value_out), compiler.stack_assign(vector_out)); } void VectorMathNode::compile(OSLCompiler& compiler) { compiler.parameter("type", type_enum[type]); compiler.add(this, "node_vector_math"); } /* VectorTransform */ VectorTransformNode::VectorTransformNode() : ShaderNode("vector_transform") { type = NODE_VECTOR_TRANSFORM_TYPE_VECTOR; convert_from = NODE_VECTOR_TRANSFORM_CONVERT_SPACE_WORLD; convert_to = NODE_VECTOR_TRANSFORM_CONVERT_SPACE_OBJECT; add_input("Vector", SocketType::VECTOR); add_output("Vector", SocketType::VECTOR); } static NodeEnum vector_transform_type_init() { NodeEnum enm; enm.insert("Vector", NODE_VECTOR_TRANSFORM_TYPE_VECTOR); enm.insert("Point", NODE_VECTOR_TRANSFORM_TYPE_POINT); enm.insert("Normal", NODE_VECTOR_TRANSFORM_TYPE_NORMAL); return enm; } static NodeEnum vector_transform_convert_space_init() { NodeEnum enm; enm.insert("world", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_WORLD); enm.insert("object", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_OBJECT); enm.insert("camera", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_CAMERA); return enm; } NodeEnum VectorTransformNode::type_enum = vector_transform_type_init(); NodeEnum VectorTransformNode::convert_space_enum = vector_transform_convert_space_init(); void VectorTransformNode::compile(SVMCompiler& compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *vector_out = output("Vector"); compiler.add_node(NODE_VECTOR_TRANSFORM, compiler.encode_uchar4(type, convert_from, convert_to), compiler.encode_uchar4(compiler.stack_assign(vector_in), compiler.stack_assign(vector_out))); } void VectorTransformNode::compile(OSLCompiler& compiler) { compiler.parameter("type", type_enum[type]); compiler.parameter("convert_from", convert_space_enum[convert_from]); compiler.parameter("convert_to", convert_space_enum[convert_to]); compiler.add(this, "node_vector_transform"); } /* BumpNode */ BumpNode::BumpNode() : ShaderNode("bump") { invert = false; special_type = SHADER_SPECIAL_TYPE_BUMP; /* this input is used by the user, but after graph transform it is no longer * used and moved to sampler center/x/y instead */ add_input("Height", SocketType::FLOAT); add_input("SampleCenter", SocketType::FLOAT); add_input("SampleX", SocketType::FLOAT); add_input("SampleY", SocketType::FLOAT); add_input("Normal", SocketType::NORMAL, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL); add_input("Strength", SocketType::FLOAT, 1.0f); add_input("Distance", SocketType::FLOAT, 0.1f); add_output("Normal", SocketType::NORMAL); } void BumpNode::compile(SVMCompiler& compiler) { ShaderInput *center_in = input("SampleCenter"); ShaderInput *dx_in = input("SampleX"); ShaderInput *dy_in = input("SampleY"); ShaderInput *normal_in = input("Normal"); ShaderInput *strength_in = input("Strength"); ShaderInput *distance_in = input("Distance"); ShaderOutput *normal_out = output("Normal"); /* pack all parameters in the node */ compiler.add_node(NODE_SET_BUMP, compiler.encode_uchar4( compiler.stack_assign_if_linked(normal_in), compiler.stack_assign(distance_in), invert), compiler.encode_uchar4( compiler.stack_assign(center_in), compiler.stack_assign(dx_in), compiler.stack_assign(dy_in), compiler.stack_assign(strength_in)), compiler.stack_assign(normal_out)); } void BumpNode::compile(OSLCompiler& compiler) { compiler.parameter("invert", invert); compiler.add(this, "node_bump"); } bool BumpNode::constant_fold(ShaderGraph *graph, ShaderOutput *, ShaderInput *) { ShaderInput *height_in = input("Height"); ShaderInput *normal_in = input("Normal"); if(height_in->link == NULL) { if(normal_in->link == NULL) { GeometryNode *geom = new GeometryNode(); graph->add(geom); graph->relink(this, outputs[0], geom->output("Normal")); } else { graph->relink(this, outputs[0], normal_in->link); } return true; } /* TODO(sergey): Ignore bump with zero strength. */ return false; } /* RGBCurvesNode */ RGBCurvesNode::RGBCurvesNode() : ShaderNode("rgb_curves") { add_input("Fac", SocketType::FLOAT); add_input("Color", SocketType::COLOR); add_output("Color", SocketType::COLOR); min_x = 0.0f; max_x = 1.0f; } void RGBCurvesNode::compile(SVMCompiler& compiler) { if(curves.size() == 0) return; ShaderInput *fac_in = input("Fac"); ShaderInput *color_in = input("Color"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_RGB_CURVES, compiler.encode_uchar4(compiler.stack_assign(fac_in), compiler.stack_assign(color_in), compiler.stack_assign(color_out)), __float_as_int(min_x), __float_as_int(max_x)); compiler.add_node(curves.size()); for(int i = 0; i < curves.size(); i++) compiler.add_node(float3_to_float4(curves[i])); } void RGBCurvesNode::compile(OSLCompiler& compiler) { if(curves.size() == 0) return; compiler.parameter_color_array("ramp", curves); compiler.parameter("min_x", min_x); compiler.parameter("max_x", max_x); compiler.add(this, "node_rgb_curves"); } /* VectorCurvesNode */ VectorCurvesNode::VectorCurvesNode() : ShaderNode("vector_curves") { add_input("Fac", SocketType::FLOAT); add_input("Vector", SocketType::VECTOR); add_output("Vector", SocketType::VECTOR); min_x = 0.0f; max_x = 1.0f; } void VectorCurvesNode::compile(SVMCompiler& compiler) { if(curves.size() == 0) return; ShaderInput *fac_in = input("Fac"); ShaderInput *vector_in = input("Vector"); ShaderOutput *vector_out = output("Vector"); compiler.add_node(NODE_VECTOR_CURVES, compiler.encode_uchar4(compiler.stack_assign(fac_in), compiler.stack_assign(vector_in), compiler.stack_assign(vector_out)), __float_as_int(min_x), __float_as_int(max_x)); compiler.add_node(curves.size()); for(int i = 0; i < curves.size(); i++) compiler.add_node(float3_to_float4(curves[i])); } void VectorCurvesNode::compile(OSLCompiler& compiler) { if(curves.size() == 0) return; compiler.parameter_color_array("ramp", curves); compiler.parameter("min_x", min_x); compiler.parameter("max_x", max_x); compiler.add(this, "node_vector_curves"); } /* RGBRampNode */ RGBRampNode::RGBRampNode() : ShaderNode("rgb_ramp") { add_input("Fac", SocketType::FLOAT); add_output("Color", SocketType::COLOR); add_output("Alpha", SocketType::FLOAT); interpolate = true; } void RGBRampNode::compile(SVMCompiler& compiler) { if(ramp.size() == 0 || ramp.size() != ramp_alpha.size()) return; ShaderInput *fac_in = input("Fac"); ShaderOutput *color_out = output("Color"); ShaderOutput *alpha_out = output("Alpha"); compiler.add_node(NODE_RGB_RAMP, compiler.encode_uchar4( compiler.stack_assign(fac_in), compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(alpha_out)), interpolate); compiler.add_node(ramp.size()); for(int i = 0; i < ramp.size(); i++) compiler.add_node(make_float4(ramp[i].x, ramp[i].y, ramp[i].z, ramp_alpha[i])); } void RGBRampNode::compile(OSLCompiler& compiler) { if(ramp.size() == 0 || ramp.size() != ramp_alpha.size()) return; compiler.parameter_color_array("ramp_color", ramp); compiler.parameter_array("ramp_alpha", ramp_alpha.data(), ramp_alpha.size()); compiler.parameter("interpolate", interpolate); compiler.add(this, "node_rgb_ramp"); } /* Set Normal Node */ SetNormalNode::SetNormalNode() : ShaderNode("set_normal") { add_input("Direction", SocketType::VECTOR); add_output("Normal", SocketType::NORMAL); } void SetNormalNode::compile(SVMCompiler& compiler) { ShaderInput *direction_in = input("Direction"); ShaderOutput *normal_out = output("Normal"); compiler.add_node(NODE_CLOSURE_SET_NORMAL, compiler.stack_assign(direction_in), compiler.stack_assign(normal_out)); } void SetNormalNode::compile(OSLCompiler& compiler) { compiler.add(this, "node_set_normal"); } /* OSLNode */ OSLNode::OSLNode() : ShaderNode("osl_shader") { special_type = SHADER_SPECIAL_TYPE_SCRIPT; } OSLNode::~OSLNode() { } OSLNode* OSLNode::create(size_t) { return new OSLNode(); } void OSLNode::compile(SVMCompiler&) { /* doesn't work for SVM, obviously ... */ } void OSLNode::compile(OSLCompiler& compiler) { if(!filepath.empty()) compiler.add(this, filepath.c_str(), true); else compiler.add(this, bytecode_hash.c_str(), false); } /* Normal Map */ static NodeEnum normal_map_space_init() { NodeEnum enm; enm.insert("Tangent", NODE_NORMAL_MAP_TANGENT); enm.insert("Object", NODE_NORMAL_MAP_OBJECT); enm.insert("World", NODE_NORMAL_MAP_WORLD); enm.insert("Blender Object", NODE_NORMAL_MAP_BLENDER_OBJECT); enm.insert("Blender World", NODE_NORMAL_MAP_BLENDER_WORLD); return enm; } NodeEnum NormalMapNode::space_enum = normal_map_space_init(); NormalMapNode::NormalMapNode() : ShaderNode("normal_map") { space = NODE_NORMAL_MAP_TANGENT; attribute = ustring(""); add_input("NormalIn", SocketType::NORMAL, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL); add_input("Strength", SocketType::FLOAT, 1.0f); add_input("Color", SocketType::COLOR); add_output("Normal", SocketType::NORMAL); } void NormalMapNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if(shader->has_surface && space == NODE_NORMAL_MAP_TANGENT) { if(attribute == ustring("")) { attributes->add(ATTR_STD_UV_TANGENT); attributes->add(ATTR_STD_UV_TANGENT_SIGN); } else { attributes->add(ustring((string(attribute.c_str()) + ".tangent").c_str())); attributes->add(ustring((string(attribute.c_str()) + ".tangent_sign").c_str())); } attributes->add(ATTR_STD_VERTEX_NORMAL); } ShaderNode::attributes(shader, attributes); } void NormalMapNode::compile(SVMCompiler& compiler) { ShaderInput *color_in = input("Color"); ShaderInput *strength_in = input("Strength"); ShaderOutput *normal_out = output("Normal"); int attr = 0, attr_sign = 0; if(space == NODE_NORMAL_MAP_TANGENT) { if(attribute == ustring("")) { attr = compiler.attribute(ATTR_STD_UV_TANGENT); attr_sign = compiler.attribute(ATTR_STD_UV_TANGENT_SIGN); } else { attr = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent").c_str())); attr_sign = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent_sign").c_str())); } } compiler.add_node(NODE_NORMAL_MAP, compiler.encode_uchar4( compiler.stack_assign(color_in), compiler.stack_assign(strength_in), compiler.stack_assign(normal_out), space), attr, attr_sign); } void NormalMapNode::compile(OSLCompiler& compiler) { if(space == NODE_NORMAL_MAP_TANGENT) { if(attribute == ustring("")) { compiler.parameter("attr_name", ustring("geom:tangent")); compiler.parameter("attr_sign_name", ustring("geom:tangent_sign")); } else { compiler.parameter("attr_name", ustring((string(attribute.c_str()) + ".tangent").c_str())); compiler.parameter("attr_sign_name", ustring((string(attribute.c_str()) + ".tangent_sign").c_str())); } } compiler.parameter("space", space_enum[space]); compiler.add(this, "node_normal_map"); } /* Tangent */ static NodeEnum tangent_direction_type_init() { NodeEnum enm; enm.insert("Radial", NODE_TANGENT_RADIAL); enm.insert("UV Map", NODE_TANGENT_UVMAP); return enm; } static NodeEnum tangent_axis_init() { NodeEnum enm; enm.insert("X", NODE_TANGENT_AXIS_X); enm.insert("Y", NODE_TANGENT_AXIS_Y); enm.insert("Z", NODE_TANGENT_AXIS_Z); return enm; } NodeEnum TangentNode::direction_type_enum = tangent_direction_type_init(); NodeEnum TangentNode::axis_enum = tangent_axis_init(); TangentNode::TangentNode() : ShaderNode("tangent") { direction_type = NODE_TANGENT_RADIAL; axis = NODE_TANGENT_AXIS_X; attribute = ustring(""); add_input("NormalIn", SocketType::NORMAL, make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL); add_output("Tangent", SocketType::NORMAL); } void TangentNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if(shader->has_surface) { if(direction_type == NODE_TANGENT_UVMAP) { if(attribute == ustring("")) attributes->add(ATTR_STD_UV_TANGENT); else attributes->add(ustring((string(attribute.c_str()) + ".tangent").c_str())); } else attributes->add(ATTR_STD_GENERATED); } ShaderNode::attributes(shader, attributes); } void TangentNode::compile(SVMCompiler& compiler) { ShaderOutput *tangent_out = output("Tangent"); int attr; if(direction_type == NODE_TANGENT_UVMAP) { if(attribute == ustring("")) attr = compiler.attribute(ATTR_STD_UV_TANGENT); else attr = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent").c_str())); } else attr = compiler.attribute(ATTR_STD_GENERATED); compiler.add_node(NODE_TANGENT, compiler.encode_uchar4( compiler.stack_assign(tangent_out), direction_type, axis), attr); } void TangentNode::compile(OSLCompiler& compiler) { if(direction_type == NODE_TANGENT_UVMAP) { if(attribute == ustring("")) compiler.parameter("attr_name", ustring("geom:tangent")); else compiler.parameter("attr_name", ustring((string(attribute.c_str()) + ".tangent").c_str())); } compiler.parameter("direction_type", direction_type_enum[direction_type]); compiler.parameter("axis", axis_enum[axis]); compiler.add(this, "node_tangent"); } CCL_NAMESPACE_END