/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "camera.h" #include "device.h" #include "light.h" #include "mesh.h" #include "curves.h" #include "object.h" #include "particles.h" #include "scene.h" #include "util_foreach.h" #include "util_logging.h" #include "util_map.h" #include "util_progress.h" #include "util_vector.h" #include "subd_patch_table.h" CCL_NAMESPACE_BEGIN /* Object */ NODE_DEFINE(Object) { NodeType* type = NodeType::add("object", create); SOCKET_NODE(mesh, "Mesh", &Mesh::node_type); SOCKET_TRANSFORM(tfm, "Transform", transform_identity()); SOCKET_UINT(visibility, "Visibility", ~0); SOCKET_UINT(random_id, "Random ID", 0); SOCKET_INT(pass_id, "Pass ID", 0); SOCKET_BOOLEAN(use_holdout, "Use Holdout", false); SOCKET_BOOLEAN(hide_on_missing_motion, "Hide on Missing Motion", false); SOCKET_POINT(dupli_generated, "Dupli Generated", make_float3(0.0f, 0.0f, 0.0f)); SOCKET_POINT2(dupli_uv, "Dupli UV", make_float2(0.0f, 0.0f)); return type; } Object::Object() : Node(node_type) { particle_system = NULL; particle_index = 0; bounds = BoundBox::empty; motion.pre = transform_empty(); motion.mid = transform_empty(); motion.post = transform_empty(); use_motion = false; } Object::~Object() { } void Object::compute_bounds(bool motion_blur) { BoundBox mbounds = mesh->bounds; if(motion_blur && use_motion) { MotionTransform mtfm = motion; if(hide_on_missing_motion) { /* Hide objects that have no valid previous or next transform, for * example particle that stop existing. TODO: add support for this * case in the kernel so we don't get render artifacts. */ if(mtfm.pre == transform_empty() || mtfm.post == transform_empty()) { bounds = BoundBox::empty; return; } } /* In case of missing motion information for previous/next frame, * assume there is no motion. */ if(mtfm.pre == transform_empty()) { mtfm.pre = tfm; } if(mtfm.post == transform_empty()) { mtfm.post = tfm; } DecompMotionTransform decomp; transform_motion_decompose(&decomp, &mtfm, &tfm); bounds = BoundBox::empty; /* todo: this is really terrible. according to pbrt there is a better * way to find this iteratively, but did not find implementation yet * or try to implement myself */ for(float t = 0.0f; t < 1.0f; t += (1.0f/128.0f)) { Transform ttfm; transform_motion_interpolate(&ttfm, &decomp, t); bounds.grow(mbounds.transformed(&ttfm)); } } else { if(mesh->transform_applied) { bounds = mbounds; } else { bounds = mbounds.transformed(&tfm); } } } void Object::apply_transform(bool apply_to_motion) { if(!mesh || tfm == transform_identity()) return; /* triangles */ if(mesh->verts.size()) { /* store matrix to transform later. when accessing these as attributes we * do not want the transform to be applied for consistency between static * and dynamic BVH, so we do it on packing. */ mesh->transform_normal = transform_transpose(transform_inverse(tfm)); /* apply to mesh vertices */ for(size_t i = 0; i < mesh->verts.size(); i++) mesh->verts[i] = transform_point(&tfm, mesh->verts[i]); if(apply_to_motion) { Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if(attr) { size_t steps_size = mesh->verts.size() * (mesh->motion_steps - 1); float3 *vert_steps = attr->data_float3(); for(size_t i = 0; i < steps_size; i++) vert_steps[i] = transform_point(&tfm, vert_steps[i]); } Attribute *attr_N = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL); if(attr_N) { Transform ntfm = mesh->transform_normal; size_t steps_size = mesh->verts.size() * (mesh->motion_steps - 1); float3 *normal_steps = attr_N->data_float3(); for(size_t i = 0; i < steps_size; i++) normal_steps[i] = normalize(transform_direction(&ntfm, normal_steps[i])); } } } /* curves */ if(mesh->curve_keys.size()) { /* compute uniform scale */ float3 c0 = transform_get_column(&tfm, 0); float3 c1 = transform_get_column(&tfm, 1); float3 c2 = transform_get_column(&tfm, 2); float scalar = powf(fabsf(dot(cross(c0, c1), c2)), 1.0f/3.0f); /* apply transform to curve keys */ for(size_t i = 0; i < mesh->curve_keys.size(); i++) { float3 co = transform_point(&tfm, mesh->curve_keys[i]); float radius = mesh->curve_radius[i] * scalar; /* scale for curve radius is only correct for uniform scale */ mesh->curve_keys[i] = co; mesh->curve_radius[i] = radius; } if(apply_to_motion) { Attribute *curve_attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if(curve_attr) { /* apply transform to motion curve keys */ size_t steps_size = mesh->curve_keys.size() * (mesh->motion_steps - 1); float4 *key_steps = curve_attr->data_float4(); for(size_t i = 0; i < steps_size; i++) { float3 co = transform_point(&tfm, float4_to_float3(key_steps[i])); float radius = key_steps[i].w * scalar; /* scale for curve radius is only correct for uniform scale */ key_steps[i] = float3_to_float4(co); key_steps[i].w = radius; } } } } /* we keep normals pointing in same direction on negative scale, notify * mesh about this in it (re)calculates normals */ if(transform_negative_scale(tfm)) mesh->transform_negative_scaled = true; if(bounds.valid()) { mesh->compute_bounds(); compute_bounds(false); } /* tfm is not reset to identity, all code that uses it needs to check the * transform_applied boolean */ } void Object::tag_update(Scene *scene) { if(mesh) { if(mesh->transform_applied) mesh->need_update = true; foreach(Shader *shader, mesh->used_shaders) { if(shader->use_mis && shader->has_surface_emission) scene->light_manager->need_update = true; } } scene->camera->need_flags_update = true; scene->curve_system_manager->need_update = true; scene->mesh_manager->need_update = true; scene->object_manager->need_update = true; } vector Object::motion_times() { /* compute times at which we sample motion for this object */ vector times; if(!mesh || mesh->motion_steps == 1) return times; int motion_steps = mesh->motion_steps; for(int step = 0; step < motion_steps; step++) { if(step != motion_steps / 2) { float time = 2.0f * step / (motion_steps - 1) - 1.0f; times.push_back(time); } } return times; } bool Object::is_traceable() { /* Mesh itself can be empty,can skip all such objects. */ if(!bounds.valid() || bounds.size() == make_float3(0.0f, 0.0f, 0.0f)) { return false; } /* TODO(sergey): Check for mesh vertices/curves. visibility flags. */ return true; } /* Object Manager */ ObjectManager::ObjectManager() { need_update = true; need_flags_update = true; } ObjectManager::~ObjectManager() { } void ObjectManager::device_update_object_transform(UpdateObejctTransformState *state, Object *ob, int object_index) { float4 *objects = state->objects; float4 *objects_vector = state->objects_vector; Mesh *mesh = ob->mesh; uint flag = 0; /* Compute transformations. */ Transform tfm = ob->tfm; Transform itfm = transform_inverse(tfm); /* Compute surface area. for uniform scale we can do avoid the many * transform calls and share computation for instances. * * TODO(brecht): Correct for displacement, and move to a better place. */ float uniform_scale; float surface_area = 0.0f; float pass_id = ob->pass_id; float random_number = (float)ob->random_id * (1.0f/(float)0xFFFFFFFF); int particle_index = (ob->particle_system) ? ob->particle_index + state->particle_offset[ob->particle_system] : 0; if(transform_uniform_scale(tfm, uniform_scale)) { map::iterator it; /* NOTE: This isn't fully optimal and could in theory lead to multiple * threads calculating area of the same mesh in parallel. However, this * also prevents suspending all the threads when some mesh's area is * not yet known. */ state->surface_area_lock.lock(); it = state->surface_area_map.find(mesh); state->surface_area_lock.unlock(); if(it == state->surface_area_map.end()) { size_t num_triangles = mesh->num_triangles(); for(size_t j = 0; j < num_triangles; j++) { Mesh::Triangle t = mesh->get_triangle(j); float3 p1 = mesh->verts[t.v[0]]; float3 p2 = mesh->verts[t.v[1]]; float3 p3 = mesh->verts[t.v[2]]; surface_area += triangle_area(p1, p2, p3); } state->surface_area_lock.lock(); state->surface_area_map[mesh] = surface_area; state->surface_area_lock.unlock(); } else { surface_area = it->second; } surface_area *= uniform_scale; } else { size_t num_triangles = mesh->num_triangles(); for(size_t j = 0; j < num_triangles; j++) { Mesh::Triangle t = mesh->get_triangle(j); float3 p1 = transform_point(&tfm, mesh->verts[t.v[0]]); float3 p2 = transform_point(&tfm, mesh->verts[t.v[1]]); float3 p3 = transform_point(&tfm, mesh->verts[t.v[2]]); surface_area += triangle_area(p1, p2, p3); } } /* Pack in texture. */ int offset = object_index*OBJECT_SIZE; /* OBJECT_TRANSFORM */ memcpy(&objects[offset], &tfm, sizeof(float4)*3); /* OBJECT_INVERSE_TRANSFORM */ memcpy(&objects[offset+4], &itfm, sizeof(float4)*3); /* OBJECT_PROPERTIES */ objects[offset+8] = make_float4(surface_area, pass_id, random_number, __int_as_float(particle_index)); if(state->need_motion == Scene::MOTION_PASS) { /* Motion transformations, is world/object space depending if mesh * comes with deformed position in object space, or if we transform * the shading point in world space. */ MotionTransform mtfm = ob->motion; /* In case of missing motion information for previous/next frame, * assume there is no motion. */ if(!ob->use_motion || mtfm.pre == transform_empty()) { mtfm.pre = ob->tfm; } if(!ob->use_motion || mtfm.post == transform_empty()) { mtfm.post = ob->tfm; } if(!mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION)) { mtfm.pre = mtfm.pre * itfm; mtfm.post = mtfm.post * itfm; } else { flag |= SD_OBJECT_HAS_VERTEX_MOTION; } memcpy(&objects_vector[object_index*OBJECT_VECTOR_SIZE+0], &mtfm.pre, sizeof(float4)*3); memcpy(&objects_vector[object_index*OBJECT_VECTOR_SIZE+3], &mtfm.post, sizeof(float4)*3); } #ifdef __OBJECT_MOTION__ else if(state->need_motion == Scene::MOTION_BLUR) { if(ob->use_motion) { /* decompose transformations for interpolation. */ DecompMotionTransform decomp; transform_motion_decompose(&decomp, &ob->motion, &ob->tfm); memcpy(&objects[offset], &decomp, sizeof(float4)*8); flag |= SD_OBJECT_MOTION; state->have_motion = true; } } #endif if(mesh->use_motion_blur) { state->have_motion = true; } /* Dupli object coords and motion info. */ int totalsteps = mesh->motion_steps; int numsteps = (totalsteps - 1)/2; int numverts = mesh->verts.size(); int numkeys = mesh->curve_keys.size(); objects[offset+9] = make_float4(ob->dupli_generated[0], ob->dupli_generated[1], ob->dupli_generated[2], __int_as_float(numkeys)); objects[offset+10] = make_float4(ob->dupli_uv[0], ob->dupli_uv[1], __int_as_float(numsteps), __int_as_float(numverts)); /* Object flag. */ if(ob->use_holdout) { flag |= SD_OBJECT_HOLDOUT_MASK; } state->object_flag[object_index] = flag; /* Have curves. */ if(mesh->num_curves()) { state->have_curves = true; } } bool ObjectManager::device_update_object_transform_pop_work( UpdateObejctTransformState *state, int *start_index, int *num_objects) { /* Tweakable parameter, number of objects per chunk. * Too small value will cause some extra overhead due to spin lock, * too big value might not use all threads nicely. */ static const int OBJECTS_PER_TASK = 32; bool have_work = false; state->queue_lock.lock(); int num_scene_objects = state->scene->objects.size(); if(state->queue_start_object < num_scene_objects) { int count = min(OBJECTS_PER_TASK, num_scene_objects - state->queue_start_object); *start_index = state->queue_start_object; *num_objects = count; state->queue_start_object += count; have_work = true; } state->queue_lock.unlock(); return have_work; } void ObjectManager::device_update_object_transform_task( UpdateObejctTransformState *state) { int start_index, num_objects; while(device_update_object_transform_pop_work(state, &start_index, &num_objects)) { for(int i = 0; i < num_objects; ++i) { const int object_index = start_index + i; Object *ob = state->scene->objects[object_index]; device_update_object_transform(state, ob, object_index); } } } void ObjectManager::device_update_transforms(Device *device, DeviceScene *dscene, Scene *scene, uint *object_flag, Progress& progress) { UpdateObejctTransformState state; state.need_motion = scene->need_motion(device->info.advanced_shading); state.have_motion = false; state.have_curves = false; state.scene = scene; state.queue_start_object = 0; state.object_flag = object_flag; state.objects = dscene->objects.resize(OBJECT_SIZE*scene->objects.size()); if(state.need_motion == Scene::MOTION_PASS) { state.objects_vector = dscene->objects_vector.resize(OBJECT_VECTOR_SIZE*scene->objects.size()); } else { state.objects_vector = NULL; } /* Particle system device offsets * 0 is dummy particle, index starts at 1. */ int numparticles = 1; foreach(ParticleSystem *psys, scene->particle_systems) { state.particle_offset[psys] = numparticles; numparticles += psys->particles.size(); } /* NOTE: If it's just a handful of objects we deal with them in a single * thread to avoid threading overhead. However, this threshold is might * need some tweaks to make mid-complex scenes optimal. */ if(scene->objects.size() < 64) { int object_index = 0; foreach(Object *ob, scene->objects) { device_update_object_transform(&state, ob, object_index); object_index++; if(progress.get_cancel()) { return; } } } else { const int num_threads = TaskScheduler::num_threads(); TaskPool pool; for(int i = 0; i < num_threads; ++i) { pool.push(function_bind( &ObjectManager::device_update_object_transform_task, this, &state)); } pool.wait_work(); if(progress.get_cancel()) { return; } } device->tex_alloc("__objects", dscene->objects); if(state.need_motion == Scene::MOTION_PASS) { device->tex_alloc("__objects_vector", dscene->objects_vector); } dscene->data.bvh.have_motion = state.have_motion; dscene->data.bvh.have_curves = state.have_curves; dscene->data.bvh.have_instancing = true; } void ObjectManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress) { if(!need_update) return; VLOG(1) << "Total " << scene->objects.size() << " objects."; device_free(device, dscene); if(scene->objects.size() == 0) return; /* object info flag */ uint *object_flag = dscene->object_flag.resize(scene->objects.size()); /* set object transform matrices, before applying static transforms */ progress.set_status("Updating Objects", "Copying Transformations to device"); device_update_transforms(device, dscene, scene, object_flag, progress); if(progress.get_cancel()) return; /* prepare for static BVH building */ /* todo: do before to support getting object level coords? */ if(scene->params.bvh_type == SceneParams::BVH_STATIC) { progress.set_status("Updating Objects", "Applying Static Transformations"); apply_static_transforms(dscene, scene, object_flag, progress); } } void ObjectManager::device_update_flags(Device *device, DeviceScene *dscene, Scene *scene, Progress& /*progress*/, bool bounds_valid) { if(!need_update && !need_flags_update) return; need_update = false; need_flags_update = false; if(scene->objects.size() == 0) return; /* object info flag */ uint *object_flag = dscene->object_flag.get_data(); vector volume_objects; bool has_volume_objects = false; foreach(Object *object, scene->objects) { if(object->mesh->has_volume) { if(bounds_valid) { volume_objects.push_back(object); } has_volume_objects = true; } } int object_index = 0; foreach(Object *object, scene->objects) { if(object->mesh->has_volume) { object_flag[object_index] |= SD_OBJECT_HAS_VOLUME; } else { object_flag[object_index] &= ~SD_OBJECT_HAS_VOLUME; } if(bounds_valid) { foreach(Object *volume_object, volume_objects) { if(object == volume_object) { continue; } if(object->bounds.intersects(volume_object->bounds)) { object_flag[object_index] |= SD_OBJECT_INTERSECTS_VOLUME; break; } } } else if(has_volume_objects) { /* Not really valid, but can't make more reliable in the case * of bounds not being up to date. */ object_flag[object_index] |= SD_OBJECT_INTERSECTS_VOLUME; } ++object_index; } /* allocate object flag */ device->tex_alloc("__object_flag", dscene->object_flag); } void ObjectManager::device_update_patch_map_offsets(Device *device, DeviceScene *dscene, Scene *scene) { if(scene->objects.size() == 0) { return; } uint4* objects = (uint4*)dscene->objects.get_data(); bool update = false; int object_index = 0; foreach(Object *object, scene->objects) { int offset = object_index*OBJECT_SIZE + 11; Mesh* mesh = object->mesh; if(mesh->patch_table) { uint patch_map_offset = 2*(mesh->patch_table_offset + mesh->patch_table->total_size() - mesh->patch_table->num_nodes * PATCH_NODE_SIZE) - mesh->patch_offset; if(objects[offset].x != patch_map_offset) { objects[offset].x = patch_map_offset; update = true; } } object_index++; } if(update) { device->tex_free(dscene->objects); device->tex_alloc("__objects", dscene->objects); } } void ObjectManager::device_free(Device *device, DeviceScene *dscene) { device->tex_free(dscene->objects); dscene->objects.clear(); device->tex_free(dscene->objects_vector); dscene->objects_vector.clear(); device->tex_free(dscene->object_flag); dscene->object_flag.clear(); } void ObjectManager::apply_static_transforms(DeviceScene *dscene, Scene *scene, uint *object_flag, Progress& progress) { /* todo: normals and displacement should be done before applying transform! */ /* todo: create objects/meshes in right order! */ /* counter mesh users */ map mesh_users; #ifdef __OBJECT_MOTION__ Scene::MotionType need_motion = scene->need_motion(); bool motion_blur = need_motion == Scene::MOTION_BLUR; bool apply_to_motion = need_motion != Scene::MOTION_PASS; #else bool motion_blur = false; bool apply_to_motion = false; #endif int i = 0; bool have_instancing = false; foreach(Object *object, scene->objects) { map::iterator it = mesh_users.find(object->mesh); if(it == mesh_users.end()) mesh_users[object->mesh] = 1; else it->second++; } if(progress.get_cancel()) return; /* apply transforms for objects with single user meshes */ foreach(Object *object, scene->objects) { /* Annoying feedback loop here: we can't use is_instanced() because * it'll use uninitialized transform_applied flag. * * Could be solved by moving reference counter to Mesh. */ if((mesh_users[object->mesh] == 1 && !object->mesh->has_surface_bssrdf) && !object->mesh->has_true_displacement() && object->mesh->subdivision_type == Mesh::SUBDIVISION_NONE) { if(!(motion_blur && object->use_motion)) { if(!object->mesh->transform_applied) { object->apply_transform(apply_to_motion); object->mesh->transform_applied = true; if(progress.get_cancel()) return; } object_flag[i] |= SD_OBJECT_TRANSFORM_APPLIED; if(object->mesh->transform_negative_scaled) object_flag[i] |= SD_OBJECT_NEGATIVE_SCALE_APPLIED; } else have_instancing = true; } else have_instancing = true; i++; } dscene->data.bvh.have_instancing = have_instancing; } void ObjectManager::tag_update(Scene *scene) { need_update = true; scene->curve_system_manager->need_update = true; scene->mesh_manager->need_update = true; scene->light_manager->need_update = true; } CCL_NAMESPACE_END