/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "render/background.h" #include "render/camera.h" #include "device/device.h" #include "render/graph.h" #include "render/integrator.h" #include "render/light.h" #include "render/mesh.h" #include "render/nodes.h" #include "render/object.h" #include "render/osl.h" #include "render/scene.h" #include "render/shader.h" #include "render/svm.h" #include "render/tables.h" #include "util/util_foreach.h" CCL_NAMESPACE_BEGIN thread_mutex ShaderManager::lookup_table_mutex; vector ShaderManager::beckmann_table; bool ShaderManager::beckmann_table_ready = false; /* Beckmann sampling precomputed table, see bsdf_microfacet.h */ /* 2D slope distribution (alpha = 1.0) */ static float beckmann_table_P22(const float slope_x, const float slope_y) { return expf(-(slope_x*slope_x + slope_y*slope_y)); } /* maximal slope amplitude (range that contains 99.99% of the distribution) */ static float beckmann_table_slope_max() { return 6.0; } /* MSVC 2015 needs this ugly hack to prevent a codegen bug on x86 * see T50176 for details */ #if defined(_MSC_VER) && (_MSC_VER == 1900) # define MSVC_VOLATILE volatile #else # define MSVC_VOLATILE #endif /* Paper used: Importance Sampling Microfacet-Based BSDFs with the * Distribution of Visible Normals. Supplemental Material 2/2. * * http://hal.inria.fr/docs/01/00/66/20/ANNEX/supplemental2.pdf */ static void beckmann_table_rows(float *table, int row_from, int row_to) { /* allocate temporary data */ const int DATA_TMP_SIZE = 512; vector slope_x(DATA_TMP_SIZE); vector CDF_P22_omega_i(DATA_TMP_SIZE); /* loop over incident directions */ for(int index_theta = row_from; index_theta < row_to; index_theta++) { /* incident vector */ const float cos_theta = index_theta / (BECKMANN_TABLE_SIZE - 1.0f); const float sin_theta = safe_sqrtf(1.0f - cos_theta*cos_theta); /* for a given incident vector * integrate P22_{omega_i}(x_slope, 1, 1), Eq. (10) */ slope_x[0] = (double)-beckmann_table_slope_max(); CDF_P22_omega_i[0] = 0; for(MSVC_VOLATILE int index_slope_x = 1; index_slope_x < DATA_TMP_SIZE; ++index_slope_x) { /* slope_x */ slope_x[index_slope_x] = (double)(-beckmann_table_slope_max() + 2.0f * beckmann_table_slope_max() * index_slope_x/(DATA_TMP_SIZE - 1.0f)); /* dot product with incident vector */ float dot_product = fmaxf(0.0f, -(float)slope_x[index_slope_x]*sin_theta + cos_theta); /* marginalize P22_{omega_i}(x_slope, 1, 1), Eq. (10) */ float P22_omega_i = 0.0f; for(int j = 0; j < 100; ++j) { float slope_y = -beckmann_table_slope_max() + 2.0f * beckmann_table_slope_max() * j * (1.0f/99.0f); P22_omega_i += dot_product * beckmann_table_P22((float)slope_x[index_slope_x], slope_y); } /* CDF of P22_{omega_i}(x_slope, 1, 1), Eq. (10) */ CDF_P22_omega_i[index_slope_x] = CDF_P22_omega_i[index_slope_x - 1] + (double)P22_omega_i; } /* renormalize CDF_P22_omega_i */ for(int index_slope_x = 1; index_slope_x < DATA_TMP_SIZE; ++index_slope_x) CDF_P22_omega_i[index_slope_x] /= CDF_P22_omega_i[DATA_TMP_SIZE - 1]; /* loop over random number U1 */ int index_slope_x = 0; for(int index_U = 0; index_U < BECKMANN_TABLE_SIZE; ++index_U) { const double U = 0.0000001 + 0.9999998 * index_U / (double)(BECKMANN_TABLE_SIZE - 1); /* inverse CDF_P22_omega_i, solve Eq.(11) */ while(CDF_P22_omega_i[index_slope_x] <= U) ++index_slope_x; const double interp = (CDF_P22_omega_i[index_slope_x] - U) / (CDF_P22_omega_i[index_slope_x] - CDF_P22_omega_i[index_slope_x - 1]); /* store value */ table[index_U + index_theta*BECKMANN_TABLE_SIZE] = (float)( interp * slope_x[index_slope_x - 1] + (1.0 - interp) * slope_x[index_slope_x]); } } } #undef MSVC_VOLATILE static void beckmann_table_build(vector& table) { table.resize(BECKMANN_TABLE_SIZE*BECKMANN_TABLE_SIZE); /* multithreaded build */ TaskPool pool; for(int i = 0; i < BECKMANN_TABLE_SIZE; i+=8) pool.push(function_bind(&beckmann_table_rows, &table[0], i, i+8)); pool.wait_work(); } /* Shader */ NODE_DEFINE(Shader) { NodeType* type = NodeType::add("shader", create); SOCKET_BOOLEAN(use_mis, "Use MIS", true); SOCKET_BOOLEAN(use_transparent_shadow, "Use Transparent Shadow", true); SOCKET_BOOLEAN(heterogeneous_volume, "Heterogeneous Volume", true); static NodeEnum volume_sampling_method_enum; volume_sampling_method_enum.insert("distance", VOLUME_SAMPLING_DISTANCE); volume_sampling_method_enum.insert("equiangular", VOLUME_SAMPLING_EQUIANGULAR); volume_sampling_method_enum.insert("multiple_importance", VOLUME_SAMPLING_MULTIPLE_IMPORTANCE); SOCKET_ENUM(volume_sampling_method, "Volume Sampling Method", volume_sampling_method_enum, VOLUME_SAMPLING_DISTANCE); static NodeEnum volume_interpolation_method_enum; volume_interpolation_method_enum.insert("linear", VOLUME_INTERPOLATION_LINEAR); volume_interpolation_method_enum.insert("cubic", VOLUME_INTERPOLATION_CUBIC); SOCKET_ENUM(volume_interpolation_method, "Volume Interpolation Method", volume_interpolation_method_enum, VOLUME_INTERPOLATION_LINEAR); static NodeEnum displacement_method_enum; displacement_method_enum.insert("bump", DISPLACE_BUMP); displacement_method_enum.insert("true", DISPLACE_TRUE); displacement_method_enum.insert("both", DISPLACE_BOTH); SOCKET_ENUM(displacement_method, "Displacement Method", displacement_method_enum, DISPLACE_BUMP); return type; } Shader::Shader() : Node(node_type) { pass_id = 0; graph = NULL; has_surface = false; has_surface_transparent = false; has_surface_emission = false; has_surface_bssrdf = false; has_volume = false; has_displacement = false; has_bump = false; has_bssrdf_bump = false; has_surface_spatial_varying = false; has_volume_spatial_varying = false; has_object_dependency = false; has_integrator_dependency = false; has_volume_connected = false; displacement_method = DISPLACE_BUMP; id = -1; used = false; need_update = true; need_update_attributes = true; } Shader::~Shader() { delete graph; } bool Shader::is_constant_emission(float3 *emission) { ShaderInput *surf = graph->output()->input("Surface"); if(!surf->link || surf->link->parent->type != EmissionNode::node_type) { return false; } EmissionNode *node = (EmissionNode*) surf->link->parent; assert(node->input("Color")); assert(node->input("Strength")); if(node->input("Color")->link || node->input("Strength")->link) { return false; } *emission = node->color*node->strength; return true; } void Shader::set_graph(ShaderGraph *graph_) { /* do this here already so that we can detect if mesh or object attributes * are needed, since the node attribute callbacks check if their sockets * are connected but proxy nodes should not count */ if(graph_) graph_->remove_proxy_nodes(); /* assign graph */ delete graph; graph = graph_; /* Store info here before graph optimization to make sure that * nodes that get optimized away still count. */ has_volume_connected = (graph->output()->input("Volume")->link != NULL); } void Shader::tag_update(Scene *scene) { /* update tag */ need_update = true; scene->shader_manager->need_update = true; /* if the shader previously was emissive, update light distribution, * if the new shader is emissive, a light manager update tag will be * done in the shader manager device update. */ if(use_mis && has_surface_emission) scene->light_manager->need_update = true; /* Special handle of background MIS light for now: for some reason it * has use_mis set to false. We are quite close to release now, so * better to be safe. */ if(this == scene->default_background && scene->light_manager->has_background_light(scene)) { scene->light_manager->need_update = true; } /* quick detection of which kind of shaders we have to avoid loading * e.g. surface attributes when there is only a volume shader. this could * be more fine grained but it's better than nothing */ OutputNode *output = graph->output(); bool prev_has_volume = has_volume; has_surface = has_surface || output->input("Surface")->link; has_volume = has_volume || output->input("Volume")->link; has_displacement = has_displacement || output->input("Displacement")->link; /* get requested attributes. this could be optimized by pruning unused * nodes here already, but that's the job of the shader manager currently, * and may not be so great for interactive rendering where you temporarily * disconnect a node */ AttributeRequestSet prev_attributes = attributes; attributes.clear(); foreach(ShaderNode *node, graph->nodes) node->attributes(this, &attributes); if(has_displacement && displacement_method == DISPLACE_BOTH) { attributes.add(ATTR_STD_POSITION_UNDISPLACED); } /* compare if the attributes changed, mesh manager will check * need_update_attributes, update the relevant meshes and clear it. */ if(attributes.modified(prev_attributes)) { need_update_attributes = true; scene->mesh_manager->need_update = true; } if(has_volume != prev_has_volume) { scene->mesh_manager->need_flags_update = true; scene->object_manager->need_flags_update = true; } } void Shader::tag_used(Scene *scene) { /* if an unused shader suddenly gets used somewhere, it needs to be * recompiled because it was skipped for compilation before */ if(!used) { need_update = true; scene->shader_manager->need_update = true; } } /* Shader Manager */ ShaderManager::ShaderManager() { need_update = true; beckmann_table_offset = TABLE_OFFSET_INVALID; } ShaderManager::~ShaderManager() { } ShaderManager *ShaderManager::create(Scene *scene, int shadingsystem) { ShaderManager *manager; (void)shadingsystem; /* Ignored when built without OSL. */ #ifdef WITH_OSL if(shadingsystem == SHADINGSYSTEM_OSL) { manager = new OSLShaderManager(); } else #endif { manager = new SVMShaderManager(); } add_default(scene); return manager; } uint ShaderManager::get_attribute_id(ustring name) { thread_scoped_spin_lock lock(attribute_lock_); /* get a unique id for each name, for SVM attribute lookup */ AttributeIDMap::iterator it = unique_attribute_id.find(name); if(it != unique_attribute_id.end()) return it->second; uint id = (uint)ATTR_STD_NUM + unique_attribute_id.size(); unique_attribute_id[name] = id; return id; } uint ShaderManager::get_attribute_id(AttributeStandard std) { return (uint)std; } int ShaderManager::get_shader_id(Shader *shader, bool smooth) { /* get a shader id to pass to the kernel */ int id = shader->id; /* smooth flag */ if(smooth) id |= SHADER_SMOOTH_NORMAL; /* default flags */ id |= SHADER_CAST_SHADOW|SHADER_AREA_LIGHT; return id; } void ShaderManager::device_update_shaders_used(Scene *scene) { /* figure out which shaders are in use, so SVM/OSL can skip compiling them * for speed and avoid loading image textures into memory */ uint id = 0; foreach(Shader *shader, scene->shaders) { shader->used = false; shader->id = id++; } scene->default_surface->used = true; scene->default_light->used = true; scene->default_background->used = true; scene->default_empty->used = true; if(scene->background->shader) scene->background->shader->used = true; foreach(Mesh *mesh, scene->meshes) foreach(Shader *shader, mesh->used_shaders) shader->used = true; foreach(Light *light, scene->lights) if(light->shader) light->shader->used = true; } void ShaderManager::device_update_common(Device *device, DeviceScene *dscene, Scene *scene, Progress& /*progress*/) { device->tex_free(dscene->shader_flag); dscene->shader_flag.clear(); if(scene->shaders.size() == 0) return; uint shader_flag_size = scene->shaders.size()*SHADER_SIZE; uint *shader_flag = dscene->shader_flag.resize(shader_flag_size); uint i = 0; bool has_volumes = false; bool has_transparent_shadow = false; foreach(Shader *shader, scene->shaders) { uint flag = 0; if(shader->use_mis) flag |= SD_USE_MIS; if(shader->has_surface_transparent && shader->use_transparent_shadow) flag |= SD_HAS_TRANSPARENT_SHADOW; if(shader->has_volume) { flag |= SD_HAS_VOLUME; has_volumes = true; /* todo: this could check more fine grained, to skip useless volumes * enclosed inside an opaque bsdf. */ flag |= SD_HAS_TRANSPARENT_SHADOW; } /* in this case we can assume transparent surface */ if(shader->has_volume_connected && !shader->has_surface) flag |= SD_HAS_ONLY_VOLUME; if(shader->heterogeneous_volume && shader->has_volume_spatial_varying) flag |= SD_HETEROGENEOUS_VOLUME; if(shader->has_bssrdf_bump) flag |= SD_HAS_BSSRDF_BUMP; if(shader->volume_sampling_method == VOLUME_SAMPLING_EQUIANGULAR) flag |= SD_VOLUME_EQUIANGULAR; if(shader->volume_sampling_method == VOLUME_SAMPLING_MULTIPLE_IMPORTANCE) flag |= SD_VOLUME_MIS; if(shader->volume_interpolation_method == VOLUME_INTERPOLATION_CUBIC) flag |= SD_VOLUME_CUBIC; if(shader->has_bump) flag |= SD_HAS_BUMP; if(shader->displacement_method != DISPLACE_BUMP) flag |= SD_HAS_DISPLACEMENT; /* constant emission check */ float3 constant_emission = make_float3(0.0f, 0.0f, 0.0f); if(shader->is_constant_emission(&constant_emission)) flag |= SD_HAS_CONSTANT_EMISSION; /* regular shader */ shader_flag[i++] = flag; shader_flag[i++] = shader->pass_id; shader_flag[i++] = __float_as_int(constant_emission.x); shader_flag[i++] = __float_as_int(constant_emission.y); shader_flag[i++] = __float_as_int(constant_emission.z); has_transparent_shadow |= (flag & SD_HAS_TRANSPARENT_SHADOW) != 0; } device->tex_alloc("__shader_flag", dscene->shader_flag); /* lookup tables */ KernelTables *ktables = &dscene->data.tables; /* beckmann lookup table */ if(beckmann_table_offset == TABLE_OFFSET_INVALID) { if(!beckmann_table_ready) { thread_scoped_lock lock(lookup_table_mutex); if(!beckmann_table_ready) { beckmann_table_build(beckmann_table); beckmann_table_ready = true; } } beckmann_table_offset = scene->lookup_tables->add_table(dscene, beckmann_table); } ktables->beckmann_offset = (int)beckmann_table_offset; /* integrator */ KernelIntegrator *kintegrator = &dscene->data.integrator; kintegrator->use_volumes = has_volumes; /* TODO(sergey): De-duplicate with flags set in integrator.cpp. */ kintegrator->transparent_shadows = has_transparent_shadow; } void ShaderManager::device_free_common(Device *device, DeviceScene *dscene, Scene *scene) { scene->lookup_tables->remove_table(&beckmann_table_offset); device->tex_free(dscene->shader_flag); dscene->shader_flag.clear(); } void ShaderManager::add_default(Scene *scene) { /* default surface */ { ShaderGraph *graph = new ShaderGraph(); DiffuseBsdfNode *diffuse = new DiffuseBsdfNode(); diffuse->color = make_float3(0.8f, 0.8f, 0.8f); graph->add(diffuse); graph->connect(diffuse->output("BSDF"), graph->output()->input("Surface")); Shader *shader = new Shader(); shader->name = "default_surface"; shader->graph = graph; scene->shaders.push_back(shader); scene->default_surface = shader; } /* default light */ { ShaderGraph *graph = new ShaderGraph(); EmissionNode *emission = new EmissionNode(); emission->color = make_float3(0.8f, 0.8f, 0.8f); emission->strength = 0.0f; graph->add(emission); graph->connect(emission->output("Emission"), graph->output()->input("Surface")); Shader *shader = new Shader(); shader->name = "default_light"; shader->graph = graph; scene->shaders.push_back(shader); scene->default_light = shader; } /* default background */ { ShaderGraph *graph = new ShaderGraph(); Shader *shader = new Shader(); shader->name = "default_background"; shader->graph = graph; scene->shaders.push_back(shader); scene->default_background = shader; } /* default empty */ { ShaderGraph *graph = new ShaderGraph(); Shader *shader = new Shader(); shader->name = "default_empty"; shader->graph = graph; scene->shaders.push_back(shader); scene->default_empty = shader; } } void ShaderManager::get_requested_graph_features(ShaderGraph *graph, DeviceRequestedFeatures *requested_features) { foreach(ShaderNode *node, graph->nodes) { requested_features->max_nodes_group = max(requested_features->max_nodes_group, node->get_group()); requested_features->nodes_features |= node->get_feature(); if(node->special_type == SHADER_SPECIAL_TYPE_CLOSURE) { BsdfNode *bsdf_node = static_cast(node); if(CLOSURE_IS_VOLUME(bsdf_node->closure)) { requested_features->nodes_features |= NODE_FEATURE_VOLUME; } else if(CLOSURE_IS_PRINCIPLED(bsdf_node->closure)) { requested_features->use_principled = true; } } if(node->has_surface_bssrdf()) { requested_features->use_subsurface = true; } if(node->has_surface_transparent()) { requested_features->use_transparent = true; } } } void ShaderManager::get_requested_features(Scene *scene, DeviceRequestedFeatures *requested_features) { requested_features->max_nodes_group = NODE_GROUP_LEVEL_0; requested_features->nodes_features = 0; for(int i = 0; i < scene->shaders.size(); i++) { Shader *shader = scene->shaders[i]; /* Gather requested features from all the nodes from the graph nodes. */ get_requested_graph_features(shader->graph, requested_features); ShaderNode *output_node = shader->graph->output(); if(output_node->input("Displacement")->link != NULL) { requested_features->nodes_features |= NODE_FEATURE_BUMP; if(shader->displacement_method == DISPLACE_BOTH && requested_features->experimental) { requested_features->nodes_features |= NODE_FEATURE_BUMP_STATE; } } /* On top of volume nodes, also check if we need volume sampling because * e.g. an Emission node would slip through the NODE_FEATURE_VOLUME check */ if(shader->has_volume) requested_features->use_volume |= true; } } void ShaderManager::free_memory() { beckmann_table.free_memory(); } CCL_NAMESPACE_END