/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tile.h" #include "util_algorithm.h" #include "util_types.h" CCL_NAMESPACE_BEGIN namespace { class TileComparator { public: TileComparator(TileOrder order, int2 center) : order_(order), center_(center) {} bool operator()(Tile &a, Tile &b) { switch(order_) { case TILE_CENTER: { float2 dist_a = make_float2(center_.x - (a.x + a.w/2), center_.y - (a.y + a.h/2)); float2 dist_b = make_float2(center_.x - (b.x + b.w/2), center_.y - (b.y + b.h/2)); return dot(dist_a, dist_a) < dot(dist_b, dist_b); } case TILE_LEFT_TO_RIGHT: return (a.x == b.x)? (a.y < b.y): (a.x < b.x); case TILE_RIGHT_TO_LEFT: return (a.x == b.x)? (a.y < b.y): (a.x > b.x); case TILE_TOP_TO_BOTTOM: return (a.y == b.y)? (a.x < b.x): (a.y > b.y); case TILE_BOTTOM_TO_TOP: default: return (a.y == b.y)? (a.x < b.x): (a.y < b.y); } } protected: TileOrder order_; int2 center_; }; } /* namespace */ TileManager::TileManager(bool progressive_, int num_samples_, int2 tile_size_, int start_resolution_, bool preserve_tile_device_, bool background_, TileOrder tile_order_, int num_devices_) { progressive = progressive_; tile_size = tile_size_; tile_order = tile_order_; start_resolution = start_resolution_; num_samples = num_samples_; num_devices = num_devices_; preserve_tile_device = preserve_tile_device_; background = background_; BufferParams buffer_params; reset(buffer_params, 0); } TileManager::~TileManager() { } void TileManager::reset(BufferParams& params_, int num_samples_) { params = params_; int divider = 1; int w = params.width, h = params.height; if(start_resolution != INT_MAX) { while(w*h > start_resolution*start_resolution) { w = max(1, w/2); h = max(1, h/2); divider *= 2; } } num_samples = num_samples_; state.buffer = BufferParams(); state.sample = -1; state.num_tiles = 0; state.num_rendered_tiles = 0; state.num_samples = 0; state.resolution_divider = divider; state.tiles.clear(); } void TileManager::set_samples(int num_samples_) { num_samples = num_samples_; } /* If sliced is false, splits image into tiles and assigns equal amount of tiles to every render device. * If sliced is true, slice image into as much pieces as how many devices are rendering this image. */ int TileManager::gen_tiles(bool sliced) { int resolution = state.resolution_divider; int image_w = max(1, params.width/resolution); int image_h = max(1, params.height/resolution); int2 center = make_int2(image_w/2, image_h/2); state.tiles.clear(); int num_logical_devices = preserve_tile_device? num_devices: 1; int num = min(image_h, num_logical_devices); int slice_num = sliced? num: 1; int tile_index = 0; state.tiles.clear(); state.tiles.resize(num); vector >::iterator tile_list = state.tiles.begin(); for(int slice = 0; slice < slice_num; slice++) { int slice_y = (image_h/slice_num)*slice; int slice_h = (slice == slice_num-1)? image_h - slice*(image_h/slice_num): image_h/slice_num; int tile_w = (tile_size.x >= image_w)? 1: (image_w + tile_size.x - 1)/tile_size.x; int tile_h = (tile_size.y >= slice_h)? 1: (slice_h + tile_size.y - 1)/tile_size.y; int tiles_per_device = (tile_w * tile_h + num - 1) / num; int cur_device = 0, cur_tiles = 0; for(int tile_y = 0; tile_y < tile_h; tile_y++) { for(int tile_x = 0; tile_x < tile_w; tile_x++, tile_index++) { int x = tile_x * tile_size.x; int y = tile_y * tile_size.y; int w = (tile_x == tile_w-1)? image_w - x: tile_size.x; int h = (tile_y == tile_h-1)? slice_h - y: tile_size.y; tile_list->push_back(Tile(tile_index, x, y + slice_y, w, h, sliced? slice: cur_device)); if(!sliced) { cur_tiles++; if(cur_tiles == tiles_per_device) { tile_list->sort(TileComparator(tile_order, center)); tile_list++; cur_tiles = 0; cur_device++; } } } } } return tile_index; } void TileManager::set_tiles() { int resolution = state.resolution_divider; int image_w = max(1, params.width/resolution); int image_h = max(1, params.height/resolution); state.num_tiles = gen_tiles(!background); state.buffer.width = image_w; state.buffer.height = image_h; state.buffer.full_x = params.full_x/resolution; state.buffer.full_y = params.full_y/resolution; state.buffer.full_width = max(1, params.full_width/resolution); state.buffer.full_height = max(1, params.full_height/resolution); } bool TileManager::next_tile(Tile& tile, int device) { int logical_device = preserve_tile_device? device: 0; if((logical_device >= state.tiles.size()) || state.tiles[logical_device].empty()) return false; tile = Tile(state.tiles[logical_device].front()); state.tiles[logical_device].pop_front(); state.num_rendered_tiles++; return true; } bool TileManager::done() { return (state.sample+state.num_samples >= num_samples && state.resolution_divider == 1); } bool TileManager::next() { if(done()) return false; if(progressive && state.resolution_divider > 1) { state.sample = 0; state.resolution_divider /= 2; state.num_samples = 1; set_tiles(); } else { state.sample++; if(progressive) state.num_samples = 1; else state.num_samples = num_samples; state.resolution_divider = 1; set_tiles(); } return true; } CCL_NAMESPACE_END