/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "render/tile.h" #include "util/util_algorithm.h" #include "util/util_types.h" CCL_NAMESPACE_BEGIN namespace { class TileComparator { public: TileComparator(TileOrder order_, int2 center_, Tile *tiles_) : order(order_), center(center_), tiles(tiles_) {} bool operator()(int a, int b) { switch(order) { case TILE_CENTER: { float2 dist_a = make_float2(center.x - (tiles[a].x + tiles[a].w/2), center.y - (tiles[a].y + tiles[a].h/2)); float2 dist_b = make_float2(center.x - (tiles[b].x + tiles[b].w/2), center.y - (tiles[b].y + tiles[b].h/2)); return dot(dist_a, dist_a) < dot(dist_b, dist_b); } case TILE_LEFT_TO_RIGHT: return (tiles[a].x == tiles[b].x)? (tiles[a].y < tiles[b].y): (tiles[a].x < tiles[b].x); case TILE_RIGHT_TO_LEFT: return (tiles[a].x == tiles[b].x)? (tiles[a].y < tiles[b].y): (tiles[a].x > tiles[b].x); case TILE_TOP_TO_BOTTOM: return (tiles[a].y == tiles[b].y)? (tiles[a].x < tiles[b].x): (tiles[a].y > tiles[b].y); case TILE_BOTTOM_TO_TOP: default: return (tiles[a].y == tiles[b].y)? (tiles[a].x < tiles[b].x): (tiles[a].y < tiles[b].y); } } protected: TileOrder order; int2 center; Tile *tiles; }; inline int2 hilbert_index_to_pos(int n, int d) { int2 r, xy = make_int2(0, 0); for(int s = 1; s < n; s *= 2) { r.x = (d >> 1) & 1; r.y = (d ^ r.x) & 1; if(!r.y) { if(r.x) { xy = make_int2(s-1, s-1) - xy; } swap(xy.x, xy.y); } xy += r*make_int2(s, s); d >>= 2; } return xy; } enum SpiralDirection { DIRECTION_UP, DIRECTION_LEFT, DIRECTION_DOWN, DIRECTION_RIGHT, }; } /* namespace */ TileManager::TileManager(bool progressive_, int num_samples_, int2 tile_size_, int start_resolution_, bool preserve_tile_device_, bool background_, TileOrder tile_order_, int num_devices_, int pixel_size_) { progressive = progressive_; tile_size = tile_size_; tile_order = tile_order_; start_resolution = start_resolution_; pixel_size = pixel_size_; num_samples = num_samples_; num_devices = num_devices_; preserve_tile_device = preserve_tile_device_; background = background_; schedule_denoising = false; range_start_sample = 0; range_num_samples = -1; BufferParams buffer_params; reset(buffer_params, 0); } TileManager::~TileManager() { } void TileManager::free_device() { if(schedule_denoising) { for(int i = 0; i < state.tiles.size(); i++) { delete state.tiles[i].buffers; state.tiles[i].buffers = NULL; } } } static int get_divider(int w, int h, int start_resolution) { int divider = 1; if(start_resolution != INT_MAX) { while(w*h > start_resolution*start_resolution) { w = max(1, w/2); h = max(1, h/2); divider <<= 1; } } return divider; } void TileManager::reset(BufferParams& params_, int num_samples_) { params = params_; set_samples(num_samples_); state.buffer = BufferParams(); state.sample = range_start_sample - 1; state.num_tiles = 0; state.num_samples = 0; state.resolution_divider = get_divider(params.width, params.height, start_resolution); state.render_tiles.clear(); state.denoising_tiles.clear(); state.tiles.clear(); } void TileManager::set_samples(int num_samples_) { num_samples = num_samples_; /* No real progress indication is possible when using unlimited samples. */ if(num_samples == INT_MAX) { state.total_pixel_samples = 0; } else { uint64_t pixel_samples = 0; /* While rendering in the viewport, the initial preview resolution is increased to the native resolution * before the actual rendering begins. Therefore, additional pixel samples will be rendered. */ int divider = max(get_divider(params.width, params.height, start_resolution) / 2, pixel_size); while(divider > pixel_size) { int image_w = max(1, params.width/divider); int image_h = max(1, params.height/divider); pixel_samples += image_w * image_h; divider >>= 1; } int image_w = max(1, params.width/divider); int image_h = max(1, params.height/divider); state.total_pixel_samples = pixel_samples + (uint64_t)get_num_effective_samples() * image_w*image_h; if(schedule_denoising) { state.total_pixel_samples += params.width*params.height; } } } /* If sliced is false, splits image into tiles and assigns equal amount of tiles to every render device. * If sliced is true, slice image into as much pieces as how many devices are rendering this image. */ int TileManager::gen_tiles(bool sliced) { int resolution = state.resolution_divider; int image_w = max(1, params.width/resolution); int image_h = max(1, params.height/resolution); int2 center = make_int2(image_w/2, image_h/2); int num_logical_devices = preserve_tile_device? num_devices: 1; int num = min(image_h, num_logical_devices); int slice_num = sliced? num: 1; int tile_w = (tile_size.x >= image_w) ? 1 : divide_up(image_w, tile_size.x); state.tiles.clear(); state.render_tiles.clear(); state.denoising_tiles.clear(); state.render_tiles.resize(num); state.denoising_tiles.resize(num); state.tile_stride = tile_w; vector >::iterator tile_list; tile_list = state.render_tiles.begin(); if(tile_order == TILE_HILBERT_SPIRAL) { assert(!sliced); int tile_h = (tile_size.y >= image_h) ? 1 : divide_up(image_h, tile_size.y); state.tiles.resize(tile_w*tile_h); /* Size of blocks in tiles, must be a power of 2 */ const int hilbert_size = (max(tile_size.x, tile_size.y) <= 12)? 8: 4; int tiles_per_device = divide_up(tile_w * tile_h, num); int cur_device = 0, cur_tiles = 0; int2 block_size = tile_size * make_int2(hilbert_size, hilbert_size); /* Number of blocks to fill the image */ int blocks_x = (block_size.x >= image_w)? 1: divide_up(image_w, block_size.x); int blocks_y = (block_size.y >= image_h)? 1: divide_up(image_h, block_size.y); int n = max(blocks_x, blocks_y) | 0x1; /* Side length of the spiral (must be odd) */ /* Offset of spiral (to keep it centered) */ int2 offset = make_int2((image_w - n*block_size.x)/2, (image_h - n*block_size.y)/2); offset = (offset / tile_size) * tile_size; /* Round to tile border. */ int2 block = make_int2(0, 0); /* Current block */ SpiralDirection prev_dir = DIRECTION_UP, dir = DIRECTION_UP; for(int i = 0;;) { /* Generate the tiles in the current block. */ for(int hilbert_index = 0; hilbert_index < hilbert_size*hilbert_size; hilbert_index++) { int2 tile, hilbert_pos = hilbert_index_to_pos(hilbert_size, hilbert_index); /* Rotate block according to spiral direction. */ if(prev_dir == DIRECTION_UP && dir == DIRECTION_UP) { tile = make_int2(hilbert_pos.y, hilbert_pos.x); } else if(dir == DIRECTION_LEFT || prev_dir == DIRECTION_LEFT) { tile = hilbert_pos; } else if(dir == DIRECTION_DOWN) { tile = make_int2(hilbert_size-1-hilbert_pos.y, hilbert_size-1-hilbert_pos.x); } else { tile = make_int2(hilbert_size-1-hilbert_pos.x, hilbert_size-1-hilbert_pos.y); } int2 pos = block*block_size + tile*tile_size + offset; /* Only add tiles which are in the image (tiles outside of the image can be generated since the spiral is always square). */ if(pos.x >= 0 && pos.y >= 0 && pos.x < image_w && pos.y < image_h) { int w = min(tile_size.x, image_w - pos.x); int h = min(tile_size.y, image_h - pos.y); int2 ipos = pos / tile_size; int idx = ipos.y*tile_w + ipos.x; state.tiles[idx] = Tile(idx, pos.x, pos.y, w, h, cur_device, Tile::RENDER); tile_list->push_front(idx); cur_tiles++; if(cur_tiles == tiles_per_device) { tile_list++; cur_tiles = 0; cur_device++; } } } /* Stop as soon as the spiral has reached the center block. */ if(block.x == (n-1)/2 && block.y == (n-1)/2) break; /* Advance to next block. */ prev_dir = dir; switch(dir) { case DIRECTION_UP: block.y++; if(block.y == (n-i-1)) { dir = DIRECTION_LEFT; } break; case DIRECTION_LEFT: block.x++; if(block.x == (n-i-1)) { dir = DIRECTION_DOWN; } break; case DIRECTION_DOWN: block.y--; if(block.y == i) { dir = DIRECTION_RIGHT; } break; case DIRECTION_RIGHT: block.x--; if(block.x == i+1) { dir = DIRECTION_UP; i++; } break; } } return tile_w*tile_h; } int idx = 0; for(int slice = 0; slice < slice_num; slice++) { int slice_y = (image_h/slice_num)*slice; int slice_h = (slice == slice_num-1)? image_h - slice*(image_h/slice_num): image_h/slice_num; int tile_h = (tile_size.y >= slice_h)? 1: divide_up(slice_h, tile_size.y); int tiles_per_device = divide_up(tile_w * tile_h, num); int cur_device = 0, cur_tiles = 0; for(int tile_y = 0; tile_y < tile_h; tile_y++) { for(int tile_x = 0; tile_x < tile_w; tile_x++, idx++) { int x = tile_x * tile_size.x; int y = tile_y * tile_size.y; int w = (tile_x == tile_w-1)? image_w - x: tile_size.x; int h = (tile_y == tile_h-1)? slice_h - y: tile_size.y; state.tiles.push_back(Tile(idx, x, y + slice_y, w, h, sliced? slice: cur_device, Tile::RENDER)); tile_list->push_back(idx); if(!sliced) { cur_tiles++; if(cur_tiles == tiles_per_device) { /* Tiles are already generated in Bottom-to-Top order, so no sort is necessary in that case. */ if(tile_order != TILE_BOTTOM_TO_TOP) { tile_list->sort(TileComparator(tile_order, center, &state.tiles[0])); } tile_list++; cur_tiles = 0; cur_device++; } } } } if(sliced) { tile_list++; } } return idx; } void TileManager::set_tiles() { int resolution = state.resolution_divider; int image_w = max(1, params.width/resolution); int image_h = max(1, params.height/resolution); state.num_tiles = gen_tiles(!background); state.buffer.width = image_w; state.buffer.height = image_h; state.buffer.full_x = params.full_x/resolution; state.buffer.full_y = params.full_y/resolution; state.buffer.full_width = max(1, params.full_width/resolution); state.buffer.full_height = max(1, params.full_height/resolution); } int TileManager::get_neighbor_index(int index, int neighbor) { static const int dx[] = {-1, 0, 1, -1, 1, -1, 0, 1, 0}, dy[] = {-1, -1, -1, 0, 0, 1, 1, 1, 0}; int resolution = state.resolution_divider; int image_w = max(1, params.width/resolution); int image_h = max(1, params.height/resolution); int tile_w = (tile_size.x >= image_w)? 1: divide_up(image_w, tile_size.x); int tile_h = (tile_size.y >= image_h)? 1: divide_up(image_h, tile_size.y); int nx = state.tiles[index].x/tile_size.x + dx[neighbor], ny = state.tiles[index].y/tile_size.y + dy[neighbor]; if(nx < 0 || ny < 0 || nx >= tile_w || ny >= tile_h) return -1; return ny*state.tile_stride + nx; } /* Checks whether all neighbors of a tile (as well as the tile itself) are at least at state min_state. */ bool TileManager::check_neighbor_state(int index, Tile::State min_state) { if(index < 0 || state.tiles[index].state < min_state) { return false; } for(int neighbor = 0; neighbor < 9; neighbor++) { int nindex = get_neighbor_index(index, neighbor); /* Out-of-bounds tiles don't matter. */ if(nindex >= 0 && state.tiles[nindex].state < min_state) { return false; } } return true; } /* Returns whether the tile should be written (and freed if no denoising is used) instead of updating. */ bool TileManager::finish_tile(int index, bool &delete_tile) { delete_tile = false; switch(state.tiles[index].state) { case Tile::RENDER: { if(!schedule_denoising) { state.tiles[index].state = Tile::DONE; delete_tile = true; return true; } state.tiles[index].state = Tile::RENDERED; /* For each neighbor and the tile itself, check whether all of its neighbors have been rendered. If yes, it can be denoised. */ for(int neighbor = 0; neighbor < 9; neighbor++) { int nindex = get_neighbor_index(index, neighbor); if(check_neighbor_state(nindex, Tile::RENDERED)) { state.tiles[nindex].state = Tile::DENOISE; state.denoising_tiles[state.tiles[nindex].device].push_back(nindex); } } return false; } case Tile::DENOISE: { state.tiles[index].state = Tile::DENOISED; /* For each neighbor and the tile itself, check whether all of its neighbors have been denoised. If yes, it can be freed. */ for(int neighbor = 0; neighbor < 9; neighbor++) { int nindex = get_neighbor_index(index, neighbor); if(check_neighbor_state(nindex, Tile::DENOISED)) { state.tiles[nindex].state = Tile::DONE; /* It can happen that the tile just finished denoising and already can be freed here. * However, in that case it still has to be written before deleting, so we can't delete it yet. */ if(neighbor == 8) { delete_tile = true; } else { delete state.tiles[nindex].buffers; state.tiles[nindex].buffers = NULL; } } } return true; } default: assert(false); return true; } } bool TileManager::next_tile(Tile* &tile, int device) { int logical_device = preserve_tile_device? device: 0; if(logical_device >= state.render_tiles.size()) return false; if(!state.denoising_tiles[logical_device].empty()) { int idx = state.denoising_tiles[logical_device].front(); state.denoising_tiles[logical_device].pop_front(); tile = &state.tiles[idx]; return true; } if(state.render_tiles[logical_device].empty()) return false; int idx = state.render_tiles[logical_device].front(); state.render_tiles[logical_device].pop_front(); tile = &state.tiles[idx]; return true; } bool TileManager::done() { int end_sample = (range_num_samples == -1) ? num_samples : range_start_sample + range_num_samples; return (state.resolution_divider == pixel_size) && (state.sample+state.num_samples >= end_sample); } bool TileManager::next() { if(done()) return false; if(progressive && state.resolution_divider > pixel_size) { state.sample = 0; state.resolution_divider = max(state.resolution_divider/2, pixel_size); state.num_samples = 1; set_tiles(); } else { state.sample++; if(progressive) state.num_samples = 1; else if(range_num_samples == -1) state.num_samples = num_samples; else state.num_samples = range_num_samples; state.resolution_divider = pixel_size; set_tiles(); } return true; } int TileManager::get_num_effective_samples() { return (range_num_samples == -1) ? num_samples : range_num_samples; } CCL_NAMESPACE_END