/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "render/tile.h" #include "util/util_algorithm.h" #include "util/util_foreach.h" #include "util/util_types.h" CCL_NAMESPACE_BEGIN namespace { class TileComparator { public: TileComparator(TileOrder order_, int2 center_, Tile *tiles_) : order(order_), center(center_), tiles(tiles_) { } bool operator()(int a, int b) { switch (order) { case TILE_CENTER: { float2 dist_a = make_float2(center.x - (tiles[a].x + tiles[a].w / 2), center.y - (tiles[a].y + tiles[a].h / 2)); float2 dist_b = make_float2(center.x - (tiles[b].x + tiles[b].w / 2), center.y - (tiles[b].y + tiles[b].h / 2)); return dot(dist_a, dist_a) < dot(dist_b, dist_b); } case TILE_LEFT_TO_RIGHT: return (tiles[a].x == tiles[b].x) ? (tiles[a].y < tiles[b].y) : (tiles[a].x < tiles[b].x); case TILE_RIGHT_TO_LEFT: return (tiles[a].x == tiles[b].x) ? (tiles[a].y < tiles[b].y) : (tiles[a].x > tiles[b].x); case TILE_TOP_TO_BOTTOM: return (tiles[a].y == tiles[b].y) ? (tiles[a].x < tiles[b].x) : (tiles[a].y > tiles[b].y); case TILE_BOTTOM_TO_TOP: default: return (tiles[a].y == tiles[b].y) ? (tiles[a].x < tiles[b].x) : (tiles[a].y < tiles[b].y); } } protected: TileOrder order; int2 center; Tile *tiles; }; inline int2 hilbert_index_to_pos(int n, int d) { int2 r, xy = make_int2(0, 0); for (int s = 1; s < n; s *= 2) { r.x = (d >> 1) & 1; r.y = (d ^ r.x) & 1; if (!r.y) { if (r.x) { xy = make_int2(s - 1, s - 1) - xy; } swap(xy.x, xy.y); } xy += r * make_int2(s, s); d >>= 2; } return xy; } enum SpiralDirection { DIRECTION_UP, DIRECTION_LEFT, DIRECTION_DOWN, DIRECTION_RIGHT, }; } /* namespace */ TileManager::TileManager(bool progressive_, int num_samples_, int2 tile_size_, int start_resolution_, bool preserve_tile_device_, bool background_, TileOrder tile_order_, int num_devices_, int pixel_size_) { progressive = progressive_; tile_size = tile_size_; tile_order = tile_order_; start_resolution = start_resolution_; pixel_size = pixel_size_; slice_overlap = 0; num_samples = num_samples_; num_devices = num_devices_; preserve_tile_device = preserve_tile_device_; background = background_; schedule_denoising = false; range_start_sample = 0; range_num_samples = -1; BufferParams buffer_params; reset(buffer_params, 0); } TileManager::~TileManager() { } void TileManager::device_free() { if (schedule_denoising || progressive) { for (int i = 0; i < state.tiles.size(); i++) { delete state.tiles[i].buffers; state.tiles[i].buffers = NULL; } } state.tiles.clear(); } static int get_divider(int w, int h, int start_resolution) { int divider = 1; if (start_resolution != INT_MAX) { while (w * h > start_resolution * start_resolution) { w = max(1, w / 2); h = max(1, h / 2); divider <<= 1; } } return divider; } void TileManager::reset(BufferParams ¶ms_, int num_samples_) { params = params_; set_samples(num_samples_); state.buffer = BufferParams(); state.sample = range_start_sample - 1; state.num_tiles = 0; state.num_samples = 0; state.resolution_divider = get_divider(params.width, params.height, start_resolution); state.render_tiles.clear(); state.denoising_tiles.clear(); device_free(); } void TileManager::set_samples(int num_samples_) { num_samples = num_samples_; /* No real progress indication is possible when using unlimited samples. */ if (num_samples == INT_MAX) { state.total_pixel_samples = 0; } else { uint64_t pixel_samples = 0; /* While rendering in the viewport, the initial preview resolution is increased to the native * resolution before the actual rendering begins. Therefore, additional pixel samples will be * rendered. */ int divider = max(get_divider(params.width, params.height, start_resolution) / 2, pixel_size); while (divider > pixel_size) { int image_w = max(1, params.width / divider); int image_h = max(1, params.height / divider); pixel_samples += image_w * image_h; divider >>= 1; } int image_w = max(1, params.width / divider); int image_h = max(1, params.height / divider); state.total_pixel_samples = pixel_samples + (uint64_t)get_num_effective_samples() * image_w * image_h; if (schedule_denoising) { state.total_pixel_samples += params.width * params.height; } } } /* If sliced is false, splits image into tiles and assigns equal amount of tiles to every render * device. If sliced is true, slice image into as much pieces as how many devices are rendering * this image. */ int TileManager::gen_tiles(bool sliced) { int resolution = state.resolution_divider; int image_w = max(1, params.width / resolution); int image_h = max(1, params.height / resolution); int2 center = make_int2(image_w / 2, image_h / 2); int num = preserve_tile_device || sliced ? min(image_h, num_devices) : 1; int slice_num = sliced ? num : 1; int tile_w = (tile_size.x >= image_w) ? 1 : divide_up(image_w, tile_size.x); device_free(); state.render_tiles.clear(); state.denoising_tiles.clear(); state.render_tiles.resize(num); state.denoising_tiles.resize(num); state.tile_stride = tile_w; vector>::iterator tile_list; tile_list = state.render_tiles.begin(); if (tile_order == TILE_HILBERT_SPIRAL) { assert(!sliced && slice_overlap == 0); int tile_h = (tile_size.y >= image_h) ? 1 : divide_up(image_h, tile_size.y); state.tiles.resize(tile_w * tile_h); /* Size of blocks in tiles, must be a power of 2 */ const int hilbert_size = (max(tile_size.x, tile_size.y) <= 12) ? 8 : 4; int tiles_per_device = divide_up(tile_w * tile_h, num); int cur_device = 0, cur_tiles = 0; int2 block_size = tile_size * make_int2(hilbert_size, hilbert_size); /* Number of blocks to fill the image */ int blocks_x = (block_size.x >= image_w) ? 1 : divide_up(image_w, block_size.x); int blocks_y = (block_size.y >= image_h) ? 1 : divide_up(image_h, block_size.y); int n = max(blocks_x, blocks_y) | 0x1; /* Side length of the spiral (must be odd) */ /* Offset of spiral (to keep it centered) */ int2 offset = make_int2((image_w - n * block_size.x) / 2, (image_h - n * block_size.y) / 2); offset = (offset / tile_size) * tile_size; /* Round to tile border. */ int2 block = make_int2(0, 0); /* Current block */ SpiralDirection prev_dir = DIRECTION_UP, dir = DIRECTION_UP; for (int i = 0;;) { /* Generate the tiles in the current block. */ for (int hilbert_index = 0; hilbert_index < hilbert_size * hilbert_size; hilbert_index++) { int2 tile, hilbert_pos = hilbert_index_to_pos(hilbert_size, hilbert_index); /* Rotate block according to spiral direction. */ if (prev_dir == DIRECTION_UP && dir == DIRECTION_UP) { tile = make_int2(hilbert_pos.y, hilbert_pos.x); } else if (dir == DIRECTION_LEFT || prev_dir == DIRECTION_LEFT) { tile = hilbert_pos; } else if (dir == DIRECTION_DOWN) { tile = make_int2(hilbert_size - 1 - hilbert_pos.y, hilbert_size - 1 - hilbert_pos.x); } else { tile = make_int2(hilbert_size - 1 - hilbert_pos.x, hilbert_size - 1 - hilbert_pos.y); } int2 pos = block * block_size + tile * tile_size + offset; /* Only add tiles which are in the image (tiles outside of the image can be generated since * the spiral is always square). */ if (pos.x >= 0 && pos.y >= 0 && pos.x < image_w && pos.y < image_h) { int w = min(tile_size.x, image_w - pos.x); int h = min(tile_size.y, image_h - pos.y); int2 ipos = pos / tile_size; int idx = ipos.y * tile_w + ipos.x; state.tiles[idx] = Tile(idx, pos.x, pos.y, w, h, cur_device, Tile::RENDER); tile_list->push_front(idx); cur_tiles++; if (cur_tiles == tiles_per_device) { tile_list++; cur_tiles = 0; cur_device++; } } } /* Stop as soon as the spiral has reached the center block. */ if (block.x == (n - 1) / 2 && block.y == (n - 1) / 2) break; /* Advance to next block. */ prev_dir = dir; switch (dir) { case DIRECTION_UP: block.y++; if (block.y == (n - i - 1)) { dir = DIRECTION_LEFT; } break; case DIRECTION_LEFT: block.x++; if (block.x == (n - i - 1)) { dir = DIRECTION_DOWN; } break; case DIRECTION_DOWN: block.y--; if (block.y == i) { dir = DIRECTION_RIGHT; } break; case DIRECTION_RIGHT: block.x--; if (block.x == i + 1) { dir = DIRECTION_UP; i++; } break; } } return tile_w * tile_h; } int idx = 0; for (int slice = 0; slice < slice_num; slice++) { int slice_y = (image_h / slice_num) * slice; int slice_h = (slice == slice_num - 1) ? image_h - slice * (image_h / slice_num) : image_h / slice_num; if (slice_overlap != 0) { int slice_y_offset = max(slice_y - slice_overlap, 0); slice_h = min(slice_y + slice_h + slice_overlap, image_h) - slice_y_offset; slice_y = slice_y_offset; } int tile_h = (tile_size.y >= slice_h) ? 1 : divide_up(slice_h, tile_size.y); int tiles_per_device = divide_up(tile_w * tile_h, num); int cur_device = 0, cur_tiles = 0; for (int tile_y = 0; tile_y < tile_h; tile_y++) { for (int tile_x = 0; tile_x < tile_w; tile_x++, idx++) { int x = tile_x * tile_size.x; int y = tile_y * tile_size.y; int w = (tile_x == tile_w - 1) ? image_w - x : tile_size.x; int h = (tile_y == tile_h - 1) ? slice_h - y : tile_size.y; state.tiles.push_back( Tile(idx, x, y + slice_y, w, h, sliced ? slice : cur_device, Tile::RENDER)); tile_list->push_back(idx); if (!sliced) { cur_tiles++; if (cur_tiles == tiles_per_device) { /* Tiles are already generated in Bottom-to-Top order, so no sort is necessary in that * case. */ if (tile_order != TILE_BOTTOM_TO_TOP) { tile_list->sort(TileComparator(tile_order, center, &state.tiles[0])); } tile_list++; cur_tiles = 0; cur_device++; } } } } if (sliced) { tile_list++; } } return idx; } void TileManager::gen_render_tiles() { /* Regenerate just the render tiles for progressive render. */ foreach (Tile &tile, state.tiles) { tile.state = Tile::RENDER; state.render_tiles[tile.device].push_back(tile.index); } } void TileManager::set_tiles() { int resolution = state.resolution_divider; int image_w = max(1, params.width / resolution); int image_h = max(1, params.height / resolution); state.num_tiles = gen_tiles(!background); state.buffer.width = image_w; state.buffer.height = image_h; state.buffer.full_x = params.full_x / resolution; state.buffer.full_y = params.full_y / resolution; state.buffer.full_width = max(1, params.full_width / resolution); state.buffer.full_height = max(1, params.full_height / resolution); } int TileManager::get_neighbor_index(int index, int neighbor) { /* Neighbor indices: * 0 1 2 * 3 4 5 * 6 7 8 */ static const int dx[] = {-1, 0, 1, -1, 0, 1, -1, 0, 1}; static const int dy[] = {-1, -1, -1, 0, 0, 0, 1, 1, 1}; int resolution = state.resolution_divider; int image_w = max(1, params.width / resolution); int image_h = max(1, params.height / resolution); int num = min(image_h, num_devices); int slice_num = !background ? num : 1; int slice_h = image_h / slice_num; int tile_w = (tile_size.x >= image_w) ? 1 : divide_up(image_w, tile_size.x); int tile_h = (tile_size.y >= slice_h) ? 1 : divide_up(slice_h, tile_size.y); /* Tiles in the state tile list are always indexed from left to right, top to bottom. */ int nx = (index % tile_w) + dx[neighbor]; int ny = (index / tile_w) + dy[neighbor]; if (nx < 0 || ny < 0 || nx >= tile_w || ny >= tile_h * slice_num) return -1; return ny * state.tile_stride + nx; } /* Checks whether all neighbors of a tile (as well as the tile itself) are at least at state * min_state. */ bool TileManager::check_neighbor_state(int index, Tile::State min_state) { if (index < 0 || state.tiles[index].state < min_state) { return false; } for (int neighbor = 0; neighbor < 9; neighbor++) { int nindex = get_neighbor_index(index, neighbor); /* Out-of-bounds tiles don't matter. */ if (nindex >= 0 && state.tiles[nindex].state < min_state) { return false; } } return true; } /* Returns whether the tile should be written (and freed if no denoising is used) instead of * updating. */ bool TileManager::finish_tile(const int index, const bool need_denoise, bool &delete_tile) { delete_tile = false; switch (state.tiles[index].state) { case Tile::RENDER: { if (!(schedule_denoising && need_denoise)) { state.tiles[index].state = Tile::DONE; delete_tile = !progressive; return true; } state.tiles[index].state = Tile::RENDERED; /* For each neighbor and the tile itself, check whether all of its neighbors have been * rendered. If yes, it can be denoised. */ for (int neighbor = 0; neighbor < 9; neighbor++) { int nindex = get_neighbor_index(index, neighbor); if (check_neighbor_state(nindex, Tile::RENDERED)) { state.tiles[nindex].state = Tile::DENOISE; state.denoising_tiles[state.tiles[nindex].device].push_back(nindex); } } return false; } case Tile::DENOISE: { state.tiles[index].state = Tile::DENOISED; /* For each neighbor and the tile itself, check whether all of its neighbors have been * denoised. If yes, it can be freed. */ for (int neighbor = 0; neighbor < 9; neighbor++) { int nindex = get_neighbor_index(index, neighbor); if (check_neighbor_state(nindex, Tile::DENOISED)) { state.tiles[nindex].state = Tile::DONE; /* Do not delete finished tiles in progressive mode. */ if (!progressive) { /* It can happen that the tile just finished denoising and already can be freed here. * However, in that case it still has to be written before deleting, so we can't delete * it yet. */ if (neighbor == 4) { delete_tile = true; } else { delete state.tiles[nindex].buffers; state.tiles[nindex].buffers = NULL; } } } } return true; } default: assert(false); return true; } } bool TileManager::next_tile(Tile *&tile, int device, uint tile_types) { /* Preserve device if requested, unless this is a separate denoising device that just wants to * grab any available tile. */ const bool preserve_device = preserve_tile_device && device < num_devices; if (tile_types & RenderTile::DENOISE) { int tile_index = -1; int logical_device = preserve_device ? device : 0; while (logical_device < state.denoising_tiles.size()) { if (state.denoising_tiles[logical_device].empty()) { if (preserve_device) { break; } else { logical_device++; continue; } } tile_index = state.denoising_tiles[logical_device].front(); state.denoising_tiles[logical_device].pop_front(); break; } if (tile_index >= 0) { tile = &state.tiles[tile_index]; return true; } } if (tile_types & RenderTile::PATH_TRACE) { int tile_index = -1; int logical_device = preserve_device ? device : 0; while (logical_device < state.render_tiles.size()) { if (state.render_tiles[logical_device].empty()) { if (preserve_device) { break; } else { logical_device++; continue; } } tile_index = state.render_tiles[logical_device].front(); state.render_tiles[logical_device].pop_front(); break; } if (tile_index >= 0) { tile = &state.tiles[tile_index]; return true; } } return false; } bool TileManager::done() { int end_sample = (range_num_samples == -1) ? num_samples : range_start_sample + range_num_samples; return (state.resolution_divider == pixel_size) && (state.sample + state.num_samples >= end_sample); } bool TileManager::has_tiles() { foreach (Tile &tile, state.tiles) { if (tile.state != Tile::DONE) { return true; } } return false; } bool TileManager::next() { if (done()) return false; if (progressive && state.resolution_divider > pixel_size) { state.sample = 0; state.resolution_divider = max(state.resolution_divider / 2, pixel_size); state.num_samples = 1; set_tiles(); } else { state.sample++; if (progressive) state.num_samples = 1; else if (range_num_samples == -1) state.num_samples = num_samples; else state.num_samples = range_num_samples; state.resolution_divider = pixel_size; if (state.sample == range_start_sample) { set_tiles(); } else { gen_render_tiles(); } } return true; } int TileManager::get_num_effective_samples() { return (range_num_samples == -1) ? num_samples : range_num_samples; } CCL_NAMESPACE_END