/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "bvh/build.h" #include "bvh/bvh.h" #include "device/device.h" #include "scene/hair.h" #include "scene/mesh.h" #include "scene/object.h" #include "scene/scene.h" #include "scene/shader_graph.h" #include "subd/patch_table.h" #include "subd/split.h" #include "util/foreach.h" #include "util/log.h" #include "util/progress.h" #include "util/set.h" CCL_NAMESPACE_BEGIN /* Triangle */ void Mesh::Triangle::bounds_grow(const float3 *verts, BoundBox &bounds) const { bounds.grow(verts[v[0]]); bounds.grow(verts[v[1]]); bounds.grow(verts[v[2]]); } void Mesh::Triangle::motion_verts(const float3 *verts, const float3 *vert_steps, size_t num_verts, size_t num_steps, float time, float3 r_verts[3]) const { /* Figure out which steps we need to fetch and their interpolation factor. */ const size_t max_step = num_steps - 1; const size_t step = min((int)(time * max_step), max_step - 1); const float t = time * max_step - step; /* Fetch vertex coordinates. */ float3 curr_verts[3]; float3 next_verts[3]; verts_for_step(verts, vert_steps, num_verts, num_steps, step, curr_verts); verts_for_step(verts, vert_steps, num_verts, num_steps, step + 1, next_verts); /* Interpolate between steps. */ r_verts[0] = (1.0f - t) * curr_verts[0] + t * next_verts[0]; r_verts[1] = (1.0f - t) * curr_verts[1] + t * next_verts[1]; r_verts[2] = (1.0f - t) * curr_verts[2] + t * next_verts[2]; } void Mesh::Triangle::verts_for_step(const float3 *verts, const float3 *vert_steps, size_t num_verts, size_t num_steps, size_t step, float3 r_verts[3]) const { const size_t center_step = ((num_steps - 1) / 2); if (step == center_step) { /* Center step: regular vertex location. */ r_verts[0] = verts[v[0]]; r_verts[1] = verts[v[1]]; r_verts[2] = verts[v[2]]; } else { /* Center step not stored in the attribute array array. */ if (step > center_step) { step--; } size_t offset = step * num_verts; r_verts[0] = vert_steps[offset + v[0]]; r_verts[1] = vert_steps[offset + v[1]]; r_verts[2] = vert_steps[offset + v[2]]; } } float3 Mesh::Triangle::compute_normal(const float3 *verts) const { const float3 &v0 = verts[v[0]]; const float3 &v1 = verts[v[1]]; const float3 &v2 = verts[v[2]]; const float3 norm = cross(v1 - v0, v2 - v0); const float normlen = len(norm); if (normlen == 0.0f) { return make_float3(1.0f, 0.0f, 0.0f); } return norm / normlen; } bool Mesh::Triangle::valid(const float3 *verts) const { return isfinite3_safe(verts[v[0]]) && isfinite3_safe(verts[v[1]]) && isfinite3_safe(verts[v[2]]); } /* SubdFace */ float3 Mesh::SubdFace::normal(const Mesh *mesh) const { float3 v0 = mesh->verts[mesh->subd_face_corners[start_corner + 0]]; float3 v1 = mesh->verts[mesh->subd_face_corners[start_corner + 1]]; float3 v2 = mesh->verts[mesh->subd_face_corners[start_corner + 2]]; return safe_normalize(cross(v1 - v0, v2 - v0)); } /* Mesh */ NODE_DEFINE(Mesh) { NodeType *type = NodeType::add("mesh", create, NodeType::NONE, Geometry::get_node_base_type()); SOCKET_INT_ARRAY(triangles, "Triangles", array()); SOCKET_POINT_ARRAY(verts, "Vertices", array()); SOCKET_INT_ARRAY(shader, "Shader", array()); SOCKET_BOOLEAN_ARRAY(smooth, "Smooth", array()); SOCKET_INT_ARRAY(triangle_patch, "Triangle Patch", array()); SOCKET_POINT2_ARRAY(vert_patch_uv, "Patch UVs", array()); static NodeEnum subdivision_type_enum; subdivision_type_enum.insert("none", SUBDIVISION_NONE); subdivision_type_enum.insert("linear", SUBDIVISION_LINEAR); subdivision_type_enum.insert("catmull_clark", SUBDIVISION_CATMULL_CLARK); SOCKET_ENUM(subdivision_type, "Subdivision Type", subdivision_type_enum, SUBDIVISION_NONE); SOCKET_INT_ARRAY(subd_vert_creases, "Subdivision Vertex Crease", array()); SOCKET_FLOAT_ARRAY( subd_vert_creases_weight, "Subdivision Vertex Crease Weights", array()); SOCKET_INT_ARRAY(subd_creases_edge, "Subdivision Crease Edges", array()); SOCKET_FLOAT_ARRAY(subd_creases_weight, "Subdivision Crease Weights", array()); SOCKET_INT_ARRAY(subd_face_corners, "Subdivision Face Corners", array()); SOCKET_INT_ARRAY(subd_start_corner, "Subdivision Face Start Corner", array()); SOCKET_INT_ARRAY(subd_num_corners, "Subdivision Face Corner Count", array()); SOCKET_INT_ARRAY(subd_shader, "Subdivision Face Shader", array()); SOCKET_BOOLEAN_ARRAY(subd_smooth, "Subdivision Face Smooth", array()); SOCKET_INT_ARRAY(subd_ptex_offset, "Subdivision Face PTex Offset", array()); SOCKET_INT(num_ngons, "NGons Number", 0); /* Subdivisions parameters */ SOCKET_FLOAT(subd_dicing_rate, "Subdivision Dicing Rate", 0.0f) SOCKET_INT(subd_max_level, "Subdivision Dicing Rate", 0); SOCKET_TRANSFORM(subd_objecttoworld, "Subdivision Object Transform", transform_identity()); return type; } SubdParams *Mesh::get_subd_params() { if (subdivision_type == SubdivisionType::SUBDIVISION_NONE) { return nullptr; } if (!subd_params) { subd_params = new SubdParams(this); } subd_params->dicing_rate = subd_dicing_rate; subd_params->max_level = subd_max_level; subd_params->objecttoworld = subd_objecttoworld; return subd_params; } bool Mesh::need_tesselation() { return get_subd_params() && (verts_is_modified() || subd_dicing_rate_is_modified() || subd_objecttoworld_is_modified() || subd_max_level_is_modified()); } Mesh::Mesh(const NodeType *node_type, Type geom_type_) : Geometry(node_type, geom_type_), subd_attributes(this, ATTR_PRIM_SUBD) { vert_offset = 0; patch_offset = 0; face_offset = 0; corner_offset = 0; num_subd_verts = 0; num_subd_faces = 0; num_ngons = 0; subdivision_type = SUBDIVISION_NONE; subd_params = NULL; patch_table = NULL; } Mesh::Mesh() : Mesh(get_node_type(), Geometry::MESH) { } Mesh::~Mesh() { delete patch_table; delete subd_params; } void Mesh::resize_mesh(int numverts, int numtris) { verts.resize(numverts); triangles.resize(numtris * 3); shader.resize(numtris); smooth.resize(numtris); if (get_num_subd_faces()) { triangle_patch.resize(numtris); vert_patch_uv.resize(numverts); } attributes.resize(); } void Mesh::reserve_mesh(int numverts, int numtris) { /* reserve space to add verts and triangles later */ verts.reserve(numverts); triangles.reserve(numtris * 3); shader.reserve(numtris); smooth.reserve(numtris); if (get_num_subd_faces()) { triangle_patch.reserve(numtris); vert_patch_uv.reserve(numverts); } attributes.resize(true); } void Mesh::resize_subd_faces(int numfaces, int num_ngons_, int numcorners) { subd_start_corner.resize(numfaces); subd_num_corners.resize(numfaces); subd_shader.resize(numfaces); subd_smooth.resize(numfaces); subd_ptex_offset.resize(numfaces); subd_face_corners.resize(numcorners); num_ngons = num_ngons_; num_subd_faces = numfaces; subd_attributes.resize(); } void Mesh::reserve_subd_faces(int numfaces, int num_ngons_, int numcorners) { subd_start_corner.reserve(numfaces); subd_num_corners.reserve(numfaces); subd_shader.reserve(numfaces); subd_smooth.reserve(numfaces); subd_ptex_offset.reserve(numfaces); subd_face_corners.reserve(numcorners); num_ngons = num_ngons_; num_subd_faces = numfaces; subd_attributes.resize(true); } void Mesh::reserve_subd_creases(size_t num_creases) { subd_creases_edge.reserve(num_creases * 2); subd_creases_weight.reserve(num_creases); } void Mesh::clear_non_sockets() { Geometry::clear(true); num_subd_verts = 0; num_subd_faces = 0; vert_to_stitching_key_map.clear(); vert_stitching_map.clear(); delete patch_table; patch_table = NULL; } void Mesh::clear(bool preserve_shaders, bool preserve_voxel_data) { Geometry::clear(preserve_shaders); /* clear all verts and triangles */ verts.clear(); triangles.clear(); shader.clear(); smooth.clear(); triangle_patch.clear(); vert_patch_uv.clear(); subd_start_corner.clear(); subd_num_corners.clear(); subd_shader.clear(); subd_smooth.clear(); subd_ptex_offset.clear(); subd_face_corners.clear(); subd_creases_edge.clear(); subd_creases_weight.clear(); subd_attributes.clear(); attributes.clear(preserve_voxel_data); subdivision_type = SubdivisionType::SUBDIVISION_NONE; clear_non_sockets(); } void Mesh::clear(bool preserve_shaders) { clear(preserve_shaders, false); } void Mesh::add_vertex(float3 P) { verts.push_back_reserved(P); tag_verts_modified(); if (get_num_subd_faces()) { vert_patch_uv.push_back_reserved(zero_float2()); tag_vert_patch_uv_modified(); } } void Mesh::add_vertex_slow(float3 P) { verts.push_back_slow(P); tag_verts_modified(); if (get_num_subd_faces()) { vert_patch_uv.push_back_slow(zero_float2()); tag_vert_patch_uv_modified(); } } void Mesh::add_triangle(int v0, int v1, int v2, int shader_, bool smooth_) { triangles.push_back_reserved(v0); triangles.push_back_reserved(v1); triangles.push_back_reserved(v2); shader.push_back_reserved(shader_); smooth.push_back_reserved(smooth_); tag_triangles_modified(); tag_shader_modified(); tag_smooth_modified(); if (get_num_subd_faces()) { triangle_patch.push_back_reserved(-1); tag_triangle_patch_modified(); } } void Mesh::add_subd_face(int *corners, int num_corners, int shader_, bool smooth_) { int start_corner = subd_face_corners.size(); for (int i = 0; i < num_corners; i++) { subd_face_corners.push_back_reserved(corners[i]); } int ptex_offset = 0; // cannot use get_num_subd_faces here as it holds the total number of subd_faces, but we do not // have the total amount of data yet if (subd_shader.size()) { SubdFace s = get_subd_face(subd_shader.size() - 1); ptex_offset = s.ptex_offset + s.num_ptex_faces(); } subd_start_corner.push_back_reserved(start_corner); subd_num_corners.push_back_reserved(num_corners); subd_shader.push_back_reserved(shader_); subd_smooth.push_back_reserved(smooth_); subd_ptex_offset.push_back_reserved(ptex_offset); tag_subd_face_corners_modified(); tag_subd_start_corner_modified(); tag_subd_num_corners_modified(); tag_subd_shader_modified(); tag_subd_smooth_modified(); tag_subd_ptex_offset_modified(); } Mesh::SubdFace Mesh::get_subd_face(size_t index) const { Mesh::SubdFace s; s.shader = subd_shader[index]; s.num_corners = subd_num_corners[index]; s.smooth = subd_smooth[index]; s.ptex_offset = subd_ptex_offset[index]; s.start_corner = subd_start_corner[index]; return s; } void Mesh::add_edge_crease(int v0, int v1, float weight) { subd_creases_edge.push_back_slow(v0); subd_creases_edge.push_back_slow(v1); subd_creases_weight.push_back_slow(weight); tag_subd_creases_edge_modified(); tag_subd_creases_edge_modified(); tag_subd_creases_weight_modified(); } void Mesh::add_vertex_crease(int v, float weight) { assert(v < verts.size()); subd_vert_creases.push_back_slow(v); subd_vert_creases_weight.push_back_slow(weight); tag_subd_vert_creases_modified(); tag_subd_vert_creases_weight_modified(); } void Mesh::copy_center_to_motion_step(const int motion_step) { Attribute *attr_mP = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if (attr_mP) { Attribute *attr_mN = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL); Attribute *attr_N = attributes.find(ATTR_STD_VERTEX_NORMAL); float3 *P = &verts[0]; float3 *N = (attr_N) ? attr_N->data_float3() : NULL; size_t numverts = verts.size(); memcpy(attr_mP->data_float3() + motion_step * numverts, P, sizeof(float3) * numverts); if (attr_mN) memcpy(attr_mN->data_float3() + motion_step * numverts, N, sizeof(float3) * numverts); } } void Mesh::get_uv_tiles(ustring map, unordered_set &tiles) { Attribute *attr, *subd_attr; if (map.empty()) { attr = attributes.find(ATTR_STD_UV); subd_attr = subd_attributes.find(ATTR_STD_UV); } else { attr = attributes.find(map); subd_attr = subd_attributes.find(map); } if (attr) { attr->get_uv_tiles(this, ATTR_PRIM_GEOMETRY, tiles); } if (subd_attr) { subd_attr->get_uv_tiles(this, ATTR_PRIM_SUBD, tiles); } } void Mesh::compute_bounds() { BoundBox bnds = BoundBox::empty; size_t verts_size = verts.size(); if (verts_size > 0) { for (size_t i = 0; i < verts_size; i++) bnds.grow(verts[i]); Attribute *attr = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if (use_motion_blur && attr) { size_t steps_size = verts.size() * (motion_steps - 1); float3 *vert_steps = attr->data_float3(); for (size_t i = 0; i < steps_size; i++) bnds.grow(vert_steps[i]); } if (!bnds.valid()) { bnds = BoundBox::empty; /* skip nan or inf coordinates */ for (size_t i = 0; i < verts_size; i++) bnds.grow_safe(verts[i]); if (use_motion_blur && attr) { size_t steps_size = verts.size() * (motion_steps - 1); float3 *vert_steps = attr->data_float3(); for (size_t i = 0; i < steps_size; i++) bnds.grow_safe(vert_steps[i]); } } } if (!bnds.valid()) { /* empty mesh */ bnds.grow(zero_float3()); } bounds = bnds; } void Mesh::apply_transform(const Transform &tfm, const bool apply_to_motion) { transform_normal = transform_transposed_inverse(tfm); /* apply to mesh vertices */ for (size_t i = 0; i < verts.size(); i++) verts[i] = transform_point(&tfm, verts[i]); tag_verts_modified(); if (apply_to_motion) { Attribute *attr = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); if (attr) { size_t steps_size = verts.size() * (motion_steps - 1); float3 *vert_steps = attr->data_float3(); for (size_t i = 0; i < steps_size; i++) vert_steps[i] = transform_point(&tfm, vert_steps[i]); } Attribute *attr_N = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL); if (attr_N) { Transform ntfm = transform_normal; size_t steps_size = verts.size() * (motion_steps - 1); float3 *normal_steps = attr_N->data_float3(); for (size_t i = 0; i < steps_size; i++) normal_steps[i] = normalize(transform_direction(&ntfm, normal_steps[i])); } } } void Mesh::add_face_normals() { /* don't compute if already there */ if (attributes.find(ATTR_STD_FACE_NORMAL)) return; /* get attributes */ Attribute *attr_fN = attributes.add(ATTR_STD_FACE_NORMAL); float3 *fN = attr_fN->data_float3(); /* compute face normals */ size_t triangles_size = num_triangles(); if (triangles_size) { float3 *verts_ptr = verts.data(); for (size_t i = 0; i < triangles_size; i++) { fN[i] = get_triangle(i).compute_normal(verts_ptr); } } /* expected to be in local space */ if (transform_applied) { Transform ntfm = transform_inverse(transform_normal); for (size_t i = 0; i < triangles_size; i++) fN[i] = normalize(transform_direction(&ntfm, fN[i])); } } void Mesh::add_vertex_normals() { bool flip = transform_negative_scaled; size_t verts_size = verts.size(); size_t triangles_size = num_triangles(); /* static vertex normals */ if (!attributes.find(ATTR_STD_VERTEX_NORMAL) && triangles_size) { /* get attributes */ Attribute *attr_fN = attributes.find(ATTR_STD_FACE_NORMAL); Attribute *attr_vN = attributes.add(ATTR_STD_VERTEX_NORMAL); float3 *fN = attr_fN->data_float3(); float3 *vN = attr_vN->data_float3(); /* compute vertex normals */ memset(vN, 0, verts.size() * sizeof(float3)); for (size_t i = 0; i < triangles_size; i++) { for (size_t j = 0; j < 3; j++) { vN[get_triangle(i).v[j]] += fN[i]; } } for (size_t i = 0; i < verts_size; i++) { vN[i] = normalize(vN[i]); if (flip) { vN[i] = -vN[i]; } } } /* motion vertex normals */ Attribute *attr_mP = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION); Attribute *attr_mN = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL); if (has_motion_blur() && attr_mP && !attr_mN && triangles_size) { /* create attribute */ attr_mN = attributes.add(ATTR_STD_MOTION_VERTEX_NORMAL); for (int step = 0; step < motion_steps - 1; step++) { float3 *mP = attr_mP->data_float3() + step * verts.size(); float3 *mN = attr_mN->data_float3() + step * verts.size(); /* compute */ memset(mN, 0, verts.size() * sizeof(float3)); for (size_t i = 0; i < triangles_size; i++) { for (size_t j = 0; j < 3; j++) { float3 fN = get_triangle(i).compute_normal(mP); mN[get_triangle(i).v[j]] += fN; } } for (size_t i = 0; i < verts_size; i++) { mN[i] = normalize(mN[i]); if (flip) { mN[i] = -mN[i]; } } } } /* subd vertex normals */ if (!subd_attributes.find(ATTR_STD_VERTEX_NORMAL) && get_num_subd_faces()) { /* get attributes */ Attribute *attr_vN = subd_attributes.add(ATTR_STD_VERTEX_NORMAL); float3 *vN = attr_vN->data_float3(); /* compute vertex normals */ memset(vN, 0, verts.size() * sizeof(float3)); for (size_t i = 0; i < get_num_subd_faces(); i++) { SubdFace face = get_subd_face(i); float3 fN = face.normal(this); for (size_t j = 0; j < face.num_corners; j++) { size_t corner = subd_face_corners[face.start_corner + j]; vN[corner] += fN; } } for (size_t i = 0; i < verts_size; i++) { vN[i] = normalize(vN[i]); if (flip) { vN[i] = -vN[i]; } } } } void Mesh::add_undisplaced() { AttributeSet &attrs = (subdivision_type == SUBDIVISION_NONE) ? attributes : subd_attributes; /* don't compute if already there */ if (attrs.find(ATTR_STD_POSITION_UNDISPLACED)) { return; } /* get attribute */ Attribute *attr = attrs.add(ATTR_STD_POSITION_UNDISPLACED); attr->flags |= ATTR_SUBDIVIDED; float3 *data = attr->data_float3(); /* copy verts */ size_t size = attr->buffer_size(this, ATTR_PRIM_GEOMETRY); /* Center points for ngons aren't stored in Mesh::verts but are included in size since they will * be calculated later, we subtract them from size here so we don't have an overflow while * copying. */ size -= num_ngons * attr->data_sizeof(); if (size) { memcpy(data, verts.data(), size); } } void Mesh::pack_shaders(Scene *scene, uint *tri_shader) { uint shader_id = 0; uint last_shader = -1; bool last_smooth = false; size_t triangles_size = num_triangles(); int *shader_ptr = shader.data(); for (size_t i = 0; i < triangles_size; i++) { if (shader_ptr[i] != last_shader || last_smooth != smooth[i]) { last_shader = shader_ptr[i]; last_smooth = smooth[i]; Shader *shader = (last_shader < used_shaders.size()) ? static_cast(used_shaders[last_shader]) : scene->default_surface; shader_id = scene->shader_manager->get_shader_id(shader, last_smooth); } tri_shader[i] = shader_id; } } void Mesh::pack_normals(packed_float3 *vnormal) { Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL); if (attr_vN == NULL) { /* Happens on objects with just hair. */ return; } bool do_transform = transform_applied; Transform ntfm = transform_normal; float3 *vN = attr_vN->data_float3(); size_t verts_size = verts.size(); for (size_t i = 0; i < verts_size; i++) { float3 vNi = vN[i]; if (do_transform) vNi = safe_normalize(transform_direction(&ntfm, vNi)); vnormal[i] = make_float3(vNi.x, vNi.y, vNi.z); } } void Mesh::pack_verts(packed_float3 *tri_verts, uint4 *tri_vindex, uint *tri_patch, float2 *tri_patch_uv) { size_t verts_size = verts.size(); if (verts_size && get_num_subd_faces()) { float2 *vert_patch_uv_ptr = vert_patch_uv.data(); for (size_t i = 0; i < verts_size; i++) { tri_patch_uv[i] = vert_patch_uv_ptr[i]; } } size_t triangles_size = num_triangles(); for (size_t i = 0; i < triangles_size; i++) { const Triangle t = get_triangle(i); tri_vindex[i] = make_uint4( t.v[0] + vert_offset, t.v[1] + vert_offset, t.v[2] + vert_offset, 3 * (prim_offset + i)); tri_patch[i] = (!get_num_subd_faces()) ? -1 : (triangle_patch[i] * 8 + patch_offset); tri_verts[i * 3] = verts[t.v[0]]; tri_verts[i * 3 + 1] = verts[t.v[1]]; tri_verts[i * 3 + 2] = verts[t.v[2]]; } } void Mesh::pack_patches(uint *patch_data) { size_t num_faces = get_num_subd_faces(); int ngons = 0; for (size_t f = 0; f < num_faces; f++) { SubdFace face = get_subd_face(f); if (face.is_quad()) { int c[4]; memcpy(c, &subd_face_corners[face.start_corner], sizeof(int) * 4); *(patch_data++) = c[0] + vert_offset; *(patch_data++) = c[1] + vert_offset; *(patch_data++) = c[2] + vert_offset; *(patch_data++) = c[3] + vert_offset; *(patch_data++) = f + face_offset; *(patch_data++) = face.num_corners; *(patch_data++) = face.start_corner + corner_offset; *(patch_data++) = 0; } else { for (int i = 0; i < face.num_corners; i++) { int c[4]; c[0] = subd_face_corners[face.start_corner + mod(i + 0, face.num_corners)]; c[1] = subd_face_corners[face.start_corner + mod(i + 1, face.num_corners)]; c[2] = verts.size() - num_subd_verts + ngons; c[3] = subd_face_corners[face.start_corner + mod(i - 1, face.num_corners)]; *(patch_data++) = c[0] + vert_offset; *(patch_data++) = c[1] + vert_offset; *(patch_data++) = c[2] + vert_offset; *(patch_data++) = c[3] + vert_offset; *(patch_data++) = f + face_offset; *(patch_data++) = face.num_corners | (i << 16); *(patch_data++) = face.start_corner + corner_offset; *(patch_data++) = subd_face_corners.size() + ngons + corner_offset; } ngons++; } } } PrimitiveType Mesh::primitive_type() const { return has_motion_blur() ? PRIMITIVE_MOTION_TRIANGLE : PRIMITIVE_TRIANGLE; } CCL_NAMESPACE_END