/* SPDX-License-Identifier: Apache-2.0 * Copyright 2011-2022 Blender Foundation */ #include "scene/shader_nodes.h" #include "scene/colorspace.h" #include "scene/constant_fold.h" #include "scene/film.h" #include "scene/image.h" #include "scene/image_sky.h" #include "scene/integrator.h" #include "scene/light.h" #include "scene/mesh.h" #include "scene/osl.h" #include "scene/scene.h" #include "scene/svm.h" #include "sky_model.h" #include "util/color.h" #include "util/foreach.h" #include "util/log.h" #include "util/transform.h" #include "kernel/tables.h" #include "kernel/svm/color_util.h" #include "kernel/svm/mapping_util.h" #include "kernel/svm/math_util.h" #include "kernel/svm/ramp_util.h" CCL_NAMESPACE_BEGIN /* Texture Mapping */ #define TEXTURE_MAPPING_DEFINE(TextureNode) \ SOCKET_POINT(tex_mapping.translation, "Translation", zero_float3()); \ SOCKET_VECTOR(tex_mapping.rotation, "Rotation", zero_float3()); \ SOCKET_VECTOR(tex_mapping.scale, "Scale", one_float3()); \ \ SOCKET_VECTOR(tex_mapping.min, "Min", make_float3(-FLT_MAX, -FLT_MAX, -FLT_MAX)); \ SOCKET_VECTOR(tex_mapping.max, "Max", make_float3(FLT_MAX, FLT_MAX, FLT_MAX)); \ SOCKET_BOOLEAN(tex_mapping.use_minmax, "Use Min Max", false); \ \ static NodeEnum mapping_axis_enum; \ mapping_axis_enum.insert("none", TextureMapping::NONE); \ mapping_axis_enum.insert("x", TextureMapping::X); \ mapping_axis_enum.insert("y", TextureMapping::Y); \ mapping_axis_enum.insert("z", TextureMapping::Z); \ SOCKET_ENUM(tex_mapping.x_mapping, "x_mapping", mapping_axis_enum, TextureMapping::X); \ SOCKET_ENUM(tex_mapping.y_mapping, "y_mapping", mapping_axis_enum, TextureMapping::Y); \ SOCKET_ENUM(tex_mapping.z_mapping, "z_mapping", mapping_axis_enum, TextureMapping::Z); \ \ static NodeEnum mapping_type_enum; \ mapping_type_enum.insert("point", TextureMapping::POINT); \ mapping_type_enum.insert("texture", TextureMapping::TEXTURE); \ mapping_type_enum.insert("vector", TextureMapping::VECTOR); \ mapping_type_enum.insert("normal", TextureMapping::NORMAL); \ SOCKET_ENUM(tex_mapping.type, "Type", mapping_type_enum, TextureMapping::TEXTURE); \ \ static NodeEnum mapping_projection_enum; \ mapping_projection_enum.insert("flat", TextureMapping::FLAT); \ mapping_projection_enum.insert("cube", TextureMapping::CUBE); \ mapping_projection_enum.insert("tube", TextureMapping::TUBE); \ mapping_projection_enum.insert("sphere", TextureMapping::SPHERE); \ SOCKET_ENUM(tex_mapping.projection, "Projection", mapping_projection_enum, TextureMapping::FLAT); TextureMapping::TextureMapping() { } Transform TextureMapping::compute_transform() { Transform mmat = transform_scale(zero_float3()); if (x_mapping != NONE) mmat[0][x_mapping - 1] = 1.0f; if (y_mapping != NONE) mmat[1][y_mapping - 1] = 1.0f; if (z_mapping != NONE) mmat[2][z_mapping - 1] = 1.0f; float3 scale_clamped = scale; if (type == TEXTURE || type == NORMAL) { /* keep matrix invertible */ if (fabsf(scale.x) < 1e-5f) scale_clamped.x = signf(scale.x) * 1e-5f; if (fabsf(scale.y) < 1e-5f) scale_clamped.y = signf(scale.y) * 1e-5f; if (fabsf(scale.z) < 1e-5f) scale_clamped.z = signf(scale.z) * 1e-5f; } Transform smat = transform_scale(scale_clamped); Transform rmat = transform_euler(rotation); Transform tmat = transform_translate(translation); Transform mat; switch (type) { case TEXTURE: /* inverse transform on texture coordinate gives * forward transform on texture */ mat = tmat * rmat * smat; mat = transform_inverse(mat); break; case POINT: /* full transform */ mat = tmat * rmat * smat; break; case VECTOR: /* no translation for vectors */ mat = rmat * smat; break; case NORMAL: /* no translation for normals, and inverse transpose */ mat = rmat * smat; mat = transform_transposed_inverse(mat); break; } /* projection last */ mat = mat * mmat; return mat; } bool TextureMapping::skip() { if (translation != zero_float3()) return false; if (rotation != zero_float3()) return false; if (scale != one_float3()) return false; if (x_mapping != X || y_mapping != Y || z_mapping != Z) return false; if (use_minmax) return false; return true; } void TextureMapping::compile(SVMCompiler &compiler, int offset_in, int offset_out) { compiler.add_node(NODE_TEXTURE_MAPPING, offset_in, offset_out); Transform tfm = compute_transform(); compiler.add_node(tfm.x); compiler.add_node(tfm.y); compiler.add_node(tfm.z); if (use_minmax) { compiler.add_node(NODE_MIN_MAX, offset_out, offset_out); compiler.add_node(float3_to_float4(min)); compiler.add_node(float3_to_float4(max)); } if (type == NORMAL) { compiler.add_node(NODE_VECTOR_MATH, NODE_VECTOR_MATH_NORMALIZE, compiler.encode_uchar4(offset_out, offset_out, offset_out), compiler.encode_uchar4(SVM_STACK_INVALID, offset_out)); } } /* Convenience function for texture nodes, allocating stack space to output * a modified vector and returning its offset */ int TextureMapping::compile_begin(SVMCompiler &compiler, ShaderInput *vector_in) { if (!skip()) { int offset_in = compiler.stack_assign(vector_in); int offset_out = compiler.stack_find_offset(SocketType::VECTOR); compile(compiler, offset_in, offset_out); return offset_out; } return compiler.stack_assign(vector_in); } void TextureMapping::compile_end(SVMCompiler &compiler, ShaderInput *vector_in, int vector_offset) { if (!skip()) { compiler.stack_clear_offset(vector_in->type(), vector_offset); } } void TextureMapping::compile(OSLCompiler &compiler) { if (!skip()) { compiler.parameter("mapping", compute_transform()); compiler.parameter("use_mapping", 1); } } /* Image Texture */ NODE_DEFINE(ImageTextureNode) { NodeType *type = NodeType::add("image_texture", create, NodeType::SHADER); TEXTURE_MAPPING_DEFINE(ImageTextureNode); SOCKET_STRING(filename, "Filename", ustring()); SOCKET_STRING(colorspace, "Colorspace", u_colorspace_auto); static NodeEnum alpha_type_enum; alpha_type_enum.insert("auto", IMAGE_ALPHA_AUTO); alpha_type_enum.insert("unassociated", IMAGE_ALPHA_UNASSOCIATED); alpha_type_enum.insert("associated", IMAGE_ALPHA_ASSOCIATED); alpha_type_enum.insert("channel_packed", IMAGE_ALPHA_CHANNEL_PACKED); alpha_type_enum.insert("ignore", IMAGE_ALPHA_IGNORE); SOCKET_ENUM(alpha_type, "Alpha Type", alpha_type_enum, IMAGE_ALPHA_AUTO); static NodeEnum interpolation_enum; interpolation_enum.insert("closest", INTERPOLATION_CLOSEST); interpolation_enum.insert("linear", INTERPOLATION_LINEAR); interpolation_enum.insert("cubic", INTERPOLATION_CUBIC); interpolation_enum.insert("smart", INTERPOLATION_SMART); SOCKET_ENUM(interpolation, "Interpolation", interpolation_enum, INTERPOLATION_LINEAR); static NodeEnum extension_enum; extension_enum.insert("periodic", EXTENSION_REPEAT); extension_enum.insert("clamp", EXTENSION_EXTEND); extension_enum.insert("black", EXTENSION_CLIP); SOCKET_ENUM(extension, "Extension", extension_enum, EXTENSION_REPEAT); static NodeEnum projection_enum; projection_enum.insert("flat", NODE_IMAGE_PROJ_FLAT); projection_enum.insert("box", NODE_IMAGE_PROJ_BOX); projection_enum.insert("sphere", NODE_IMAGE_PROJ_SPHERE); projection_enum.insert("tube", NODE_IMAGE_PROJ_TUBE); SOCKET_ENUM(projection, "Projection", projection_enum, NODE_IMAGE_PROJ_FLAT); SOCKET_FLOAT(projection_blend, "Projection Blend", 0.0f); SOCKET_INT_ARRAY(tiles, "Tiles", array()); SOCKET_BOOLEAN(animated, "Animated", false); SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_UV); SOCKET_OUT_COLOR(color, "Color"); SOCKET_OUT_FLOAT(alpha, "Alpha"); return type; } ImageTextureNode::ImageTextureNode() : ImageSlotTextureNode(get_node_type()) { colorspace = u_colorspace_raw; animated = false; tiles.push_back_slow(1001); } ShaderNode *ImageTextureNode::clone(ShaderGraph *graph) const { ImageTextureNode *node = graph->create_node(*this); node->handle = handle; return node; } ImageParams ImageTextureNode::image_params() const { ImageParams params; params.animated = animated; params.interpolation = interpolation; params.extension = extension; params.alpha_type = alpha_type; params.colorspace = colorspace; return params; } void ImageTextureNode::cull_tiles(Scene *scene, ShaderGraph *graph) { /* Box projection computes its own UVs that always lie in the * 1001 tile, so there's no point in loading any others. */ if (projection == NODE_IMAGE_PROJ_BOX) { tiles.clear(); tiles.push_back_slow(1001); return; } if (!scene->params.background) { /* During interactive renders, all tiles are loaded. * While we could support updating this when UVs change, that could lead * to annoying interruptions when loading images while editing UVs. */ return; } /* Only check UVs for tile culling if there are multiple tiles. */ if (tiles.size() < 2) { return; } ShaderInput *vector_in = input("Vector"); ustring attribute; if (vector_in->link) { ShaderNode *node = vector_in->link->parent; if (node->type == UVMapNode::get_node_type()) { UVMapNode *uvmap = (UVMapNode *)node; attribute = uvmap->get_attribute(); } else if (node->type == TextureCoordinateNode::get_node_type()) { if (vector_in->link != node->output("UV")) { return; } } else { return; } } unordered_set used_tiles; /* TODO(lukas): This is quite inefficient. A fairly simple improvement would * be to have a cache in each mesh that is indexed by attribute. * Additionally, building a graph-to-meshes list once could help. */ foreach (Geometry *geom, scene->geometry) { foreach (Node *node, geom->get_used_shaders()) { Shader *shader = static_cast(node); if (shader->graph == graph) { geom->get_uv_tiles(attribute, used_tiles); } } } array new_tiles; foreach (int tile, tiles) { if (used_tiles.count(tile)) { new_tiles.push_back_slow(tile); } } tiles.steal_data(new_tiles); } void ImageTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes) { #ifdef WITH_PTEX /* todo: avoid loading other texture coordinates when using ptex, * and hide texture coordinate socket in the UI */ if (shader->has_surface_link() && string_endswith(filename, ".ptx")) { /* ptex */ attributes->add(ATTR_STD_PTEX_FACE_ID); attributes->add(ATTR_STD_PTEX_UV); } #endif ShaderNode::attributes(shader, attributes); } void ImageTextureNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *color_out = output("Color"); ShaderOutput *alpha_out = output("Alpha"); if (handle.empty()) { cull_tiles(compiler.scene, compiler.current_graph); ImageManager *image_manager = compiler.scene->image_manager; handle = image_manager->add_image(filename.string(), image_params(), tiles); } /* All tiles have the same metadata. */ const ImageMetaData metadata = handle.metadata(); const bool compress_as_srgb = metadata.compress_as_srgb; const ustring known_colorspace = metadata.colorspace; int vector_offset = tex_mapping.compile_begin(compiler, vector_in); uint flags = 0; if (compress_as_srgb) { flags |= NODE_IMAGE_COMPRESS_AS_SRGB; } if (!alpha_out->links.empty()) { const bool unassociate_alpha = !(ColorSpaceManager::colorspace_is_data(colorspace) || alpha_type == IMAGE_ALPHA_CHANNEL_PACKED || alpha_type == IMAGE_ALPHA_IGNORE); if (unassociate_alpha) { flags |= NODE_IMAGE_ALPHA_UNASSOCIATE; } } if (projection != NODE_IMAGE_PROJ_BOX) { /* If there only is one image (a very common case), we encode it as a negative value. */ int num_nodes; if (handle.num_tiles() == 1) { num_nodes = -handle.svm_slot(); } else { num_nodes = divide_up(handle.num_tiles(), 2); } compiler.add_node(NODE_TEX_IMAGE, num_nodes, compiler.encode_uchar4(vector_offset, compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(alpha_out), flags), projection); if (num_nodes > 0) { for (int i = 0; i < num_nodes; i++) { int4 node; node.x = tiles[2 * i]; node.y = handle.svm_slot(2 * i); if (2 * i + 1 < tiles.size()) { node.z = tiles[2 * i + 1]; node.w = handle.svm_slot(2 * i + 1); } else { node.z = -1; node.w = -1; } compiler.add_node(node.x, node.y, node.z, node.w); } } } else { assert(handle.num_tiles() == 1); compiler.add_node(NODE_TEX_IMAGE_BOX, handle.svm_slot(), compiler.encode_uchar4(vector_offset, compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(alpha_out), flags), __float_as_int(projection_blend)); } tex_mapping.compile_end(compiler, vector_in, vector_offset); } void ImageTextureNode::compile(OSLCompiler &compiler) { ShaderOutput *alpha_out = output("Alpha"); tex_mapping.compile(compiler); if (handle.empty()) { ImageManager *image_manager = compiler.scene->image_manager; handle = image_manager->add_image(filename.string(), image_params()); } const ImageMetaData metadata = handle.metadata(); const bool is_float = metadata.is_float(); const bool compress_as_srgb = metadata.compress_as_srgb; const ustring known_colorspace = metadata.colorspace; if (handle.svm_slot() == -1) { compiler.parameter_texture( "filename", filename, compress_as_srgb ? u_colorspace_raw : known_colorspace); } else { compiler.parameter_texture("filename", handle); } const bool unassociate_alpha = !(ColorSpaceManager::colorspace_is_data(colorspace) || alpha_type == IMAGE_ALPHA_CHANNEL_PACKED || alpha_type == IMAGE_ALPHA_IGNORE); const bool is_tiled = (filename.find("") != string::npos || filename.find("") != string::npos) || handle.num_tiles() > 1; compiler.parameter(this, "projection"); compiler.parameter(this, "projection_blend"); compiler.parameter("compress_as_srgb", compress_as_srgb); compiler.parameter("ignore_alpha", alpha_type == IMAGE_ALPHA_IGNORE); compiler.parameter("unassociate_alpha", !alpha_out->links.empty() && unassociate_alpha); compiler.parameter("is_float", is_float); compiler.parameter("is_tiled", is_tiled); compiler.parameter(this, "interpolation"); compiler.parameter(this, "extension"); compiler.add(this, "node_image_texture"); } /* Environment Texture */ NODE_DEFINE(EnvironmentTextureNode) { NodeType *type = NodeType::add("environment_texture", create, NodeType::SHADER); TEXTURE_MAPPING_DEFINE(EnvironmentTextureNode); SOCKET_STRING(filename, "Filename", ustring()); SOCKET_STRING(colorspace, "Colorspace", u_colorspace_auto); static NodeEnum alpha_type_enum; alpha_type_enum.insert("auto", IMAGE_ALPHA_AUTO); alpha_type_enum.insert("unassociated", IMAGE_ALPHA_UNASSOCIATED); alpha_type_enum.insert("associated", IMAGE_ALPHA_ASSOCIATED); alpha_type_enum.insert("channel_packed", IMAGE_ALPHA_CHANNEL_PACKED); alpha_type_enum.insert("ignore", IMAGE_ALPHA_IGNORE); SOCKET_ENUM(alpha_type, "Alpha Type", alpha_type_enum, IMAGE_ALPHA_AUTO); static NodeEnum interpolation_enum; interpolation_enum.insert("closest", INTERPOLATION_CLOSEST); interpolation_enum.insert("linear", INTERPOLATION_LINEAR); interpolation_enum.insert("cubic", INTERPOLATION_CUBIC); interpolation_enum.insert("smart", INTERPOLATION_SMART); SOCKET_ENUM(interpolation, "Interpolation", interpolation_enum, INTERPOLATION_LINEAR); static NodeEnum projection_enum; projection_enum.insert("equirectangular", NODE_ENVIRONMENT_EQUIRECTANGULAR); projection_enum.insert("mirror_ball", NODE_ENVIRONMENT_MIRROR_BALL); SOCKET_ENUM(projection, "Projection", projection_enum, NODE_ENVIRONMENT_EQUIRECTANGULAR); SOCKET_BOOLEAN(animated, "Animated", false); SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_POSITION); SOCKET_OUT_COLOR(color, "Color"); SOCKET_OUT_FLOAT(alpha, "Alpha"); return type; } EnvironmentTextureNode::EnvironmentTextureNode() : ImageSlotTextureNode(get_node_type()) { colorspace = u_colorspace_raw; animated = false; } ShaderNode *EnvironmentTextureNode::clone(ShaderGraph *graph) const { EnvironmentTextureNode *node = graph->create_node(*this); node->handle = handle; return node; } ImageParams EnvironmentTextureNode::image_params() const { ImageParams params; params.animated = animated; params.interpolation = interpolation; params.extension = EXTENSION_REPEAT; params.alpha_type = alpha_type; params.colorspace = colorspace; return params; } void EnvironmentTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes) { #ifdef WITH_PTEX if (shader->has_surface_link() && string_endswith(filename, ".ptx")) { /* ptex */ attributes->add(ATTR_STD_PTEX_FACE_ID); attributes->add(ATTR_STD_PTEX_UV); } #endif ShaderNode::attributes(shader, attributes); } void EnvironmentTextureNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *color_out = output("Color"); ShaderOutput *alpha_out = output("Alpha"); if (handle.empty()) { ImageManager *image_manager = compiler.scene->image_manager; handle = image_manager->add_image(filename.string(), image_params()); } const ImageMetaData metadata = handle.metadata(); const bool compress_as_srgb = metadata.compress_as_srgb; const ustring known_colorspace = metadata.colorspace; int vector_offset = tex_mapping.compile_begin(compiler, vector_in); uint flags = 0; if (compress_as_srgb) { flags |= NODE_IMAGE_COMPRESS_AS_SRGB; } compiler.add_node(NODE_TEX_ENVIRONMENT, handle.svm_slot(), compiler.encode_uchar4(vector_offset, compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(alpha_out), flags), projection); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void EnvironmentTextureNode::compile(OSLCompiler &compiler) { if (handle.empty()) { ImageManager *image_manager = compiler.scene->image_manager; handle = image_manager->add_image(filename.string(), image_params()); } tex_mapping.compile(compiler); const ImageMetaData metadata = handle.metadata(); const bool is_float = metadata.is_float(); const bool compress_as_srgb = metadata.compress_as_srgb; const ustring known_colorspace = metadata.colorspace; if (handle.svm_slot() == -1) { compiler.parameter_texture( "filename", filename, compress_as_srgb ? u_colorspace_raw : known_colorspace); } else { compiler.parameter_texture("filename", handle); } compiler.parameter(this, "projection"); compiler.parameter(this, "interpolation"); compiler.parameter("compress_as_srgb", compress_as_srgb); compiler.parameter("ignore_alpha", alpha_type == IMAGE_ALPHA_IGNORE); compiler.parameter("is_float", is_float); compiler.add(this, "node_environment_texture"); } /* Sky Texture */ static float2 sky_spherical_coordinates(float3 dir) { return make_float2(acosf(dir.z), atan2f(dir.x, dir.y)); } typedef struct SunSky { /* sun direction in spherical and cartesian */ float theta, phi; /* Parameter */ float radiance_x, radiance_y, radiance_z; float config_x[9], config_y[9], config_z[9], nishita_data[10]; } SunSky; /* Preetham model */ static float sky_perez_function(float lam[6], float theta, float gamma) { return (1.0f + lam[0] * expf(lam[1] / cosf(theta))) * (1.0f + lam[2] * expf(lam[3] * gamma) + lam[4] * cosf(gamma) * cosf(gamma)); } static void sky_texture_precompute_preetham(SunSky *sunsky, float3 dir, float turbidity) { /* * We re-use the SunSky struct of the new model, to avoid extra variables * zenith_Y/x/y is now radiance_x/y/z * perez_Y/x/y is now config_x/y/z */ float2 spherical = sky_spherical_coordinates(dir); float theta = spherical.x; float phi = spherical.y; sunsky->theta = theta; sunsky->phi = phi; float theta2 = theta * theta; float theta3 = theta2 * theta; float T = turbidity; float T2 = T * T; float chi = (4.0f / 9.0f - T / 120.0f) * (M_PI_F - 2.0f * theta); sunsky->radiance_x = (4.0453f * T - 4.9710f) * tanf(chi) - 0.2155f * T + 2.4192f; sunsky->radiance_x *= 0.06f; sunsky->radiance_y = (0.00166f * theta3 - 0.00375f * theta2 + 0.00209f * theta) * T2 + (-0.02903f * theta3 + 0.06377f * theta2 - 0.03202f * theta + 0.00394f) * T + (0.11693f * theta3 - 0.21196f * theta2 + 0.06052f * theta + 0.25886f); sunsky->radiance_z = (0.00275f * theta3 - 0.00610f * theta2 + 0.00317f * theta) * T2 + (-0.04214f * theta3 + 0.08970f * theta2 - 0.04153f * theta + 0.00516f) * T + (0.15346f * theta3 - 0.26756f * theta2 + 0.06670f * theta + 0.26688f); sunsky->config_x[0] = (0.1787f * T - 1.4630f); sunsky->config_x[1] = (-0.3554f * T + 0.4275f); sunsky->config_x[2] = (-0.0227f * T + 5.3251f); sunsky->config_x[3] = (0.1206f * T - 2.5771f); sunsky->config_x[4] = (-0.0670f * T + 0.3703f); sunsky->config_y[0] = (-0.0193f * T - 0.2592f); sunsky->config_y[1] = (-0.0665f * T + 0.0008f); sunsky->config_y[2] = (-0.0004f * T + 0.2125f); sunsky->config_y[3] = (-0.0641f * T - 0.8989f); sunsky->config_y[4] = (-0.0033f * T + 0.0452f); sunsky->config_z[0] = (-0.0167f * T - 0.2608f); sunsky->config_z[1] = (-0.0950f * T + 0.0092f); sunsky->config_z[2] = (-0.0079f * T + 0.2102f); sunsky->config_z[3] = (-0.0441f * T - 1.6537f); sunsky->config_z[4] = (-0.0109f * T + 0.0529f); /* unused for old sky model */ for (int i = 5; i < 9; i++) { sunsky->config_x[i] = 0.0f; sunsky->config_y[i] = 0.0f; sunsky->config_z[i] = 0.0f; } sunsky->radiance_x /= sky_perez_function(sunsky->config_x, 0, theta); sunsky->radiance_y /= sky_perez_function(sunsky->config_y, 0, theta); sunsky->radiance_z /= sky_perez_function(sunsky->config_z, 0, theta); } /* Hosek / Wilkie */ static void sky_texture_precompute_hosek(SunSky *sunsky, float3 dir, float turbidity, float ground_albedo) { /* Calculate Sun Direction and save coordinates */ float2 spherical = sky_spherical_coordinates(dir); float theta = spherical.x; float phi = spherical.y; /* Clamp Turbidity */ turbidity = clamp(turbidity, 0.0f, 10.0f); /* Clamp to Horizon */ theta = clamp(theta, 0.0f, M_PI_2_F); sunsky->theta = theta; sunsky->phi = phi; float solarElevation = M_PI_2_F - theta; /* Initialize Sky Model */ SKY_ArHosekSkyModelState *sky_state; sky_state = SKY_arhosek_xyz_skymodelstate_alloc_init( (double)turbidity, (double)ground_albedo, (double)solarElevation); /* Copy values from sky_state to SunSky */ for (int i = 0; i < 9; ++i) { sunsky->config_x[i] = (float)sky_state->configs[0][i]; sunsky->config_y[i] = (float)sky_state->configs[1][i]; sunsky->config_z[i] = (float)sky_state->configs[2][i]; } sunsky->radiance_x = (float)sky_state->radiances[0]; sunsky->radiance_y = (float)sky_state->radiances[1]; sunsky->radiance_z = (float)sky_state->radiances[2]; /* Free sky_state */ SKY_arhosekskymodelstate_free(sky_state); } /* Nishita improved */ static void sky_texture_precompute_nishita(SunSky *sunsky, bool sun_disc, float sun_size, float sun_intensity, float sun_elevation, float sun_rotation, float altitude, float air_density, float dust_density) { /* sample 2 sun pixels */ float pixel_bottom[3]; float pixel_top[3]; SKY_nishita_skymodel_precompute_sun( sun_elevation, sun_size, altitude, air_density, dust_density, pixel_bottom, pixel_top); /* limit sun rotation between 0 and 360 degrees */ sun_rotation = fmodf(sun_rotation, M_2PI_F); if (sun_rotation < 0.0f) { sun_rotation += M_2PI_F; } sun_rotation = M_2PI_F - sun_rotation; /* send data to svm_sky */ sunsky->nishita_data[0] = pixel_bottom[0]; sunsky->nishita_data[1] = pixel_bottom[1]; sunsky->nishita_data[2] = pixel_bottom[2]; sunsky->nishita_data[3] = pixel_top[0]; sunsky->nishita_data[4] = pixel_top[1]; sunsky->nishita_data[5] = pixel_top[2]; sunsky->nishita_data[6] = sun_elevation; sunsky->nishita_data[7] = sun_rotation; sunsky->nishita_data[8] = sun_disc ? sun_size : -1.0f; sunsky->nishita_data[9] = sun_intensity; } NODE_DEFINE(SkyTextureNode) { NodeType *type = NodeType::add("sky_texture", create, NodeType::SHADER); TEXTURE_MAPPING_DEFINE(SkyTextureNode); static NodeEnum type_enum; type_enum.insert("preetham", NODE_SKY_PREETHAM); type_enum.insert("hosek_wilkie", NODE_SKY_HOSEK); type_enum.insert("nishita_improved", NODE_SKY_NISHITA); SOCKET_ENUM(sky_type, "Type", type_enum, NODE_SKY_NISHITA); SOCKET_VECTOR(sun_direction, "Sun Direction", make_float3(0.0f, 0.0f, 1.0f)); SOCKET_FLOAT(turbidity, "Turbidity", 2.2f); SOCKET_FLOAT(ground_albedo, "Ground Albedo", 0.3f); SOCKET_BOOLEAN(sun_disc, "Sun Disc", true); SOCKET_FLOAT(sun_size, "Sun Size", 0.009512f); SOCKET_FLOAT(sun_intensity, "Sun Intensity", 1.0f); SOCKET_FLOAT(sun_elevation, "Sun Elevation", 15.0f * M_PI_F / 180.0f); SOCKET_FLOAT(sun_rotation, "Sun Rotation", 0.0f); SOCKET_FLOAT(altitude, "Altitude", 1.0f); SOCKET_FLOAT(air_density, "Air", 1.0f); SOCKET_FLOAT(dust_density, "Dust", 1.0f); SOCKET_FLOAT(ozone_density, "Ozone", 1.0f); SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED); SOCKET_OUT_COLOR(color, "Color"); return type; } SkyTextureNode::SkyTextureNode() : TextureNode(get_node_type()) { } void SkyTextureNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *color_out = output("Color"); SunSky sunsky; if (sky_type == NODE_SKY_PREETHAM) sky_texture_precompute_preetham(&sunsky, sun_direction, turbidity); else if (sky_type == NODE_SKY_HOSEK) sky_texture_precompute_hosek(&sunsky, sun_direction, turbidity, ground_albedo); else if (sky_type == NODE_SKY_NISHITA) { /* Clamp altitude to reasonable values. * Below 1m causes numerical issues and above 60km is space. */ float clamped_altitude = clamp(altitude, 1.0f, 59999.0f); sky_texture_precompute_nishita(&sunsky, sun_disc, get_sun_size(), sun_intensity, sun_elevation, sun_rotation, clamped_altitude, air_density, dust_density); /* precomputed texture image parameters */ ImageManager *image_manager = compiler.scene->image_manager; ImageParams impar; impar.interpolation = INTERPOLATION_LINEAR; impar.extension = EXTENSION_EXTEND; /* precompute sky texture */ if (handle.empty()) { SkyLoader *loader = new SkyLoader( sun_elevation, clamped_altitude, air_density, dust_density, ozone_density); handle = image_manager->add_image(loader, impar); } } else assert(false); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.stack_assign(color_out); compiler.add_node(NODE_TEX_SKY, vector_offset, compiler.stack_assign(color_out), sky_type); /* nishita doesn't need this data */ if (sky_type != NODE_SKY_NISHITA) { compiler.add_node(__float_as_uint(sunsky.phi), __float_as_uint(sunsky.theta), __float_as_uint(sunsky.radiance_x), __float_as_uint(sunsky.radiance_y)); compiler.add_node(__float_as_uint(sunsky.radiance_z), __float_as_uint(sunsky.config_x[0]), __float_as_uint(sunsky.config_x[1]), __float_as_uint(sunsky.config_x[2])); compiler.add_node(__float_as_uint(sunsky.config_x[3]), __float_as_uint(sunsky.config_x[4]), __float_as_uint(sunsky.config_x[5]), __float_as_uint(sunsky.config_x[6])); compiler.add_node(__float_as_uint(sunsky.config_x[7]), __float_as_uint(sunsky.config_x[8]), __float_as_uint(sunsky.config_y[0]), __float_as_uint(sunsky.config_y[1])); compiler.add_node(__float_as_uint(sunsky.config_y[2]), __float_as_uint(sunsky.config_y[3]), __float_as_uint(sunsky.config_y[4]), __float_as_uint(sunsky.config_y[5])); compiler.add_node(__float_as_uint(sunsky.config_y[6]), __float_as_uint(sunsky.config_y[7]), __float_as_uint(sunsky.config_y[8]), __float_as_uint(sunsky.config_z[0])); compiler.add_node(__float_as_uint(sunsky.config_z[1]), __float_as_uint(sunsky.config_z[2]), __float_as_uint(sunsky.config_z[3]), __float_as_uint(sunsky.config_z[4])); compiler.add_node(__float_as_uint(sunsky.config_z[5]), __float_as_uint(sunsky.config_z[6]), __float_as_uint(sunsky.config_z[7]), __float_as_uint(sunsky.config_z[8])); } else { compiler.add_node(__float_as_uint(sunsky.nishita_data[0]), __float_as_uint(sunsky.nishita_data[1]), __float_as_uint(sunsky.nishita_data[2]), __float_as_uint(sunsky.nishita_data[3])); compiler.add_node(__float_as_uint(sunsky.nishita_data[4]), __float_as_uint(sunsky.nishita_data[5]), __float_as_uint(sunsky.nishita_data[6]), __float_as_uint(sunsky.nishita_data[7])); compiler.add_node(__float_as_uint(sunsky.nishita_data[8]), __float_as_uint(sunsky.nishita_data[9]), handle.svm_slot(), 0); } tex_mapping.compile_end(compiler, vector_in, vector_offset); } void SkyTextureNode::compile(OSLCompiler &compiler) { tex_mapping.compile(compiler); SunSky sunsky; if (sky_type == NODE_SKY_PREETHAM) sky_texture_precompute_preetham(&sunsky, sun_direction, turbidity); else if (sky_type == NODE_SKY_HOSEK) sky_texture_precompute_hosek(&sunsky, sun_direction, turbidity, ground_albedo); else if (sky_type == NODE_SKY_NISHITA) { /* Clamp altitude to reasonable values. * Below 1m causes numerical issues and above 60km is space. */ float clamped_altitude = clamp(altitude, 1.0f, 59999.0f); sky_texture_precompute_nishita(&sunsky, sun_disc, get_sun_size(), sun_intensity, sun_elevation, sun_rotation, clamped_altitude, air_density, dust_density); /* precomputed texture image parameters */ ImageManager *image_manager = compiler.scene->image_manager; ImageParams impar; impar.interpolation = INTERPOLATION_LINEAR; impar.extension = EXTENSION_EXTEND; /* precompute sky texture */ if (handle.empty()) { SkyLoader *loader = new SkyLoader( sun_elevation, clamped_altitude, air_density, dust_density, ozone_density); handle = image_manager->add_image(loader, impar); } } else assert(false); compiler.parameter(this, "sky_type"); compiler.parameter("theta", sunsky.theta); compiler.parameter("phi", sunsky.phi); compiler.parameter_color("radiance", make_float3(sunsky.radiance_x, sunsky.radiance_y, sunsky.radiance_z)); compiler.parameter_array("config_x", sunsky.config_x, 9); compiler.parameter_array("config_y", sunsky.config_y, 9); compiler.parameter_array("config_z", sunsky.config_z, 9); compiler.parameter_array("nishita_data", sunsky.nishita_data, 10); /* nishita texture */ if (sky_type == NODE_SKY_NISHITA) { compiler.parameter_texture("filename", handle); } compiler.add(this, "node_sky_texture"); } /* Gradient Texture */ NODE_DEFINE(GradientTextureNode) { NodeType *type = NodeType::add("gradient_texture", create, NodeType::SHADER); TEXTURE_MAPPING_DEFINE(GradientTextureNode); static NodeEnum type_enum; type_enum.insert("linear", NODE_BLEND_LINEAR); type_enum.insert("quadratic", NODE_BLEND_QUADRATIC); type_enum.insert("easing", NODE_BLEND_EASING); type_enum.insert("diagonal", NODE_BLEND_DIAGONAL); type_enum.insert("radial", NODE_BLEND_RADIAL); type_enum.insert("quadratic_sphere", NODE_BLEND_QUADRATIC_SPHERE); type_enum.insert("spherical", NODE_BLEND_SPHERICAL); SOCKET_ENUM(gradient_type, "Type", type_enum, NODE_BLEND_LINEAR); SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED); SOCKET_OUT_COLOR(color, "Color"); SOCKET_OUT_FLOAT(fac, "Fac"); return type; } GradientTextureNode::GradientTextureNode() : TextureNode(get_node_type()) { } void GradientTextureNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *color_out = output("Color"); ShaderOutput *fac_out = output("Fac"); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.add_node(NODE_TEX_GRADIENT, compiler.encode_uchar4(gradient_type, vector_offset, compiler.stack_assign_if_linked(fac_out), compiler.stack_assign_if_linked(color_out))); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void GradientTextureNode::compile(OSLCompiler &compiler) { tex_mapping.compile(compiler); compiler.parameter(this, "gradient_type"); compiler.add(this, "node_gradient_texture"); } /* Noise Texture */ NODE_DEFINE(NoiseTextureNode) { NodeType *type = NodeType::add("noise_texture", create, NodeType::SHADER); TEXTURE_MAPPING_DEFINE(NoiseTextureNode); static NodeEnum dimensions_enum; dimensions_enum.insert("1D", 1); dimensions_enum.insert("2D", 2); dimensions_enum.insert("3D", 3); dimensions_enum.insert("4D", 4); SOCKET_ENUM(dimensions, "Dimensions", dimensions_enum, 3); SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED); SOCKET_IN_FLOAT(w, "W", 0.0f); SOCKET_IN_FLOAT(scale, "Scale", 1.0f); SOCKET_IN_FLOAT(detail, "Detail", 2.0f); SOCKET_IN_FLOAT(roughness, "Roughness", 0.5f); SOCKET_IN_FLOAT(distortion, "Distortion", 0.0f); SOCKET_OUT_FLOAT(fac, "Fac"); SOCKET_OUT_COLOR(color, "Color"); return type; } NoiseTextureNode::NoiseTextureNode() : TextureNode(get_node_type()) { } void NoiseTextureNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *w_in = input("W"); ShaderInput *scale_in = input("Scale"); ShaderInput *detail_in = input("Detail"); ShaderInput *roughness_in = input("Roughness"); ShaderInput *distortion_in = input("Distortion"); ShaderOutput *fac_out = output("Fac"); ShaderOutput *color_out = output("Color"); int vector_stack_offset = tex_mapping.compile_begin(compiler, vector_in); int w_stack_offset = compiler.stack_assign_if_linked(w_in); int scale_stack_offset = compiler.stack_assign_if_linked(scale_in); int detail_stack_offset = compiler.stack_assign_if_linked(detail_in); int roughness_stack_offset = compiler.stack_assign_if_linked(roughness_in); int distortion_stack_offset = compiler.stack_assign_if_linked(distortion_in); int fac_stack_offset = compiler.stack_assign_if_linked(fac_out); int color_stack_offset = compiler.stack_assign_if_linked(color_out); compiler.add_node( NODE_TEX_NOISE, dimensions, compiler.encode_uchar4( vector_stack_offset, w_stack_offset, scale_stack_offset, detail_stack_offset), compiler.encode_uchar4( roughness_stack_offset, distortion_stack_offset, fac_stack_offset, color_stack_offset)); compiler.add_node( __float_as_int(w), __float_as_int(scale), __float_as_int(detail), __float_as_int(roughness)); compiler.add_node( __float_as_int(distortion), SVM_STACK_INVALID, SVM_STACK_INVALID, SVM_STACK_INVALID); tex_mapping.compile_end(compiler, vector_in, vector_stack_offset); } void NoiseTextureNode::compile(OSLCompiler &compiler) { tex_mapping.compile(compiler); compiler.parameter(this, "dimensions"); compiler.add(this, "node_noise_texture"); } /* Voronoi Texture */ NODE_DEFINE(VoronoiTextureNode) { NodeType *type = NodeType::add("voronoi_texture", create, NodeType::SHADER); TEXTURE_MAPPING_DEFINE(VoronoiTextureNode); static NodeEnum dimensions_enum; dimensions_enum.insert("1D", 1); dimensions_enum.insert("2D", 2); dimensions_enum.insert("3D", 3); dimensions_enum.insert("4D", 4); SOCKET_ENUM(dimensions, "Dimensions", dimensions_enum, 3); static NodeEnum metric_enum; metric_enum.insert("euclidean", NODE_VORONOI_EUCLIDEAN); metric_enum.insert("manhattan", NODE_VORONOI_MANHATTAN); metric_enum.insert("chebychev", NODE_VORONOI_CHEBYCHEV); metric_enum.insert("minkowski", NODE_VORONOI_MINKOWSKI); SOCKET_ENUM(metric, "Distance Metric", metric_enum, NODE_VORONOI_EUCLIDEAN); static NodeEnum feature_enum; feature_enum.insert("f1", NODE_VORONOI_F1); feature_enum.insert("f2", NODE_VORONOI_F2); feature_enum.insert("smooth_f1", NODE_VORONOI_SMOOTH_F1); feature_enum.insert("distance_to_edge", NODE_VORONOI_DISTANCE_TO_EDGE); feature_enum.insert("n_sphere_radius", NODE_VORONOI_N_SPHERE_RADIUS); SOCKET_ENUM(feature, "Feature", feature_enum, NODE_VORONOI_F1); SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED); SOCKET_IN_FLOAT(w, "W", 0.0f); SOCKET_IN_FLOAT(scale, "Scale", 5.0f); SOCKET_IN_FLOAT(smoothness, "Smoothness", 5.0f); SOCKET_IN_FLOAT(exponent, "Exponent", 0.5f); SOCKET_IN_FLOAT(randomness, "Randomness", 1.0f); SOCKET_OUT_FLOAT(distance, "Distance"); SOCKET_OUT_COLOR(color, "Color"); SOCKET_OUT_POINT(position, "Position"); SOCKET_OUT_FLOAT(w, "W"); SOCKET_OUT_FLOAT(radius, "Radius"); return type; } VoronoiTextureNode::VoronoiTextureNode() : TextureNode(get_node_type()) { } void VoronoiTextureNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *w_in = input("W"); ShaderInput *scale_in = input("Scale"); ShaderInput *smoothness_in = input("Smoothness"); ShaderInput *exponent_in = input("Exponent"); ShaderInput *randomness_in = input("Randomness"); ShaderOutput *distance_out = output("Distance"); ShaderOutput *color_out = output("Color"); ShaderOutput *position_out = output("Position"); ShaderOutput *w_out = output("W"); ShaderOutput *radius_out = output("Radius"); int vector_stack_offset = tex_mapping.compile_begin(compiler, vector_in); int w_in_stack_offset = compiler.stack_assign_if_linked(w_in); int scale_stack_offset = compiler.stack_assign_if_linked(scale_in); int smoothness_stack_offset = compiler.stack_assign_if_linked(smoothness_in); int exponent_stack_offset = compiler.stack_assign_if_linked(exponent_in); int randomness_stack_offset = compiler.stack_assign_if_linked(randomness_in); int distance_stack_offset = compiler.stack_assign_if_linked(distance_out); int color_stack_offset = compiler.stack_assign_if_linked(color_out); int position_stack_offset = compiler.stack_assign_if_linked(position_out); int w_out_stack_offset = compiler.stack_assign_if_linked(w_out); int radius_stack_offset = compiler.stack_assign_if_linked(radius_out); compiler.add_node(NODE_TEX_VORONOI, dimensions, feature, metric); compiler.add_node( compiler.encode_uchar4( vector_stack_offset, w_in_stack_offset, scale_stack_offset, smoothness_stack_offset), compiler.encode_uchar4(exponent_stack_offset, randomness_stack_offset, distance_stack_offset, color_stack_offset), compiler.encode_uchar4(position_stack_offset, w_out_stack_offset, radius_stack_offset), __float_as_int(w)); compiler.add_node(__float_as_int(scale), __float_as_int(smoothness), __float_as_int(exponent), __float_as_int(randomness)); tex_mapping.compile_end(compiler, vector_in, vector_stack_offset); } void VoronoiTextureNode::compile(OSLCompiler &compiler) { tex_mapping.compile(compiler); compiler.parameter(this, "dimensions"); compiler.parameter(this, "feature"); compiler.parameter(this, "metric"); compiler.add(this, "node_voronoi_texture"); } /* IES Light */ NODE_DEFINE(IESLightNode) { NodeType *type = NodeType::add("ies_light", create, NodeType::SHADER); TEXTURE_MAPPING_DEFINE(IESLightNode); SOCKET_STRING(ies, "IES", ustring()); SOCKET_STRING(filename, "File Name", ustring()); SOCKET_IN_FLOAT(strength, "Strength", 1.0f); SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_NORMAL); SOCKET_OUT_FLOAT(fac, "Fac"); return type; } IESLightNode::IESLightNode() : TextureNode(get_node_type()) { light_manager = NULL; slot = -1; } ShaderNode *IESLightNode::clone(ShaderGraph *graph) const { IESLightNode *node = graph->create_node(*this); node->light_manager = NULL; node->slot = -1; return node; } IESLightNode::~IESLightNode() { if (light_manager) { light_manager->remove_ies(slot); } } void IESLightNode::get_slot() { assert(light_manager); if (slot == -1) { if (ies.empty()) { slot = light_manager->add_ies_from_file(filename.string()); } else { slot = light_manager->add_ies(ies.string()); } } } void IESLightNode::compile(SVMCompiler &compiler) { light_manager = compiler.scene->light_manager; get_slot(); ShaderInput *strength_in = input("Strength"); ShaderInput *vector_in = input("Vector"); ShaderOutput *fac_out = output("Fac"); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.add_node(NODE_IES, compiler.encode_uchar4(compiler.stack_assign_if_linked(strength_in), vector_offset, compiler.stack_assign(fac_out), 0), slot, __float_as_int(strength)); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void IESLightNode::compile(OSLCompiler &compiler) { light_manager = compiler.scene->light_manager; get_slot(); tex_mapping.compile(compiler); compiler.parameter_texture_ies("filename", slot); compiler.add(this, "node_ies_light"); } /* White Noise Texture */ NODE_DEFINE(WhiteNoiseTextureNode) { NodeType *type = NodeType::add("white_noise_texture", create, NodeType::SHADER); static NodeEnum dimensions_enum; dimensions_enum.insert("1D", 1); dimensions_enum.insert("2D", 2); dimensions_enum.insert("3D", 3); dimensions_enum.insert("4D", 4); SOCKET_ENUM(dimensions, "Dimensions", dimensions_enum, 3); SOCKET_IN_POINT(vector, "Vector", zero_float3()); SOCKET_IN_FLOAT(w, "W", 0.0f); SOCKET_OUT_FLOAT(value, "Value"); SOCKET_OUT_COLOR(color, "Color"); return type; } WhiteNoiseTextureNode::WhiteNoiseTextureNode() : ShaderNode(get_node_type()) { } void WhiteNoiseTextureNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *w_in = input("W"); ShaderOutput *value_out = output("Value"); ShaderOutput *color_out = output("Color"); int vector_stack_offset = compiler.stack_assign(vector_in); int w_stack_offset = compiler.stack_assign(w_in); int value_stack_offset = compiler.stack_assign(value_out); int color_stack_offset = compiler.stack_assign(color_out); compiler.add_node(NODE_TEX_WHITE_NOISE, dimensions, compiler.encode_uchar4(vector_stack_offset, w_stack_offset), compiler.encode_uchar4(value_stack_offset, color_stack_offset)); } void WhiteNoiseTextureNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "dimensions"); compiler.add(this, "node_white_noise_texture"); } /* Musgrave Texture */ NODE_DEFINE(MusgraveTextureNode) { NodeType *type = NodeType::add("musgrave_texture", create, NodeType::SHADER); TEXTURE_MAPPING_DEFINE(MusgraveTextureNode); static NodeEnum dimensions_enum; dimensions_enum.insert("1D", 1); dimensions_enum.insert("2D", 2); dimensions_enum.insert("3D", 3); dimensions_enum.insert("4D", 4); SOCKET_ENUM(dimensions, "Dimensions", dimensions_enum, 3); static NodeEnum type_enum; type_enum.insert("multifractal", NODE_MUSGRAVE_MULTIFRACTAL); type_enum.insert("fBM", NODE_MUSGRAVE_FBM); type_enum.insert("hybrid_multifractal", NODE_MUSGRAVE_HYBRID_MULTIFRACTAL); type_enum.insert("ridged_multifractal", NODE_MUSGRAVE_RIDGED_MULTIFRACTAL); type_enum.insert("hetero_terrain", NODE_MUSGRAVE_HETERO_TERRAIN); SOCKET_ENUM(musgrave_type, "Type", type_enum, NODE_MUSGRAVE_FBM); SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED); SOCKET_IN_FLOAT(w, "W", 0.0f); SOCKET_IN_FLOAT(scale, "Scale", 1.0f); SOCKET_IN_FLOAT(detail, "Detail", 2.0f); SOCKET_IN_FLOAT(dimension, "Dimension", 2.0f); SOCKET_IN_FLOAT(lacunarity, "Lacunarity", 2.0f); SOCKET_IN_FLOAT(offset, "Offset", 0.0f); SOCKET_IN_FLOAT(gain, "Gain", 1.0f); SOCKET_OUT_FLOAT(fac, "Fac"); return type; } MusgraveTextureNode::MusgraveTextureNode() : TextureNode(get_node_type()) { } void MusgraveTextureNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *w_in = input("W"); ShaderInput *scale_in = input("Scale"); ShaderInput *detail_in = input("Detail"); ShaderInput *dimension_in = input("Dimension"); ShaderInput *lacunarity_in = input("Lacunarity"); ShaderInput *offset_in = input("Offset"); ShaderInput *gain_in = input("Gain"); ShaderOutput *fac_out = output("Fac"); int vector_stack_offset = tex_mapping.compile_begin(compiler, vector_in); int w_stack_offset = compiler.stack_assign_if_linked(w_in); int scale_stack_offset = compiler.stack_assign_if_linked(scale_in); int detail_stack_offset = compiler.stack_assign_if_linked(detail_in); int dimension_stack_offset = compiler.stack_assign_if_linked(dimension_in); int lacunarity_stack_offset = compiler.stack_assign_if_linked(lacunarity_in); int offset_stack_offset = compiler.stack_assign_if_linked(offset_in); int gain_stack_offset = compiler.stack_assign_if_linked(gain_in); int fac_stack_offset = compiler.stack_assign(fac_out); compiler.add_node( NODE_TEX_MUSGRAVE, compiler.encode_uchar4(musgrave_type, dimensions, vector_stack_offset, w_stack_offset), compiler.encode_uchar4(scale_stack_offset, detail_stack_offset, dimension_stack_offset, lacunarity_stack_offset), compiler.encode_uchar4(offset_stack_offset, gain_stack_offset, fac_stack_offset)); compiler.add_node( __float_as_int(w), __float_as_int(scale), __float_as_int(detail), __float_as_int(dimension)); compiler.add_node(__float_as_int(lacunarity), __float_as_int(offset), __float_as_int(gain)); tex_mapping.compile_end(compiler, vector_in, vector_stack_offset); } void MusgraveTextureNode::compile(OSLCompiler &compiler) { tex_mapping.compile(compiler); compiler.parameter(this, "musgrave_type"); compiler.parameter(this, "dimensions"); compiler.add(this, "node_musgrave_texture"); } /* Wave Texture */ NODE_DEFINE(WaveTextureNode) { NodeType *type = NodeType::add("wave_texture", create, NodeType::SHADER); TEXTURE_MAPPING_DEFINE(WaveTextureNode); static NodeEnum type_enum; type_enum.insert("bands", NODE_WAVE_BANDS); type_enum.insert("rings", NODE_WAVE_RINGS); SOCKET_ENUM(wave_type, "Type", type_enum, NODE_WAVE_BANDS); static NodeEnum bands_direction_enum; bands_direction_enum.insert("x", NODE_WAVE_BANDS_DIRECTION_X); bands_direction_enum.insert("y", NODE_WAVE_BANDS_DIRECTION_Y); bands_direction_enum.insert("z", NODE_WAVE_BANDS_DIRECTION_Z); bands_direction_enum.insert("diagonal", NODE_WAVE_BANDS_DIRECTION_DIAGONAL); SOCKET_ENUM( bands_direction, "Bands Direction", bands_direction_enum, NODE_WAVE_BANDS_DIRECTION_X); static NodeEnum rings_direction_enum; rings_direction_enum.insert("x", NODE_WAVE_RINGS_DIRECTION_X); rings_direction_enum.insert("y", NODE_WAVE_RINGS_DIRECTION_Y); rings_direction_enum.insert("z", NODE_WAVE_RINGS_DIRECTION_Z); rings_direction_enum.insert("spherical", NODE_WAVE_RINGS_DIRECTION_SPHERICAL); SOCKET_ENUM( rings_direction, "Rings Direction", rings_direction_enum, NODE_WAVE_BANDS_DIRECTION_X); static NodeEnum profile_enum; profile_enum.insert("sine", NODE_WAVE_PROFILE_SIN); profile_enum.insert("saw", NODE_WAVE_PROFILE_SAW); profile_enum.insert("tri", NODE_WAVE_PROFILE_TRI); SOCKET_ENUM(profile, "Profile", profile_enum, NODE_WAVE_PROFILE_SIN); SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED); SOCKET_IN_FLOAT(scale, "Scale", 1.0f); SOCKET_IN_FLOAT(distortion, "Distortion", 0.0f); SOCKET_IN_FLOAT(detail, "Detail", 2.0f); SOCKET_IN_FLOAT(detail_scale, "Detail Scale", 0.0f); SOCKET_IN_FLOAT(detail_roughness, "Detail Roughness", 0.5f); SOCKET_IN_FLOAT(phase, "Phase Offset", 0.0f); SOCKET_OUT_COLOR(color, "Color"); SOCKET_OUT_FLOAT(fac, "Fac"); return type; } WaveTextureNode::WaveTextureNode() : TextureNode(get_node_type()) { } void WaveTextureNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *scale_in = input("Scale"); ShaderInput *distortion_in = input("Distortion"); ShaderInput *detail_in = input("Detail"); ShaderInput *dscale_in = input("Detail Scale"); ShaderInput *droughness_in = input("Detail Roughness"); ShaderInput *phase_in = input("Phase Offset"); ShaderOutput *color_out = output("Color"); ShaderOutput *fac_out = output("Fac"); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); int scale_ofs = compiler.stack_assign_if_linked(scale_in); int distortion_ofs = compiler.stack_assign_if_linked(distortion_in); int detail_ofs = compiler.stack_assign_if_linked(detail_in); int dscale_ofs = compiler.stack_assign_if_linked(dscale_in); int droughness_ofs = compiler.stack_assign_if_linked(droughness_in); int phase_ofs = compiler.stack_assign_if_linked(phase_in); int color_ofs = compiler.stack_assign_if_linked(color_out); int fac_ofs = compiler.stack_assign_if_linked(fac_out); compiler.add_node(NODE_TEX_WAVE, compiler.encode_uchar4(wave_type, bands_direction, rings_direction, profile), compiler.encode_uchar4(vector_offset, scale_ofs, distortion_ofs), compiler.encode_uchar4(detail_ofs, dscale_ofs, droughness_ofs, phase_ofs)); compiler.add_node(compiler.encode_uchar4(color_ofs, fac_ofs), __float_as_int(scale), __float_as_int(distortion), __float_as_int(detail)); compiler.add_node(__float_as_int(detail_scale), __float_as_int(detail_roughness), __float_as_int(phase), SVM_STACK_INVALID); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void WaveTextureNode::compile(OSLCompiler &compiler) { tex_mapping.compile(compiler); compiler.parameter(this, "wave_type"); compiler.parameter(this, "bands_direction"); compiler.parameter(this, "rings_direction"); compiler.parameter(this, "profile"); compiler.add(this, "node_wave_texture"); } /* Magic Texture */ NODE_DEFINE(MagicTextureNode) { NodeType *type = NodeType::add("magic_texture", create, NodeType::SHADER); TEXTURE_MAPPING_DEFINE(MagicTextureNode); SOCKET_INT(depth, "Depth", 2); SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED); SOCKET_IN_FLOAT(scale, "Scale", 5.0f); SOCKET_IN_FLOAT(distortion, "Distortion", 1.0f); SOCKET_OUT_COLOR(color, "Color"); SOCKET_OUT_FLOAT(fac, "Fac"); return type; } MagicTextureNode::MagicTextureNode() : TextureNode(get_node_type()) { } void MagicTextureNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *scale_in = input("Scale"); ShaderInput *distortion_in = input("Distortion"); ShaderOutput *color_out = output("Color"); ShaderOutput *fac_out = output("Fac"); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.add_node(NODE_TEX_MAGIC, compiler.encode_uchar4(depth, compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(fac_out)), compiler.encode_uchar4(vector_offset, compiler.stack_assign_if_linked(scale_in), compiler.stack_assign_if_linked(distortion_in))); compiler.add_node(__float_as_int(scale), __float_as_int(distortion)); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void MagicTextureNode::compile(OSLCompiler &compiler) { tex_mapping.compile(compiler); compiler.parameter(this, "depth"); compiler.add(this, "node_magic_texture"); } /* Checker Texture */ NODE_DEFINE(CheckerTextureNode) { NodeType *type = NodeType::add("checker_texture", create, NodeType::SHADER); TEXTURE_MAPPING_DEFINE(CheckerTextureNode); SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED); SOCKET_IN_COLOR(color1, "Color1", zero_float3()); SOCKET_IN_COLOR(color2, "Color2", zero_float3()); SOCKET_IN_FLOAT(scale, "Scale", 1.0f); SOCKET_OUT_COLOR(color, "Color"); SOCKET_OUT_FLOAT(fac, "Fac"); return type; } CheckerTextureNode::CheckerTextureNode() : TextureNode(get_node_type()) { } void CheckerTextureNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *color1_in = input("Color1"); ShaderInput *color2_in = input("Color2"); ShaderInput *scale_in = input("Scale"); ShaderOutput *color_out = output("Color"); ShaderOutput *fac_out = output("Fac"); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.add_node(NODE_TEX_CHECKER, compiler.encode_uchar4(vector_offset, compiler.stack_assign(color1_in), compiler.stack_assign(color2_in), compiler.stack_assign_if_linked(scale_in)), compiler.encode_uchar4(compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(fac_out)), __float_as_int(scale)); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void CheckerTextureNode::compile(OSLCompiler &compiler) { tex_mapping.compile(compiler); compiler.add(this, "node_checker_texture"); } /* Brick Texture */ NODE_DEFINE(BrickTextureNode) { NodeType *type = NodeType::add("brick_texture", create, NodeType::SHADER); TEXTURE_MAPPING_DEFINE(BrickTextureNode); SOCKET_FLOAT(offset, "Offset", 0.5f); SOCKET_INT(offset_frequency, "Offset Frequency", 2); SOCKET_FLOAT(squash, "Squash", 1.0f); SOCKET_INT(squash_frequency, "Squash Frequency", 2); SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_TEXTURE_GENERATED); SOCKET_IN_COLOR(color1, "Color1", zero_float3()); SOCKET_IN_COLOR(color2, "Color2", zero_float3()); SOCKET_IN_COLOR(mortar, "Mortar", zero_float3()); SOCKET_IN_FLOAT(scale, "Scale", 5.0f); SOCKET_IN_FLOAT(mortar_size, "Mortar Size", 0.02f); SOCKET_IN_FLOAT(mortar_smooth, "Mortar Smooth", 0.0f); SOCKET_IN_FLOAT(bias, "Bias", 0.0f); SOCKET_IN_FLOAT(brick_width, "Brick Width", 0.5f); SOCKET_IN_FLOAT(row_height, "Row Height", 0.25f); SOCKET_OUT_COLOR(color, "Color"); SOCKET_OUT_FLOAT(fac, "Fac"); return type; } BrickTextureNode::BrickTextureNode() : TextureNode(get_node_type()) { } void BrickTextureNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *color1_in = input("Color1"); ShaderInput *color2_in = input("Color2"); ShaderInput *mortar_in = input("Mortar"); ShaderInput *scale_in = input("Scale"); ShaderInput *mortar_size_in = input("Mortar Size"); ShaderInput *mortar_smooth_in = input("Mortar Smooth"); ShaderInput *bias_in = input("Bias"); ShaderInput *brick_width_in = input("Brick Width"); ShaderInput *row_height_in = input("Row Height"); ShaderOutput *color_out = output("Color"); ShaderOutput *fac_out = output("Fac"); int vector_offset = tex_mapping.compile_begin(compiler, vector_in); compiler.add_node(NODE_TEX_BRICK, compiler.encode_uchar4(vector_offset, compiler.stack_assign(color1_in), compiler.stack_assign(color2_in), compiler.stack_assign(mortar_in)), compiler.encode_uchar4(compiler.stack_assign_if_linked(scale_in), compiler.stack_assign_if_linked(mortar_size_in), compiler.stack_assign_if_linked(bias_in), compiler.stack_assign_if_linked(brick_width_in)), compiler.encode_uchar4(compiler.stack_assign_if_linked(row_height_in), compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(fac_out), compiler.stack_assign_if_linked(mortar_smooth_in))); compiler.add_node(compiler.encode_uchar4(offset_frequency, squash_frequency), __float_as_int(scale), __float_as_int(mortar_size), __float_as_int(bias)); compiler.add_node(__float_as_int(brick_width), __float_as_int(row_height), __float_as_int(offset), __float_as_int(squash)); compiler.add_node( __float_as_int(mortar_smooth), SVM_STACK_INVALID, SVM_STACK_INVALID, SVM_STACK_INVALID); tex_mapping.compile_end(compiler, vector_in, vector_offset); } void BrickTextureNode::compile(OSLCompiler &compiler) { tex_mapping.compile(compiler); compiler.parameter(this, "offset"); compiler.parameter(this, "offset_frequency"); compiler.parameter(this, "squash"); compiler.parameter(this, "squash_frequency"); compiler.add(this, "node_brick_texture"); } /* Point Density Texture */ NODE_DEFINE(PointDensityTextureNode) { NodeType *type = NodeType::add("point_density_texture", create, NodeType::SHADER); SOCKET_STRING(filename, "Filename", ustring()); static NodeEnum space_enum; space_enum.insert("object", NODE_TEX_VOXEL_SPACE_OBJECT); space_enum.insert("world", NODE_TEX_VOXEL_SPACE_WORLD); SOCKET_ENUM(space, "Space", space_enum, NODE_TEX_VOXEL_SPACE_OBJECT); static NodeEnum interpolation_enum; interpolation_enum.insert("closest", INTERPOLATION_CLOSEST); interpolation_enum.insert("linear", INTERPOLATION_LINEAR); interpolation_enum.insert("cubic", INTERPOLATION_CUBIC); interpolation_enum.insert("smart", INTERPOLATION_SMART); SOCKET_ENUM(interpolation, "Interpolation", interpolation_enum, INTERPOLATION_LINEAR); SOCKET_TRANSFORM(tfm, "Transform", transform_identity()); SOCKET_IN_POINT(vector, "Vector", zero_float3(), SocketType::LINK_POSITION); SOCKET_OUT_FLOAT(density, "Density"); SOCKET_OUT_COLOR(color, "Color"); return type; } PointDensityTextureNode::PointDensityTextureNode() : ShaderNode(get_node_type()) { } PointDensityTextureNode::~PointDensityTextureNode() { } ShaderNode *PointDensityTextureNode::clone(ShaderGraph *graph) const { /* Increase image user count for new node. We need to ensure to not call * add_image again, to work around access of freed data on the Blender * side. A better solution should be found to avoid this. */ PointDensityTextureNode *node = graph->create_node(*this); node->handle = handle; /* TODO: not needed? */ return node; } void PointDensityTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (shader->has_volume) attributes->add(ATTR_STD_GENERATED_TRANSFORM); ShaderNode::attributes(shader, attributes); } ImageParams PointDensityTextureNode::image_params() const { ImageParams params; params.interpolation = interpolation; return params; } void PointDensityTextureNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *density_out = output("Density"); ShaderOutput *color_out = output("Color"); const bool use_density = !density_out->links.empty(); const bool use_color = !color_out->links.empty(); if (use_density || use_color) { if (handle.empty()) { ImageManager *image_manager = compiler.scene->image_manager; handle = image_manager->add_image(filename.string(), image_params()); } const int slot = handle.svm_slot(); if (slot != -1) { compiler.stack_assign(vector_in); compiler.add_node(NODE_TEX_VOXEL, slot, compiler.encode_uchar4(compiler.stack_assign(vector_in), compiler.stack_assign_if_linked(density_out), compiler.stack_assign_if_linked(color_out), space)); if (space == NODE_TEX_VOXEL_SPACE_WORLD) { compiler.add_node(tfm.x); compiler.add_node(tfm.y); compiler.add_node(tfm.z); } } else { if (use_density) { compiler.add_node(NODE_VALUE_F, __float_as_int(0.0f), compiler.stack_assign(density_out)); } if (use_color) { compiler.add_node(NODE_VALUE_V, compiler.stack_assign(color_out)); compiler.add_node( NODE_VALUE_V, make_float3(TEX_IMAGE_MISSING_R, TEX_IMAGE_MISSING_G, TEX_IMAGE_MISSING_B)); } } } } void PointDensityTextureNode::compile(OSLCompiler &compiler) { ShaderOutput *density_out = output("Density"); ShaderOutput *color_out = output("Color"); const bool use_density = !density_out->links.empty(); const bool use_color = !color_out->links.empty(); if (use_density || use_color) { if (handle.empty()) { ImageManager *image_manager = compiler.scene->image_manager; handle = image_manager->add_image(filename.string(), image_params()); } compiler.parameter_texture("filename", handle); if (space == NODE_TEX_VOXEL_SPACE_WORLD) { compiler.parameter("mapping", tfm); compiler.parameter("use_mapping", 1); } compiler.parameter(this, "interpolation"); compiler.add(this, "node_voxel_texture"); } } /* Normal */ NODE_DEFINE(NormalNode) { NodeType *type = NodeType::add("normal", create, NodeType::SHADER); SOCKET_VECTOR(direction, "direction", zero_float3()); SOCKET_IN_NORMAL(normal, "Normal", zero_float3()); SOCKET_OUT_NORMAL(normal, "Normal"); SOCKET_OUT_FLOAT(dot, "Dot"); return type; } NormalNode::NormalNode() : ShaderNode(get_node_type()) { } void NormalNode::compile(SVMCompiler &compiler) { ShaderInput *normal_in = input("Normal"); ShaderOutput *normal_out = output("Normal"); ShaderOutput *dot_out = output("Dot"); compiler.add_node(NODE_NORMAL, compiler.stack_assign(normal_in), compiler.stack_assign(normal_out), compiler.stack_assign(dot_out)); compiler.add_node( __float_as_int(direction.x), __float_as_int(direction.y), __float_as_int(direction.z)); } void NormalNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "direction"); compiler.add(this, "node_normal"); } /* Mapping */ NODE_DEFINE(MappingNode) { NodeType *type = NodeType::add("mapping", create, NodeType::SHADER); static NodeEnum type_enum; type_enum.insert("point", NODE_MAPPING_TYPE_POINT); type_enum.insert("texture", NODE_MAPPING_TYPE_TEXTURE); type_enum.insert("vector", NODE_MAPPING_TYPE_VECTOR); type_enum.insert("normal", NODE_MAPPING_TYPE_NORMAL); SOCKET_ENUM(mapping_type, "Type", type_enum, NODE_MAPPING_TYPE_POINT); SOCKET_IN_POINT(vector, "Vector", zero_float3()); SOCKET_IN_POINT(location, "Location", zero_float3()); SOCKET_IN_POINT(rotation, "Rotation", zero_float3()); SOCKET_IN_POINT(scale, "Scale", one_float3()); SOCKET_OUT_POINT(vector, "Vector"); return type; } MappingNode::MappingNode() : ShaderNode(get_node_type()) { } void MappingNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { float3 result = svm_mapping((NodeMappingType)mapping_type, vector, location, rotation, scale); folder.make_constant(result); } else { folder.fold_mapping((NodeMappingType)mapping_type); } } void MappingNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *location_in = input("Location"); ShaderInput *rotation_in = input("Rotation"); ShaderInput *scale_in = input("Scale"); ShaderOutput *vector_out = output("Vector"); int vector_stack_offset = compiler.stack_assign(vector_in); int location_stack_offset = compiler.stack_assign(location_in); int rotation_stack_offset = compiler.stack_assign(rotation_in); int scale_stack_offset = compiler.stack_assign(scale_in); int result_stack_offset = compiler.stack_assign(vector_out); compiler.add_node( NODE_MAPPING, mapping_type, compiler.encode_uchar4( vector_stack_offset, location_stack_offset, rotation_stack_offset, scale_stack_offset), result_stack_offset); } void MappingNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "mapping_type"); compiler.add(this, "node_mapping"); } /* RGBToBW */ NODE_DEFINE(RGBToBWNode) { NodeType *type = NodeType::add("rgb_to_bw", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", zero_float3()); SOCKET_OUT_FLOAT(val, "Val"); return type; } RGBToBWNode::RGBToBWNode() : ShaderNode(get_node_type()) { } void RGBToBWNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { float val = folder.scene->shader_manager->linear_rgb_to_gray(color); folder.make_constant(val); } } void RGBToBWNode::compile(SVMCompiler &compiler) { compiler.add_node(NODE_CONVERT, NODE_CONVERT_CF, compiler.stack_assign(inputs[0]), compiler.stack_assign(outputs[0])); } void RGBToBWNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_rgb_to_bw"); } /* Convert */ const NodeType *ConvertNode::node_types[ConvertNode::MAX_TYPE][ConvertNode::MAX_TYPE]; bool ConvertNode::initialized = ConvertNode::register_types(); Node *ConvertNode::create(const NodeType *type) { return new ConvertNode(type->inputs[0].type, type->outputs[0].type); } bool ConvertNode::register_types() { const int num_types = 8; SocketType::Type types[num_types] = {SocketType::FLOAT, SocketType::INT, SocketType::COLOR, SocketType::VECTOR, SocketType::POINT, SocketType::NORMAL, SocketType::STRING, SocketType::CLOSURE}; for (size_t i = 0; i < num_types; i++) { SocketType::Type from = types[i]; ustring from_name(SocketType::type_name(from)); ustring from_value_name("value_" + from_name.string()); for (size_t j = 0; j < num_types; j++) { SocketType::Type to = types[j]; ustring to_name(SocketType::type_name(to)); ustring to_value_name("value_" + to_name.string()); string node_name = "convert_" + from_name.string() + "_to_" + to_name.string(); NodeType *type = NodeType::add(node_name.c_str(), create, NodeType::SHADER); type->register_input(from_value_name, from_value_name, from, SOCKET_OFFSETOF(ConvertNode, value_float), SocketType::zero_default_value(), NULL, NULL, SocketType::LINKABLE); type->register_output(to_value_name, to_value_name, to); assert(from < MAX_TYPE); assert(to < MAX_TYPE); node_types[from][to] = type; } } return true; } ConvertNode::ConvertNode(SocketType::Type from_, SocketType::Type to_, bool autoconvert) : ShaderNode(node_types[from_][to_]) { from = from_; to = to_; if (from == to) special_type = SHADER_SPECIAL_TYPE_PROXY; else if (autoconvert) special_type = SHADER_SPECIAL_TYPE_AUTOCONVERT; } /* Union usage requires a manual copy constructor. */ ConvertNode::ConvertNode(const ConvertNode &other) : ShaderNode(other), from(other.from), to(other.to), value_color(other.value_color), value_string(other.value_string) { } void ConvertNode::constant_fold(const ConstantFolder &folder) { /* proxy nodes should have been removed at this point */ assert(special_type != SHADER_SPECIAL_TYPE_PROXY); /* TODO(DingTo): conversion from/to int is not supported yet, don't fold in that case */ if (folder.all_inputs_constant()) { if (from == SocketType::FLOAT) { if (SocketType::is_float3(to)) { folder.make_constant(make_float3(value_float, value_float, value_float)); } } else if (SocketType::is_float3(from)) { if (to == SocketType::FLOAT) { if (from == SocketType::COLOR) { /* color to float */ float val = folder.scene->shader_manager->linear_rgb_to_gray(value_color); folder.make_constant(val); } else { /* vector/point/normal to float */ folder.make_constant(average(value_vector)); } } else if (SocketType::is_float3(to)) { folder.make_constant(value_color); } } } else { ShaderInput *in = inputs[0]; ShaderNode *prev = in->link->parent; /* no-op conversion of A to B to A */ if (prev->type == node_types[to][from]) { ShaderInput *prev_in = prev->inputs[0]; if (SocketType::is_float3(from) && (to == SocketType::FLOAT || SocketType::is_float3(to)) && prev_in->link) { folder.bypass(prev_in->link); } } } } void ConvertNode::compile(SVMCompiler &compiler) { /* proxy nodes should have been removed at this point */ assert(special_type != SHADER_SPECIAL_TYPE_PROXY); ShaderInput *in = inputs[0]; ShaderOutput *out = outputs[0]; if (from == SocketType::FLOAT) { if (to == SocketType::INT) /* float to int */ compiler.add_node( NODE_CONVERT, NODE_CONVERT_FI, compiler.stack_assign(in), compiler.stack_assign(out)); else /* float to float3 */ compiler.add_node( NODE_CONVERT, NODE_CONVERT_FV, compiler.stack_assign(in), compiler.stack_assign(out)); } else if (from == SocketType::INT) { if (to == SocketType::FLOAT) /* int to float */ compiler.add_node( NODE_CONVERT, NODE_CONVERT_IF, compiler.stack_assign(in), compiler.stack_assign(out)); else /* int to vector/point/normal */ compiler.add_node( NODE_CONVERT, NODE_CONVERT_IV, compiler.stack_assign(in), compiler.stack_assign(out)); } else if (to == SocketType::FLOAT) { if (from == SocketType::COLOR) /* color to float */ compiler.add_node( NODE_CONVERT, NODE_CONVERT_CF, compiler.stack_assign(in), compiler.stack_assign(out)); else /* vector/point/normal to float */ compiler.add_node( NODE_CONVERT, NODE_CONVERT_VF, compiler.stack_assign(in), compiler.stack_assign(out)); } else if (to == SocketType::INT) { if (from == SocketType::COLOR) /* color to int */ compiler.add_node( NODE_CONVERT, NODE_CONVERT_CI, compiler.stack_assign(in), compiler.stack_assign(out)); else /* vector/point/normal to int */ compiler.add_node( NODE_CONVERT, NODE_CONVERT_VI, compiler.stack_assign(in), compiler.stack_assign(out)); } else { /* float3 to float3 */ if (in->link) { /* no op in SVM */ compiler.stack_link(in, out); } else { /* set 0,0,0 value */ compiler.add_node(NODE_VALUE_V, compiler.stack_assign(out)); compiler.add_node(NODE_VALUE_V, value_color); } } } void ConvertNode::compile(OSLCompiler &compiler) { /* proxy nodes should have been removed at this point */ assert(special_type != SHADER_SPECIAL_TYPE_PROXY); if (from == SocketType::FLOAT) compiler.add(this, "node_convert_from_float"); else if (from == SocketType::INT) compiler.add(this, "node_convert_from_int"); else if (from == SocketType::COLOR) compiler.add(this, "node_convert_from_color"); else if (from == SocketType::VECTOR) compiler.add(this, "node_convert_from_vector"); else if (from == SocketType::POINT) compiler.add(this, "node_convert_from_point"); else if (from == SocketType::NORMAL) compiler.add(this, "node_convert_from_normal"); else assert(0); } /* Base type for all closure-type nodes */ BsdfBaseNode::BsdfBaseNode(const NodeType *node_type) : ShaderNode(node_type) { special_type = SHADER_SPECIAL_TYPE_CLOSURE; } bool BsdfBaseNode::has_bump() { /* detect if anything is plugged into the normal input besides the default */ ShaderInput *normal_in = input("Normal"); return (normal_in && normal_in->link && normal_in->link->parent->special_type != SHADER_SPECIAL_TYPE_GEOMETRY); } /* BSDF Closure */ BsdfNode::BsdfNode(const NodeType *node_type) : BsdfBaseNode(node_type) { } void BsdfNode::compile(SVMCompiler &compiler, ShaderInput *param1, ShaderInput *param2, ShaderInput *param3, ShaderInput *param4) { ShaderInput *color_in = input("Color"); ShaderInput *normal_in = input("Normal"); ShaderInput *tangent_in = input("Tangent"); if (color_in->link) compiler.add_node(NODE_CLOSURE_WEIGHT, compiler.stack_assign(color_in)); else compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color); int normal_offset = (normal_in) ? compiler.stack_assign_if_linked(normal_in) : SVM_STACK_INVALID; int tangent_offset = (tangent_in) ? compiler.stack_assign_if_linked(tangent_in) : SVM_STACK_INVALID; int param3_offset = (param3) ? compiler.stack_assign(param3) : SVM_STACK_INVALID; int param4_offset = (param4) ? compiler.stack_assign(param4) : SVM_STACK_INVALID; compiler.add_node( NODE_CLOSURE_BSDF, compiler.encode_uchar4(closure, (param1) ? compiler.stack_assign(param1) : SVM_STACK_INVALID, (param2) ? compiler.stack_assign(param2) : SVM_STACK_INVALID, compiler.closure_mix_weight_offset()), __float_as_int((param1) ? get_float(param1->socket_type) : 0.0f), __float_as_int((param2) ? get_float(param2->socket_type) : 0.0f)); compiler.add_node(normal_offset, tangent_offset, param3_offset, param4_offset); } void BsdfNode::compile(SVMCompiler &compiler) { compile(compiler, NULL, NULL); } void BsdfNode::compile(OSLCompiler & /*compiler*/) { assert(0); } /* Anisotropic BSDF Closure */ NODE_DEFINE(AnisotropicBsdfNode) { NodeType *type = NodeType::add("anisotropic_bsdf", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); static NodeEnum distribution_enum; distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ID); distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ID); distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID); distribution_enum.insert("ashikhmin_shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID); SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_ID); SOCKET_IN_VECTOR(tangent, "Tangent", zero_float3(), SocketType::LINK_TANGENT); SOCKET_IN_FLOAT(roughness, "Roughness", 0.5f); SOCKET_IN_FLOAT(anisotropy, "Anisotropy", 0.5f); SOCKET_IN_FLOAT(rotation, "Rotation", 0.0f); SOCKET_OUT_CLOSURE(BSDF, "BSDF"); return type; } AnisotropicBsdfNode::AnisotropicBsdfNode() : BsdfNode(get_node_type()) { closure = CLOSURE_BSDF_MICROFACET_GGX_ID; } void AnisotropicBsdfNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (shader->has_surface_link()) { ShaderInput *tangent_in = input("Tangent"); if (!tangent_in->link) attributes->add(ATTR_STD_GENERATED); } ShaderNode::attributes(shader, attributes); } void AnisotropicBsdfNode::compile(SVMCompiler &compiler) { closure = distribution; if (closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID) BsdfNode::compile( compiler, input("Roughness"), input("Anisotropy"), input("Rotation"), input("Color")); else BsdfNode::compile(compiler, input("Roughness"), input("Anisotropy"), input("Rotation")); } void AnisotropicBsdfNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "distribution"); compiler.add(this, "node_anisotropic_bsdf"); } /* Glossy BSDF Closure */ NODE_DEFINE(GlossyBsdfNode) { NodeType *type = NodeType::add("glossy_bsdf", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); static NodeEnum distribution_enum; distribution_enum.insert("sharp", CLOSURE_BSDF_REFLECTION_ID); distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ID); distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ID); distribution_enum.insert("ashikhmin_shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID); distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID); SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_ID); SOCKET_IN_FLOAT(roughness, "Roughness", 0.5f); SOCKET_OUT_CLOSURE(BSDF, "BSDF"); return type; } GlossyBsdfNode::GlossyBsdfNode() : BsdfNode(get_node_type()) { closure = CLOSURE_BSDF_MICROFACET_GGX_ID; distribution_orig = NBUILTIN_CLOSURES; } void GlossyBsdfNode::simplify_settings(Scene *scene) { if (distribution_orig == NBUILTIN_CLOSURES) { roughness_orig = roughness; distribution_orig = distribution; } else { /* By default we use original values, so we don't worry about restoring * defaults later one and can only do override when needed. */ roughness = roughness_orig; distribution = distribution_orig; } Integrator *integrator = scene->integrator; ShaderInput *roughness_input = input("Roughness"); if (integrator->get_filter_glossy() == 0.0f) { /* Fallback to Sharp closure for Roughness close to 0. * NOTE: Keep the epsilon in sync with kernel! */ if (!roughness_input->link && roughness <= 1e-4f) { VLOG_DEBUG << "Using sharp glossy BSDF."; distribution = CLOSURE_BSDF_REFLECTION_ID; } } else { /* If filter glossy is used we replace Sharp glossy with GGX so we can * benefit from closure blur to remove unwanted noise. */ if (roughness_input->link == NULL && distribution == CLOSURE_BSDF_REFLECTION_ID) { VLOG_DEBUG << "Using GGX glossy with filter glossy."; distribution = CLOSURE_BSDF_MICROFACET_GGX_ID; roughness = 0.0f; } } closure = distribution; } bool GlossyBsdfNode::has_integrator_dependency() { ShaderInput *roughness_input = input("Roughness"); return !roughness_input->link && (distribution == CLOSURE_BSDF_REFLECTION_ID || roughness <= 1e-4f); } void GlossyBsdfNode::compile(SVMCompiler &compiler) { closure = distribution; if (closure == CLOSURE_BSDF_REFLECTION_ID) BsdfNode::compile(compiler, NULL, NULL); else if (closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID) BsdfNode::compile(compiler, input("Roughness"), NULL, NULL, input("Color")); else BsdfNode::compile(compiler, input("Roughness"), NULL); } void GlossyBsdfNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "distribution"); compiler.add(this, "node_glossy_bsdf"); } /* Glass BSDF Closure */ NODE_DEFINE(GlassBsdfNode) { NodeType *type = NodeType::add("glass_bsdf", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); static NodeEnum distribution_enum; distribution_enum.insert("sharp", CLOSURE_BSDF_SHARP_GLASS_ID); distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID); distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID); distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID); SOCKET_ENUM( distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID); SOCKET_IN_FLOAT(roughness, "Roughness", 0.0f); SOCKET_IN_FLOAT(IOR, "IOR", 0.3f); SOCKET_OUT_CLOSURE(BSDF, "BSDF"); return type; } GlassBsdfNode::GlassBsdfNode() : BsdfNode(get_node_type()) { closure = CLOSURE_BSDF_SHARP_GLASS_ID; distribution_orig = NBUILTIN_CLOSURES; } void GlassBsdfNode::simplify_settings(Scene *scene) { if (distribution_orig == NBUILTIN_CLOSURES) { roughness_orig = roughness; distribution_orig = distribution; } else { /* By default we use original values, so we don't worry about restoring * defaults later one and can only do override when needed. */ roughness = roughness_orig; distribution = distribution_orig; } Integrator *integrator = scene->integrator; ShaderInput *roughness_input = input("Roughness"); if (integrator->get_filter_glossy() == 0.0f) { /* Fallback to Sharp closure for Roughness close to 0. * NOTE: Keep the epsilon in sync with kernel! */ if (!roughness_input->link && roughness <= 1e-4f) { VLOG_DEBUG << "Using sharp glass BSDF."; distribution = CLOSURE_BSDF_SHARP_GLASS_ID; } } else { /* If filter glossy is used we replace Sharp glossy with GGX so we can * benefit from closure blur to remove unwanted noise. */ if (roughness_input->link == NULL && distribution == CLOSURE_BSDF_SHARP_GLASS_ID) { VLOG_DEBUG << "Using GGX glass with filter glossy."; distribution = CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID; roughness = 0.0f; } } closure = distribution; } bool GlassBsdfNode::has_integrator_dependency() { ShaderInput *roughness_input = input("Roughness"); return !roughness_input->link && (distribution == CLOSURE_BSDF_SHARP_GLASS_ID || roughness <= 1e-4f); } void GlassBsdfNode::compile(SVMCompiler &compiler) { closure = distribution; if (closure == CLOSURE_BSDF_SHARP_GLASS_ID) BsdfNode::compile(compiler, NULL, input("IOR")); else if (closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID) BsdfNode::compile(compiler, input("Roughness"), input("IOR"), input("Color")); else BsdfNode::compile(compiler, input("Roughness"), input("IOR")); } void GlassBsdfNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "distribution"); compiler.add(this, "node_glass_bsdf"); } /* Refraction BSDF Closure */ NODE_DEFINE(RefractionBsdfNode) { NodeType *type = NodeType::add("refraction_bsdf", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); static NodeEnum distribution_enum; distribution_enum.insert("sharp", CLOSURE_BSDF_REFRACTION_ID); distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID); distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID); SOCKET_ENUM( distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID); SOCKET_IN_FLOAT(roughness, "Roughness", 0.0f); SOCKET_IN_FLOAT(IOR, "IOR", 0.3f); SOCKET_OUT_CLOSURE(BSDF, "BSDF"); return type; } RefractionBsdfNode::RefractionBsdfNode() : BsdfNode(get_node_type()) { closure = CLOSURE_BSDF_REFRACTION_ID; distribution_orig = NBUILTIN_CLOSURES; } void RefractionBsdfNode::simplify_settings(Scene *scene) { if (distribution_orig == NBUILTIN_CLOSURES) { roughness_orig = roughness; distribution_orig = distribution; } else { /* By default we use original values, so we don't worry about restoring * defaults later one and can only do override when needed. */ roughness = roughness_orig; distribution = distribution_orig; } Integrator *integrator = scene->integrator; ShaderInput *roughness_input = input("Roughness"); if (integrator->get_filter_glossy() == 0.0f) { /* Fallback to Sharp closure for Roughness close to 0. * NOTE: Keep the epsilon in sync with kernel! */ if (!roughness_input->link && roughness <= 1e-4f) { VLOG_DEBUG << "Using sharp refraction BSDF."; distribution = CLOSURE_BSDF_REFRACTION_ID; } } else { /* If filter glossy is used we replace Sharp glossy with GGX so we can * benefit from closure blur to remove unwanted noise. */ if (roughness_input->link == NULL && distribution == CLOSURE_BSDF_REFRACTION_ID) { VLOG_DEBUG << "Using GGX refraction with filter glossy."; distribution = CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID; roughness = 0.0f; } } closure = distribution; } bool RefractionBsdfNode::has_integrator_dependency() { ShaderInput *roughness_input = input("Roughness"); return !roughness_input->link && (distribution == CLOSURE_BSDF_REFRACTION_ID || roughness <= 1e-4f); } void RefractionBsdfNode::compile(SVMCompiler &compiler) { closure = distribution; if (closure == CLOSURE_BSDF_REFRACTION_ID) BsdfNode::compile(compiler, NULL, input("IOR")); else BsdfNode::compile(compiler, input("Roughness"), input("IOR")); } void RefractionBsdfNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "distribution"); compiler.add(this, "node_refraction_bsdf"); } /* Toon BSDF Closure */ NODE_DEFINE(ToonBsdfNode) { NodeType *type = NodeType::add("toon_bsdf", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); static NodeEnum component_enum; component_enum.insert("diffuse", CLOSURE_BSDF_DIFFUSE_TOON_ID); component_enum.insert("glossy", CLOSURE_BSDF_GLOSSY_TOON_ID); SOCKET_ENUM(component, "Component", component_enum, CLOSURE_BSDF_DIFFUSE_TOON_ID); SOCKET_IN_FLOAT(size, "Size", 0.5f); SOCKET_IN_FLOAT(smooth, "Smooth", 0.0f); SOCKET_OUT_CLOSURE(BSDF, "BSDF"); return type; } ToonBsdfNode::ToonBsdfNode() : BsdfNode(get_node_type()) { closure = CLOSURE_BSDF_DIFFUSE_TOON_ID; } void ToonBsdfNode::compile(SVMCompiler &compiler) { closure = component; BsdfNode::compile(compiler, input("Size"), input("Smooth")); } void ToonBsdfNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "component"); compiler.add(this, "node_toon_bsdf"); } /* Velvet BSDF Closure */ NODE_DEFINE(VelvetBsdfNode) { NodeType *type = NodeType::add("velvet_bsdf", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); SOCKET_IN_FLOAT(sigma, "Sigma", 1.0f); SOCKET_OUT_CLOSURE(BSDF, "BSDF"); return type; } VelvetBsdfNode::VelvetBsdfNode() : BsdfNode(get_node_type()) { closure = CLOSURE_BSDF_ASHIKHMIN_VELVET_ID; } void VelvetBsdfNode::compile(SVMCompiler &compiler) { BsdfNode::compile(compiler, input("Sigma"), NULL); } void VelvetBsdfNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_velvet_bsdf"); } /* Diffuse BSDF Closure */ NODE_DEFINE(DiffuseBsdfNode) { NodeType *type = NodeType::add("diffuse_bsdf", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); SOCKET_IN_FLOAT(roughness, "Roughness", 0.0f); SOCKET_OUT_CLOSURE(BSDF, "BSDF"); return type; } DiffuseBsdfNode::DiffuseBsdfNode() : BsdfNode(get_node_type()) { closure = CLOSURE_BSDF_DIFFUSE_ID; } void DiffuseBsdfNode::compile(SVMCompiler &compiler) { BsdfNode::compile(compiler, input("Roughness"), NULL); } void DiffuseBsdfNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_diffuse_bsdf"); } /* Disney principled BSDF Closure */ NODE_DEFINE(PrincipledBsdfNode) { NodeType *type = NodeType::add("principled_bsdf", create, NodeType::SHADER); static NodeEnum distribution_enum; distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID); distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID); SOCKET_ENUM( distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID); static NodeEnum subsurface_method_enum; subsurface_method_enum.insert("burley", CLOSURE_BSSRDF_BURLEY_ID); subsurface_method_enum.insert("random_walk_fixed_radius", CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID); subsurface_method_enum.insert("random_walk", CLOSURE_BSSRDF_RANDOM_WALK_ID); SOCKET_ENUM(subsurface_method, "Subsurface Method", subsurface_method_enum, CLOSURE_BSSRDF_RANDOM_WALK_ID); SOCKET_IN_COLOR(base_color, "Base Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_COLOR(subsurface_color, "Subsurface Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_FLOAT(metallic, "Metallic", 0.0f); SOCKET_IN_FLOAT(subsurface, "Subsurface", 0.0f); SOCKET_IN_VECTOR(subsurface_radius, "Subsurface Radius", make_float3(0.1f, 0.1f, 0.1f)); SOCKET_IN_FLOAT(subsurface_ior, "Subsurface IOR", 1.4f); SOCKET_IN_FLOAT(subsurface_anisotropy, "Subsurface Anisotropy", 0.0f); SOCKET_IN_FLOAT(specular, "Specular", 0.0f); SOCKET_IN_FLOAT(roughness, "Roughness", 0.5f); SOCKET_IN_FLOAT(specular_tint, "Specular Tint", 0.0f); SOCKET_IN_FLOAT(anisotropic, "Anisotropic", 0.0f); SOCKET_IN_FLOAT(sheen, "Sheen", 0.0f); SOCKET_IN_FLOAT(sheen_tint, "Sheen Tint", 0.0f); SOCKET_IN_FLOAT(clearcoat, "Clearcoat", 0.0f); SOCKET_IN_FLOAT(clearcoat_roughness, "Clearcoat Roughness", 0.03f); SOCKET_IN_FLOAT(ior, "IOR", 0.0f); SOCKET_IN_FLOAT(transmission, "Transmission", 0.0f); SOCKET_IN_FLOAT(transmission_roughness, "Transmission Roughness", 0.0f); SOCKET_IN_FLOAT(anisotropic_rotation, "Anisotropic Rotation", 0.0f); SOCKET_IN_COLOR(emission, "Emission", zero_float3()); SOCKET_IN_FLOAT(emission_strength, "Emission Strength", 1.0f); SOCKET_IN_FLOAT(alpha, "Alpha", 1.0f); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_IN_NORMAL(clearcoat_normal, "Clearcoat Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_IN_NORMAL(tangent, "Tangent", zero_float3(), SocketType::LINK_TANGENT); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); SOCKET_OUT_CLOSURE(BSDF, "BSDF"); return type; } PrincipledBsdfNode::PrincipledBsdfNode() : BsdfBaseNode(get_node_type()) { closure = CLOSURE_BSDF_PRINCIPLED_ID; distribution = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID; distribution_orig = NBUILTIN_CLOSURES; } void PrincipledBsdfNode::expand(ShaderGraph *graph) { ShaderOutput *principled_out = output("BSDF"); ShaderInput *emission_in = input("Emission"); ShaderInput *emission_strength_in = input("Emission Strength"); if ((emission_in->link || emission != zero_float3()) && (emission_strength_in->link || emission_strength != 0.0f)) { /* Create add closure and emission, and relink inputs. */ AddClosureNode *add = graph->create_node(); EmissionNode *emission_node = graph->create_node(); ShaderOutput *new_out = add->output("Closure"); graph->add(add); graph->add(emission_node); graph->relink(emission_strength_in, emission_node->input("Strength")); graph->relink(emission_in, emission_node->input("Color")); graph->relink(principled_out, new_out); graph->connect(emission_node->output("Emission"), add->input("Closure1")); graph->connect(principled_out, add->input("Closure2")); principled_out = new_out; } else { /* Disconnect unused links if the other value is zero, required before * we remove the input from the node entirely. */ if (emission_in->link) { emission_in->disconnect(); } if (emission_strength_in->link) { emission_strength_in->disconnect(); } } ShaderInput *alpha_in = input("Alpha"); if (alpha_in->link || alpha != 1.0f) { /* Create mix and transparent BSDF for alpha transparency. */ MixClosureNode *mix = graph->create_node(); TransparentBsdfNode *transparent = graph->create_node(); graph->add(mix); graph->add(transparent); graph->relink(alpha_in, mix->input("Fac")); graph->relink(principled_out, mix->output("Closure")); graph->connect(transparent->output("BSDF"), mix->input("Closure1")); graph->connect(principled_out, mix->input("Closure2")); } remove_input(emission_in); remove_input(emission_strength_in); remove_input(alpha_in); } bool PrincipledBsdfNode::has_surface_bssrdf() { ShaderInput *subsurface_in = input("Subsurface"); return (subsurface_in->link != NULL || subsurface > CLOSURE_WEIGHT_CUTOFF); } void PrincipledBsdfNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (shader->has_surface_link()) { ShaderInput *tangent_in = input("Tangent"); if (!tangent_in->link) attributes->add(ATTR_STD_GENERATED); } ShaderNode::attributes(shader, attributes); } void PrincipledBsdfNode::compile(SVMCompiler &compiler, ShaderInput *p_metallic, ShaderInput *p_subsurface, ShaderInput *p_subsurface_radius, ShaderInput *p_subsurface_ior, ShaderInput *p_subsurface_anisotropy, ShaderInput *p_specular, ShaderInput *p_roughness, ShaderInput *p_specular_tint, ShaderInput *p_anisotropic, ShaderInput *p_sheen, ShaderInput *p_sheen_tint, ShaderInput *p_clearcoat, ShaderInput *p_clearcoat_roughness, ShaderInput *p_ior, ShaderInput *p_transmission, ShaderInput *p_anisotropic_rotation, ShaderInput *p_transmission_roughness) { ShaderInput *base_color_in = input("Base Color"); ShaderInput *subsurface_color_in = input("Subsurface Color"); ShaderInput *normal_in = input("Normal"); ShaderInput *clearcoat_normal_in = input("Clearcoat Normal"); ShaderInput *tangent_in = input("Tangent"); float3 weight = one_float3(); compiler.add_node(NODE_CLOSURE_SET_WEIGHT, weight); int normal_offset = compiler.stack_assign_if_linked(normal_in); int clearcoat_normal_offset = compiler.stack_assign_if_linked(clearcoat_normal_in); int tangent_offset = compiler.stack_assign_if_linked(tangent_in); int specular_offset = compiler.stack_assign(p_specular); int roughness_offset = compiler.stack_assign(p_roughness); int specular_tint_offset = compiler.stack_assign(p_specular_tint); int anisotropic_offset = compiler.stack_assign(p_anisotropic); int sheen_offset = compiler.stack_assign(p_sheen); int sheen_tint_offset = compiler.stack_assign(p_sheen_tint); int clearcoat_offset = compiler.stack_assign(p_clearcoat); int clearcoat_roughness_offset = compiler.stack_assign(p_clearcoat_roughness); int ior_offset = compiler.stack_assign(p_ior); int transmission_offset = compiler.stack_assign(p_transmission); int transmission_roughness_offset = compiler.stack_assign(p_transmission_roughness); int anisotropic_rotation_offset = compiler.stack_assign(p_anisotropic_rotation); int subsurface_radius_offset = compiler.stack_assign(p_subsurface_radius); int subsurface_ior_offset = compiler.stack_assign(p_subsurface_ior); int subsurface_anisotropy_offset = compiler.stack_assign(p_subsurface_anisotropy); compiler.add_node(NODE_CLOSURE_BSDF, compiler.encode_uchar4(closure, compiler.stack_assign(p_metallic), compiler.stack_assign(p_subsurface), compiler.closure_mix_weight_offset()), __float_as_int((p_metallic) ? get_float(p_metallic->socket_type) : 0.0f), __float_as_int((p_subsurface) ? get_float(p_subsurface->socket_type) : 0.0f)); compiler.add_node( normal_offset, tangent_offset, compiler.encode_uchar4( specular_offset, roughness_offset, specular_tint_offset, anisotropic_offset), compiler.encode_uchar4( sheen_offset, sheen_tint_offset, clearcoat_offset, clearcoat_roughness_offset)); compiler.add_node(compiler.encode_uchar4(ior_offset, transmission_offset, anisotropic_rotation_offset, transmission_roughness_offset), distribution, subsurface_method, SVM_STACK_INVALID); float3 bc_default = get_float3(base_color_in->socket_type); compiler.add_node( ((base_color_in->link) ? compiler.stack_assign(base_color_in) : SVM_STACK_INVALID), __float_as_int(bc_default.x), __float_as_int(bc_default.y), __float_as_int(bc_default.z)); compiler.add_node(clearcoat_normal_offset, subsurface_radius_offset, subsurface_ior_offset, subsurface_anisotropy_offset); float3 ss_default = get_float3(subsurface_color_in->socket_type); compiler.add_node(((subsurface_color_in->link) ? compiler.stack_assign(subsurface_color_in) : SVM_STACK_INVALID), __float_as_int(ss_default.x), __float_as_int(ss_default.y), __float_as_int(ss_default.z)); } bool PrincipledBsdfNode::has_integrator_dependency() { ShaderInput *roughness_input = input("Roughness"); return !roughness_input->link && roughness <= 1e-4f; } void PrincipledBsdfNode::compile(SVMCompiler &compiler) { compile(compiler, input("Metallic"), input("Subsurface"), input("Subsurface Radius"), input("Subsurface IOR"), input("Subsurface Anisotropy"), input("Specular"), input("Roughness"), input("Specular Tint"), input("Anisotropic"), input("Sheen"), input("Sheen Tint"), input("Clearcoat"), input("Clearcoat Roughness"), input("IOR"), input("Transmission"), input("Anisotropic Rotation"), input("Transmission Roughness")); } void PrincipledBsdfNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "distribution"); compiler.parameter(this, "subsurface_method"); compiler.add(this, "node_principled_bsdf"); } bool PrincipledBsdfNode::has_bssrdf_bump() { return has_surface_bssrdf() && has_bump(); } /* Translucent BSDF Closure */ NODE_DEFINE(TranslucentBsdfNode) { NodeType *type = NodeType::add("translucent_bsdf", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); SOCKET_OUT_CLOSURE(BSDF, "BSDF"); return type; } TranslucentBsdfNode::TranslucentBsdfNode() : BsdfNode(get_node_type()) { closure = CLOSURE_BSDF_TRANSLUCENT_ID; } void TranslucentBsdfNode::compile(SVMCompiler &compiler) { BsdfNode::compile(compiler, NULL, NULL); } void TranslucentBsdfNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_translucent_bsdf"); } /* Transparent BSDF Closure */ NODE_DEFINE(TransparentBsdfNode) { NodeType *type = NodeType::add("transparent_bsdf", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", one_float3()); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); SOCKET_OUT_CLOSURE(BSDF, "BSDF"); return type; } TransparentBsdfNode::TransparentBsdfNode() : BsdfNode(get_node_type()) { closure = CLOSURE_BSDF_TRANSPARENT_ID; } void TransparentBsdfNode::compile(SVMCompiler &compiler) { BsdfNode::compile(compiler, NULL, NULL); } void TransparentBsdfNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_transparent_bsdf"); } /* Subsurface Scattering Closure */ NODE_DEFINE(SubsurfaceScatteringNode) { NodeType *type = NodeType::add("subsurface_scattering", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); static NodeEnum method_enum; method_enum.insert("burley", CLOSURE_BSSRDF_BURLEY_ID); method_enum.insert("random_walk_fixed_radius", CLOSURE_BSSRDF_RANDOM_WALK_FIXED_RADIUS_ID); method_enum.insert("random_walk", CLOSURE_BSSRDF_RANDOM_WALK_ID); SOCKET_ENUM(method, "Method", method_enum, CLOSURE_BSSRDF_RANDOM_WALK_ID); SOCKET_IN_FLOAT(scale, "Scale", 0.01f); SOCKET_IN_VECTOR(radius, "Radius", make_float3(0.1f, 0.1f, 0.1f)); SOCKET_IN_FLOAT(subsurface_ior, "IOR", 1.4f); SOCKET_IN_FLOAT(subsurface_anisotropy, "Anisotropy", 0.0f); SOCKET_OUT_CLOSURE(BSSRDF, "BSSRDF"); return type; } SubsurfaceScatteringNode::SubsurfaceScatteringNode() : BsdfNode(get_node_type()) { closure = method; } void SubsurfaceScatteringNode::compile(SVMCompiler &compiler) { closure = method; BsdfNode::compile(compiler, input("Scale"), input("IOR"), input("Radius"), input("Anisotropy")); } void SubsurfaceScatteringNode::compile(OSLCompiler &compiler) { closure = method; compiler.parameter(this, "method"); compiler.add(this, "node_subsurface_scattering"); } bool SubsurfaceScatteringNode::has_bssrdf_bump() { /* detect if anything is plugged into the normal input besides the default */ ShaderInput *normal_in = input("Normal"); return (normal_in->link && normal_in->link->parent->special_type != SHADER_SPECIAL_TYPE_GEOMETRY); } /* Emissive Closure */ NODE_DEFINE(EmissionNode) { NodeType *type = NodeType::add("emission", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_FLOAT(strength, "Strength", 10.0f); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); SOCKET_OUT_CLOSURE(emission, "Emission"); return type; } EmissionNode::EmissionNode() : ShaderNode(get_node_type()) { } void EmissionNode::compile(SVMCompiler &compiler) { ShaderInput *color_in = input("Color"); ShaderInput *strength_in = input("Strength"); if (color_in->link || strength_in->link) { compiler.add_node( NODE_EMISSION_WEIGHT, compiler.stack_assign(color_in), compiler.stack_assign(strength_in)); } else compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color * strength); compiler.add_node(NODE_CLOSURE_EMISSION, compiler.closure_mix_weight_offset()); } void EmissionNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_emission"); } void EmissionNode::constant_fold(const ConstantFolder &folder) { ShaderInput *color_in = input("Color"); ShaderInput *strength_in = input("Strength"); if ((!color_in->link && color == zero_float3()) || (!strength_in->link && strength == 0.0f)) { folder.discard(); } } /* Background Closure */ NODE_DEFINE(BackgroundNode) { NodeType *type = NodeType::add("background_shader", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_FLOAT(strength, "Strength", 1.0f); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); SOCKET_OUT_CLOSURE(background, "Background"); return type; } BackgroundNode::BackgroundNode() : ShaderNode(get_node_type()) { } void BackgroundNode::compile(SVMCompiler &compiler) { ShaderInput *color_in = input("Color"); ShaderInput *strength_in = input("Strength"); if (color_in->link || strength_in->link) { compiler.add_node( NODE_EMISSION_WEIGHT, compiler.stack_assign(color_in), compiler.stack_assign(strength_in)); } else compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color * strength); compiler.add_node(NODE_CLOSURE_BACKGROUND, compiler.closure_mix_weight_offset()); } void BackgroundNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_background"); } void BackgroundNode::constant_fold(const ConstantFolder &folder) { ShaderInput *color_in = input("Color"); ShaderInput *strength_in = input("Strength"); if ((!color_in->link && color == zero_float3()) || (!strength_in->link && strength == 0.0f)) { folder.discard(); } } /* Holdout Closure */ NODE_DEFINE(HoldoutNode) { NodeType *type = NodeType::add("holdout", create, NodeType::SHADER); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); SOCKET_IN_FLOAT(volume_mix_weight, "VolumeMixWeight", 0.0f, SocketType::SVM_INTERNAL); SOCKET_OUT_CLOSURE(holdout, "Holdout"); return type; } HoldoutNode::HoldoutNode() : ShaderNode(get_node_type()) { } void HoldoutNode::compile(SVMCompiler &compiler) { float3 value = one_float3(); compiler.add_node(NODE_CLOSURE_SET_WEIGHT, value); compiler.add_node(NODE_CLOSURE_HOLDOUT, compiler.closure_mix_weight_offset()); } void HoldoutNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_holdout"); } /* Ambient Occlusion */ NODE_DEFINE(AmbientOcclusionNode) { NodeType *type = NodeType::add("ambient_occlusion", create, NodeType::SHADER); SOCKET_INT(samples, "Samples", 16); SOCKET_IN_COLOR(color, "Color", one_float3()); SOCKET_IN_FLOAT(distance, "Distance", 1.0f); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_BOOLEAN(inside, "Inside", false); SOCKET_BOOLEAN(only_local, "Only Local", false); SOCKET_OUT_COLOR(color, "Color"); SOCKET_OUT_FLOAT(ao, "AO"); return type; } AmbientOcclusionNode::AmbientOcclusionNode() : ShaderNode(get_node_type()) { } void AmbientOcclusionNode::compile(SVMCompiler &compiler) { ShaderInput *color_in = input("Color"); ShaderInput *distance_in = input("Distance"); ShaderInput *normal_in = input("Normal"); ShaderOutput *color_out = output("Color"); ShaderOutput *ao_out = output("AO"); int flags = (inside ? NODE_AO_INSIDE : 0) | (only_local ? NODE_AO_ONLY_LOCAL : 0); if (!distance_in->link && distance == 0.0f) { flags |= NODE_AO_GLOBAL_RADIUS; } compiler.add_node(NODE_AMBIENT_OCCLUSION, compiler.encode_uchar4(flags, compiler.stack_assign_if_linked(distance_in), compiler.stack_assign_if_linked(normal_in), compiler.stack_assign(ao_out)), compiler.encode_uchar4(compiler.stack_assign(color_in), compiler.stack_assign(color_out), samples), __float_as_uint(distance)); } void AmbientOcclusionNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "samples"); compiler.parameter(this, "inside"); compiler.parameter(this, "only_local"); compiler.add(this, "node_ambient_occlusion"); } /* Volume Closure */ VolumeNode::VolumeNode(const NodeType *node_type) : ShaderNode(node_type) { closure = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID; } void VolumeNode::compile(SVMCompiler &compiler, ShaderInput *param1, ShaderInput *param2) { ShaderInput *color_in = input("Color"); if (color_in->link) compiler.add_node(NODE_CLOSURE_WEIGHT, compiler.stack_assign(color_in)); else compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color); compiler.add_node( NODE_CLOSURE_VOLUME, compiler.encode_uchar4(closure, (param1) ? compiler.stack_assign(param1) : SVM_STACK_INVALID, (param2) ? compiler.stack_assign(param2) : SVM_STACK_INVALID, compiler.closure_mix_weight_offset()), __float_as_int((param1) ? get_float(param1->socket_type) : 0.0f), __float_as_int((param2) ? get_float(param2->socket_type) : 0.0f)); } void VolumeNode::compile(SVMCompiler &compiler) { compile(compiler, NULL, NULL); } void VolumeNode::compile(OSLCompiler & /*compiler*/) { assert(0); } /* Absorption Volume Closure */ NODE_DEFINE(AbsorptionVolumeNode) { NodeType *type = NodeType::add("absorption_volume", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_FLOAT(density, "Density", 1.0f); SOCKET_IN_FLOAT(volume_mix_weight, "VolumeMixWeight", 0.0f, SocketType::SVM_INTERNAL); SOCKET_OUT_CLOSURE(volume, "Volume"); return type; } AbsorptionVolumeNode::AbsorptionVolumeNode() : VolumeNode(get_node_type()) { closure = CLOSURE_VOLUME_ABSORPTION_ID; } void AbsorptionVolumeNode::compile(SVMCompiler &compiler) { VolumeNode::compile(compiler, input("Density"), NULL); } void AbsorptionVolumeNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_absorption_volume"); } /* Scatter Volume Closure */ NODE_DEFINE(ScatterVolumeNode) { NodeType *type = NodeType::add("scatter_volume", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_FLOAT(density, "Density", 1.0f); SOCKET_IN_FLOAT(anisotropy, "Anisotropy", 0.0f); SOCKET_IN_FLOAT(volume_mix_weight, "VolumeMixWeight", 0.0f, SocketType::SVM_INTERNAL); SOCKET_OUT_CLOSURE(volume, "Volume"); return type; } ScatterVolumeNode::ScatterVolumeNode() : VolumeNode(get_node_type()) { closure = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID; } void ScatterVolumeNode::compile(SVMCompiler &compiler) { VolumeNode::compile(compiler, input("Density"), input("Anisotropy")); } void ScatterVolumeNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_scatter_volume"); } /* Principled Volume Closure */ NODE_DEFINE(PrincipledVolumeNode) { NodeType *type = NodeType::add("principled_volume", create, NodeType::SHADER); SOCKET_IN_STRING(density_attribute, "Density Attribute", ustring()); SOCKET_IN_STRING(color_attribute, "Color Attribute", ustring()); SOCKET_IN_STRING(temperature_attribute, "Temperature Attribute", ustring()); SOCKET_IN_COLOR(color, "Color", make_float3(0.5f, 0.5f, 0.5f)); SOCKET_IN_FLOAT(density, "Density", 1.0f); SOCKET_IN_FLOAT(anisotropy, "Anisotropy", 0.0f); SOCKET_IN_COLOR(absorption_color, "Absorption Color", zero_float3()); SOCKET_IN_FLOAT(emission_strength, "Emission Strength", 0.0f); SOCKET_IN_COLOR(emission_color, "Emission Color", one_float3()); SOCKET_IN_FLOAT(blackbody_intensity, "Blackbody Intensity", 0.0f); SOCKET_IN_COLOR(blackbody_tint, "Blackbody Tint", one_float3()); SOCKET_IN_FLOAT(temperature, "Temperature", 1000.0f); SOCKET_IN_FLOAT(volume_mix_weight, "VolumeMixWeight", 0.0f, SocketType::SVM_INTERNAL); SOCKET_OUT_CLOSURE(volume, "Volume"); return type; } PrincipledVolumeNode::PrincipledVolumeNode() : VolumeNode(get_node_type()) { closure = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID; density_attribute = ustring("density"); temperature_attribute = ustring("temperature"); } void PrincipledVolumeNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (shader->has_volume) { ShaderInput *density_in = input("Density"); ShaderInput *blackbody_in = input("Blackbody Intensity"); if (density_in->link || density > 0.0f) { attributes->add_standard(density_attribute); attributes->add_standard(color_attribute); } if (blackbody_in->link || blackbody_intensity > 0.0f) { attributes->add_standard(temperature_attribute); } attributes->add(ATTR_STD_GENERATED_TRANSFORM); } ShaderNode::attributes(shader, attributes); } void PrincipledVolumeNode::compile(SVMCompiler &compiler) { ShaderInput *color_in = input("Color"); ShaderInput *density_in = input("Density"); ShaderInput *anisotropy_in = input("Anisotropy"); ShaderInput *absorption_color_in = input("Absorption Color"); ShaderInput *emission_in = input("Emission Strength"); ShaderInput *emission_color_in = input("Emission Color"); ShaderInput *blackbody_in = input("Blackbody Intensity"); ShaderInput *blackbody_tint_in = input("Blackbody Tint"); ShaderInput *temperature_in = input("Temperature"); if (color_in->link) compiler.add_node(NODE_CLOSURE_WEIGHT, compiler.stack_assign(color_in)); else compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color); compiler.add_node(NODE_PRINCIPLED_VOLUME, compiler.encode_uchar4(compiler.stack_assign_if_linked(density_in), compiler.stack_assign_if_linked(anisotropy_in), compiler.stack_assign(absorption_color_in), compiler.closure_mix_weight_offset()), compiler.encode_uchar4(compiler.stack_assign_if_linked(emission_in), compiler.stack_assign(emission_color_in), compiler.stack_assign_if_linked(blackbody_in), compiler.stack_assign(temperature_in)), compiler.stack_assign(blackbody_tint_in)); int attr_density = compiler.attribute_standard(density_attribute); int attr_color = compiler.attribute_standard(color_attribute); int attr_temperature = compiler.attribute_standard(temperature_attribute); compiler.add_node(__float_as_int(density), __float_as_int(anisotropy), __float_as_int(emission_strength), __float_as_int(blackbody_intensity)); compiler.add_node(attr_density, attr_color, attr_temperature); } void PrincipledVolumeNode::compile(OSLCompiler &compiler) { if (Attribute::name_standard(density_attribute.c_str())) { density_attribute = ustring("geom:" + density_attribute.string()); } if (Attribute::name_standard(color_attribute.c_str())) { color_attribute = ustring("geom:" + color_attribute.string()); } if (Attribute::name_standard(temperature_attribute.c_str())) { temperature_attribute = ustring("geom:" + temperature_attribute.string()); } compiler.add(this, "node_principled_volume"); } /* Principled Hair BSDF Closure */ NODE_DEFINE(PrincipledHairBsdfNode) { NodeType *type = NodeType::add("principled_hair_bsdf", create, NodeType::SHADER); /* Color parametrization specified as enum. */ static NodeEnum parametrization_enum; parametrization_enum.insert("Direct coloring", NODE_PRINCIPLED_HAIR_REFLECTANCE); parametrization_enum.insert("Melanin concentration", NODE_PRINCIPLED_HAIR_PIGMENT_CONCENTRATION); parametrization_enum.insert("Absorption coefficient", NODE_PRINCIPLED_HAIR_DIRECT_ABSORPTION); SOCKET_ENUM( parametrization, "Parametrization", parametrization_enum, NODE_PRINCIPLED_HAIR_REFLECTANCE); /* Initialize sockets to their default values. */ SOCKET_IN_COLOR(color, "Color", make_float3(0.017513f, 0.005763f, 0.002059f)); SOCKET_IN_FLOAT(melanin, "Melanin", 0.8f); SOCKET_IN_FLOAT(melanin_redness, "Melanin Redness", 1.0f); SOCKET_IN_COLOR(tint, "Tint", make_float3(1.f, 1.f, 1.f)); SOCKET_IN_VECTOR(absorption_coefficient, "Absorption Coefficient", make_float3(0.245531f, 0.52f, 1.365f), SocketType::VECTOR); SOCKET_IN_FLOAT(offset, "Offset", 2.f * M_PI_F / 180.f); SOCKET_IN_FLOAT(roughness, "Roughness", 0.3f); SOCKET_IN_FLOAT(radial_roughness, "Radial Roughness", 0.3f); SOCKET_IN_FLOAT(coat, "Coat", 0.0f); SOCKET_IN_FLOAT(ior, "IOR", 1.55f); SOCKET_IN_FLOAT(random_roughness, "Random Roughness", 0.0f); SOCKET_IN_FLOAT(random_color, "Random Color", 0.0f); SOCKET_IN_FLOAT(random, "Random", 0.0f); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); SOCKET_OUT_CLOSURE(BSDF, "BSDF"); return type; } PrincipledHairBsdfNode::PrincipledHairBsdfNode() : BsdfBaseNode(get_node_type()) { closure = CLOSURE_BSDF_HAIR_PRINCIPLED_ID; } /* Enable retrieving Hair Info -> Random if Random isn't linked. */ void PrincipledHairBsdfNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (!input("Random")->link) { attributes->add(ATTR_STD_CURVE_RANDOM); } ShaderNode::attributes(shader, attributes); } /* Prepares the input data for the SVM shader. */ void PrincipledHairBsdfNode::compile(SVMCompiler &compiler) { compiler.add_node(NODE_CLOSURE_SET_WEIGHT, one_float3()); ShaderInput *roughness_in = input("Roughness"); ShaderInput *radial_roughness_in = input("Radial Roughness"); ShaderInput *random_roughness_in = input("Random Roughness"); ShaderInput *offset_in = input("Offset"); ShaderInput *coat_in = input("Coat"); ShaderInput *ior_in = input("IOR"); ShaderInput *melanin_in = input("Melanin"); ShaderInput *melanin_redness_in = input("Melanin Redness"); ShaderInput *random_color_in = input("Random Color"); int color_ofs = compiler.stack_assign(input("Color")); int tint_ofs = compiler.stack_assign(input("Tint")); int absorption_coefficient_ofs = compiler.stack_assign(input("Absorption Coefficient")); int roughness_ofs = compiler.stack_assign_if_linked(roughness_in); int radial_roughness_ofs = compiler.stack_assign_if_linked(radial_roughness_in); int normal_ofs = compiler.stack_assign_if_linked(input("Normal")); int offset_ofs = compiler.stack_assign_if_linked(offset_in); int ior_ofs = compiler.stack_assign_if_linked(ior_in); int coat_ofs = compiler.stack_assign_if_linked(coat_in); int melanin_ofs = compiler.stack_assign_if_linked(melanin_in); int melanin_redness_ofs = compiler.stack_assign_if_linked(melanin_redness_in); ShaderInput *random_in = input("Random"); int attr_random = random_in->link ? SVM_STACK_INVALID : compiler.attribute(ATTR_STD_CURVE_RANDOM); int random_in_ofs = compiler.stack_assign_if_linked(random_in); int random_color_ofs = compiler.stack_assign_if_linked(random_color_in); int random_roughness_ofs = compiler.stack_assign_if_linked(random_roughness_in); /* Encode all parameters into data nodes. */ /* node */ compiler.add_node( NODE_CLOSURE_BSDF, /* Socket IDs can be packed 4 at a time into a single data packet */ compiler.encode_uchar4( closure, roughness_ofs, radial_roughness_ofs, compiler.closure_mix_weight_offset()), /* The rest are stored as unsigned integers */ __float_as_uint(roughness), __float_as_uint(radial_roughness)); /* data node */ compiler.add_node(normal_ofs, compiler.encode_uchar4(offset_ofs, ior_ofs, color_ofs, parametrization), __float_as_uint(offset), __float_as_uint(ior)); /* data node 2 */ compiler.add_node(compiler.encode_uchar4( coat_ofs, melanin_ofs, melanin_redness_ofs, absorption_coefficient_ofs), __float_as_uint(coat), __float_as_uint(melanin), __float_as_uint(melanin_redness)); /* data node 3 */ compiler.add_node( compiler.encode_uchar4(tint_ofs, random_in_ofs, random_color_ofs, random_roughness_ofs), __float_as_uint(random), __float_as_uint(random_color), __float_as_uint(random_roughness)); /* data node 4 */ compiler.add_node( compiler.encode_uchar4( SVM_STACK_INVALID, SVM_STACK_INVALID, SVM_STACK_INVALID, SVM_STACK_INVALID), attr_random, SVM_STACK_INVALID, SVM_STACK_INVALID); } /* Prepares the input data for the OSL shader. */ void PrincipledHairBsdfNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "parametrization"); compiler.add(this, "node_principled_hair_bsdf"); } /* Hair BSDF Closure */ NODE_DEFINE(HairBsdfNode) { NodeType *type = NodeType::add("hair_bsdf", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f)); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL); static NodeEnum component_enum; component_enum.insert("reflection", CLOSURE_BSDF_HAIR_REFLECTION_ID); component_enum.insert("transmission", CLOSURE_BSDF_HAIR_TRANSMISSION_ID); SOCKET_ENUM(component, "Component", component_enum, CLOSURE_BSDF_HAIR_REFLECTION_ID); SOCKET_IN_FLOAT(offset, "Offset", 0.0f); SOCKET_IN_FLOAT(roughness_u, "RoughnessU", 0.2f); SOCKET_IN_FLOAT(roughness_v, "RoughnessV", 0.2f); SOCKET_IN_VECTOR(tangent, "Tangent", zero_float3()); SOCKET_OUT_CLOSURE(BSDF, "BSDF"); return type; } HairBsdfNode::HairBsdfNode() : BsdfNode(get_node_type()) { closure = CLOSURE_BSDF_HAIR_REFLECTION_ID; } void HairBsdfNode::compile(SVMCompiler &compiler) { closure = component; BsdfNode::compile(compiler, input("RoughnessU"), input("RoughnessV"), input("Offset")); } void HairBsdfNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "component"); compiler.add(this, "node_hair_bsdf"); } /* Geometry */ NODE_DEFINE(GeometryNode) { NodeType *type = NodeType::add("geometry", create, NodeType::SHADER); SOCKET_IN_NORMAL( normal_osl, "NormalIn", zero_float3(), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL); SOCKET_OUT_POINT(position, "Position"); SOCKET_OUT_NORMAL(normal, "Normal"); SOCKET_OUT_NORMAL(tangent, "Tangent"); SOCKET_OUT_NORMAL(true_normal, "True Normal"); SOCKET_OUT_VECTOR(incoming, "Incoming"); SOCKET_OUT_POINT(parametric, "Parametric"); SOCKET_OUT_FLOAT(backfacing, "Backfacing"); SOCKET_OUT_FLOAT(pointiness, "Pointiness"); SOCKET_OUT_FLOAT(random_per_island, "Random Per Island"); return type; } GeometryNode::GeometryNode() : ShaderNode(get_node_type()) { special_type = SHADER_SPECIAL_TYPE_GEOMETRY; } void GeometryNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (shader->has_surface_link()) { if (!output("Tangent")->links.empty()) { attributes->add(ATTR_STD_GENERATED); } if (!output("Pointiness")->links.empty()) { attributes->add(ATTR_STD_POINTINESS); } if (!output("Random Per Island")->links.empty()) { attributes->add(ATTR_STD_RANDOM_PER_ISLAND); } } ShaderNode::attributes(shader, attributes); } void GeometryNode::compile(SVMCompiler &compiler) { ShaderOutput *out; ShaderNodeType geom_node = NODE_GEOMETRY; ShaderNodeType attr_node = NODE_ATTR; if (bump == SHADER_BUMP_DX) { geom_node = NODE_GEOMETRY_BUMP_DX; attr_node = NODE_ATTR_BUMP_DX; } else if (bump == SHADER_BUMP_DY) { geom_node = NODE_GEOMETRY_BUMP_DY; attr_node = NODE_ATTR_BUMP_DY; } out = output("Position"); if (!out->links.empty()) { compiler.add_node(geom_node, NODE_GEOM_P, compiler.stack_assign(out)); } out = output("Normal"); if (!out->links.empty()) { compiler.add_node(geom_node, NODE_GEOM_N, compiler.stack_assign(out)); } out = output("Tangent"); if (!out->links.empty()) { compiler.add_node(geom_node, NODE_GEOM_T, compiler.stack_assign(out)); } out = output("True Normal"); if (!out->links.empty()) { compiler.add_node(geom_node, NODE_GEOM_Ng, compiler.stack_assign(out)); } out = output("Incoming"); if (!out->links.empty()) { compiler.add_node(geom_node, NODE_GEOM_I, compiler.stack_assign(out)); } out = output("Parametric"); if (!out->links.empty()) { compiler.add_node(geom_node, NODE_GEOM_uv, compiler.stack_assign(out)); } out = output("Backfacing"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_backfacing, compiler.stack_assign(out)); } out = output("Pointiness"); if (!out->links.empty()) { if (compiler.output_type() != SHADER_TYPE_VOLUME) { compiler.add_node( attr_node, ATTR_STD_POINTINESS, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT); } else { compiler.add_node(NODE_VALUE_F, __float_as_int(0.0f), compiler.stack_assign(out)); } } out = output("Random Per Island"); if (!out->links.empty()) { if (compiler.output_type() != SHADER_TYPE_VOLUME) { compiler.add_node(attr_node, ATTR_STD_RANDOM_PER_ISLAND, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT); } else { compiler.add_node(NODE_VALUE_F, __float_as_int(0.0f), compiler.stack_assign(out)); } } } void GeometryNode::compile(OSLCompiler &compiler) { if (bump == SHADER_BUMP_DX) compiler.parameter("bump_offset", "dx"); else if (bump == SHADER_BUMP_DY) compiler.parameter("bump_offset", "dy"); else compiler.parameter("bump_offset", "center"); compiler.add(this, "node_geometry"); } /* TextureCoordinate */ NODE_DEFINE(TextureCoordinateNode) { NodeType *type = NodeType::add("texture_coordinate", create, NodeType::SHADER); SOCKET_BOOLEAN(from_dupli, "From Dupli", false); SOCKET_BOOLEAN(use_transform, "Use Transform", false); SOCKET_TRANSFORM(ob_tfm, "Object Transform", transform_identity()); SOCKET_IN_NORMAL( normal_osl, "NormalIn", zero_float3(), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL); SOCKET_OUT_POINT(generated, "Generated"); SOCKET_OUT_NORMAL(normal, "Normal"); SOCKET_OUT_POINT(UV, "UV"); SOCKET_OUT_POINT(object, "Object"); SOCKET_OUT_POINT(camera, "Camera"); SOCKET_OUT_POINT(window, "Window"); SOCKET_OUT_NORMAL(reflection, "Reflection"); return type; } TextureCoordinateNode::TextureCoordinateNode() : ShaderNode(get_node_type()) { } void TextureCoordinateNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (shader->has_surface_link()) { if (!from_dupli) { if (!output("Generated")->links.empty()) attributes->add(ATTR_STD_GENERATED); if (!output("UV")->links.empty()) attributes->add(ATTR_STD_UV); } } if (shader->has_volume) { if (!from_dupli) { if (!output("Generated")->links.empty()) { attributes->add(ATTR_STD_GENERATED_TRANSFORM); } } } ShaderNode::attributes(shader, attributes); } void TextureCoordinateNode::compile(SVMCompiler &compiler) { ShaderOutput *out; ShaderNodeType texco_node = NODE_TEX_COORD; ShaderNodeType attr_node = NODE_ATTR; ShaderNodeType geom_node = NODE_GEOMETRY; if (bump == SHADER_BUMP_DX) { texco_node = NODE_TEX_COORD_BUMP_DX; attr_node = NODE_ATTR_BUMP_DX; geom_node = NODE_GEOMETRY_BUMP_DX; } else if (bump == SHADER_BUMP_DY) { texco_node = NODE_TEX_COORD_BUMP_DY; attr_node = NODE_ATTR_BUMP_DY; geom_node = NODE_GEOMETRY_BUMP_DY; } out = output("Generated"); if (!out->links.empty()) { if (compiler.background) { compiler.add_node(geom_node, NODE_GEOM_P, compiler.stack_assign(out)); } else { if (from_dupli) { compiler.add_node(texco_node, NODE_TEXCO_DUPLI_GENERATED, compiler.stack_assign(out)); } else if (compiler.output_type() == SHADER_TYPE_VOLUME) { compiler.add_node(texco_node, NODE_TEXCO_VOLUME_GENERATED, compiler.stack_assign(out)); } else { int attr = compiler.attribute(ATTR_STD_GENERATED); compiler.add_node(attr_node, attr, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT3); } } } out = output("Normal"); if (!out->links.empty()) { compiler.add_node(texco_node, NODE_TEXCO_NORMAL, compiler.stack_assign(out)); } out = output("UV"); if (!out->links.empty()) { if (from_dupli) { compiler.add_node(texco_node, NODE_TEXCO_DUPLI_UV, compiler.stack_assign(out)); } else { int attr = compiler.attribute(ATTR_STD_UV); compiler.add_node(attr_node, attr, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT3); } } out = output("Object"); if (!out->links.empty()) { compiler.add_node(texco_node, NODE_TEXCO_OBJECT, compiler.stack_assign(out), use_transform); if (use_transform) { Transform ob_itfm = transform_inverse(ob_tfm); compiler.add_node(ob_itfm.x); compiler.add_node(ob_itfm.y); compiler.add_node(ob_itfm.z); } } out = output("Camera"); if (!out->links.empty()) { compiler.add_node(texco_node, NODE_TEXCO_CAMERA, compiler.stack_assign(out)); } out = output("Window"); if (!out->links.empty()) { compiler.add_node(texco_node, NODE_TEXCO_WINDOW, compiler.stack_assign(out)); } out = output("Reflection"); if (!out->links.empty()) { if (compiler.background) { compiler.add_node(geom_node, NODE_GEOM_I, compiler.stack_assign(out)); } else { compiler.add_node(texco_node, NODE_TEXCO_REFLECTION, compiler.stack_assign(out)); } } } void TextureCoordinateNode::compile(OSLCompiler &compiler) { if (bump == SHADER_BUMP_DX) compiler.parameter("bump_offset", "dx"); else if (bump == SHADER_BUMP_DY) compiler.parameter("bump_offset", "dy"); else compiler.parameter("bump_offset", "center"); if (compiler.background) compiler.parameter("is_background", true); if (compiler.output_type() == SHADER_TYPE_VOLUME) compiler.parameter("is_volume", true); compiler.parameter(this, "use_transform"); Transform ob_itfm = transform_inverse(ob_tfm); compiler.parameter("object_itfm", ob_itfm); compiler.parameter(this, "from_dupli"); compiler.add(this, "node_texture_coordinate"); } /* UV Map */ NODE_DEFINE(UVMapNode) { NodeType *type = NodeType::add("uvmap", create, NodeType::SHADER); SOCKET_STRING(attribute, "attribute", ustring()); SOCKET_IN_BOOLEAN(from_dupli, "from dupli", false); SOCKET_OUT_POINT(UV, "UV"); return type; } UVMapNode::UVMapNode() : ShaderNode(get_node_type()) { } void UVMapNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (shader->has_surface) { if (!from_dupli) { if (!output("UV")->links.empty()) { if (attribute != "") attributes->add(attribute); else attributes->add(ATTR_STD_UV); } } } ShaderNode::attributes(shader, attributes); } void UVMapNode::compile(SVMCompiler &compiler) { ShaderOutput *out = output("UV"); ShaderNodeType texco_node = NODE_TEX_COORD; ShaderNodeType attr_node = NODE_ATTR; int attr; if (bump == SHADER_BUMP_DX) { texco_node = NODE_TEX_COORD_BUMP_DX; attr_node = NODE_ATTR_BUMP_DX; } else if (bump == SHADER_BUMP_DY) { texco_node = NODE_TEX_COORD_BUMP_DY; attr_node = NODE_ATTR_BUMP_DY; } if (!out->links.empty()) { if (from_dupli) { compiler.add_node(texco_node, NODE_TEXCO_DUPLI_UV, compiler.stack_assign(out)); } else { if (attribute != "") attr = compiler.attribute(attribute); else attr = compiler.attribute(ATTR_STD_UV); compiler.add_node(attr_node, attr, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT3); } } } void UVMapNode::compile(OSLCompiler &compiler) { if (bump == SHADER_BUMP_DX) compiler.parameter("bump_offset", "dx"); else if (bump == SHADER_BUMP_DY) compiler.parameter("bump_offset", "dy"); else compiler.parameter("bump_offset", "center"); compiler.parameter(this, "from_dupli"); compiler.parameter(this, "attribute"); compiler.add(this, "node_uv_map"); } /* Light Path */ NODE_DEFINE(LightPathNode) { NodeType *type = NodeType::add("light_path", create, NodeType::SHADER); SOCKET_OUT_FLOAT(is_camera_ray, "Is Camera Ray"); SOCKET_OUT_FLOAT(is_shadow_ray, "Is Shadow Ray"); SOCKET_OUT_FLOAT(is_diffuse_ray, "Is Diffuse Ray"); SOCKET_OUT_FLOAT(is_glossy_ray, "Is Glossy Ray"); SOCKET_OUT_FLOAT(is_singular_ray, "Is Singular Ray"); SOCKET_OUT_FLOAT(is_reflection_ray, "Is Reflection Ray"); SOCKET_OUT_FLOAT(is_transmission_ray, "Is Transmission Ray"); SOCKET_OUT_FLOAT(is_volume_scatter_ray, "Is Volume Scatter Ray"); SOCKET_OUT_FLOAT(ray_length, "Ray Length"); SOCKET_OUT_FLOAT(ray_depth, "Ray Depth"); SOCKET_OUT_FLOAT(diffuse_depth, "Diffuse Depth"); SOCKET_OUT_FLOAT(glossy_depth, "Glossy Depth"); SOCKET_OUT_FLOAT(transparent_depth, "Transparent Depth"); SOCKET_OUT_FLOAT(transmission_depth, "Transmission Depth"); return type; } LightPathNode::LightPathNode() : ShaderNode(get_node_type()) { } void LightPathNode::compile(SVMCompiler &compiler) { ShaderOutput *out; out = output("Is Camera Ray"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_camera, compiler.stack_assign(out)); } out = output("Is Shadow Ray"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_shadow, compiler.stack_assign(out)); } out = output("Is Diffuse Ray"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_diffuse, compiler.stack_assign(out)); } out = output("Is Glossy Ray"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_glossy, compiler.stack_assign(out)); } out = output("Is Singular Ray"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_singular, compiler.stack_assign(out)); } out = output("Is Reflection Ray"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_reflection, compiler.stack_assign(out)); } out = output("Is Transmission Ray"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_transmission, compiler.stack_assign(out)); } out = output("Is Volume Scatter Ray"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_volume_scatter, compiler.stack_assign(out)); } out = output("Ray Length"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_length, compiler.stack_assign(out)); } out = output("Ray Depth"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_depth, compiler.stack_assign(out)); } out = output("Diffuse Depth"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_diffuse, compiler.stack_assign(out)); } out = output("Glossy Depth"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_glossy, compiler.stack_assign(out)); } out = output("Transparent Depth"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_transparent, compiler.stack_assign(out)); } out = output("Transmission Depth"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_transmission, compiler.stack_assign(out)); } } void LightPathNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_light_path"); } /* Light Falloff */ NODE_DEFINE(LightFalloffNode) { NodeType *type = NodeType::add("light_falloff", create, NodeType::SHADER); SOCKET_IN_FLOAT(strength, "Strength", 100.0f); SOCKET_IN_FLOAT(smooth, "Smooth", 0.0f); SOCKET_OUT_FLOAT(quadratic, "Quadratic"); SOCKET_OUT_FLOAT(linear, "Linear"); SOCKET_OUT_FLOAT(constant, "Constant"); return type; } LightFalloffNode::LightFalloffNode() : ShaderNode(get_node_type()) { } void LightFalloffNode::compile(SVMCompiler &compiler) { ShaderInput *strength_in = input("Strength"); ShaderInput *smooth_in = input("Smooth"); ShaderOutput *out = output("Quadratic"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_QUADRATIC, compiler.encode_uchar4(compiler.stack_assign(strength_in), compiler.stack_assign(smooth_in), compiler.stack_assign(out))); } out = output("Linear"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_LINEAR, compiler.encode_uchar4(compiler.stack_assign(strength_in), compiler.stack_assign(smooth_in), compiler.stack_assign(out))); } out = output("Constant"); if (!out->links.empty()) { compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_CONSTANT, compiler.encode_uchar4(compiler.stack_assign(strength_in), compiler.stack_assign(smooth_in), compiler.stack_assign(out))); } } void LightFalloffNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_light_falloff"); } /* Object Info */ NODE_DEFINE(ObjectInfoNode) { NodeType *type = NodeType::add("object_info", create, NodeType::SHADER); SOCKET_OUT_VECTOR(location, "Location"); SOCKET_OUT_COLOR(color, "Color"); SOCKET_OUT_FLOAT(alpha, "Alpha"); SOCKET_OUT_FLOAT(object_index, "Object Index"); SOCKET_OUT_FLOAT(material_index, "Material Index"); SOCKET_OUT_FLOAT(random, "Random"); return type; } ObjectInfoNode::ObjectInfoNode() : ShaderNode(get_node_type()) { } void ObjectInfoNode::compile(SVMCompiler &compiler) { ShaderOutput *out = output("Location"); if (!out->links.empty()) { compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_LOCATION, compiler.stack_assign(out)); } out = output("Color"); if (!out->links.empty()) { compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_COLOR, compiler.stack_assign(out)); } out = output("Alpha"); if (!out->links.empty()) { compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_ALPHA, compiler.stack_assign(out)); } out = output("Object Index"); if (!out->links.empty()) { compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_INDEX, compiler.stack_assign(out)); } out = output("Material Index"); if (!out->links.empty()) { compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_MAT_INDEX, compiler.stack_assign(out)); } out = output("Random"); if (!out->links.empty()) { compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_RANDOM, compiler.stack_assign(out)); } } void ObjectInfoNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_object_info"); } /* Particle Info */ NODE_DEFINE(ParticleInfoNode) { NodeType *type = NodeType::add("particle_info", create, NodeType::SHADER); SOCKET_OUT_FLOAT(index, "Index"); SOCKET_OUT_FLOAT(random, "Random"); SOCKET_OUT_FLOAT(age, "Age"); SOCKET_OUT_FLOAT(lifetime, "Lifetime"); SOCKET_OUT_POINT(location, "Location"); #if 0 /* not yet supported */ SOCKET_OUT_QUATERNION(rotation, "Rotation"); #endif SOCKET_OUT_FLOAT(size, "Size"); SOCKET_OUT_VECTOR(velocity, "Velocity"); SOCKET_OUT_VECTOR(angular_velocity, "Angular Velocity"); return type; } ParticleInfoNode::ParticleInfoNode() : ShaderNode(get_node_type()) { } void ParticleInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (!output("Index")->links.empty()) attributes->add(ATTR_STD_PARTICLE); if (!output("Random")->links.empty()) attributes->add(ATTR_STD_PARTICLE); if (!output("Age")->links.empty()) attributes->add(ATTR_STD_PARTICLE); if (!output("Lifetime")->links.empty()) attributes->add(ATTR_STD_PARTICLE); if (!output("Location")->links.empty()) attributes->add(ATTR_STD_PARTICLE); #if 0 /* not yet supported */ if (!output("Rotation")->links.empty()) attributes->add(ATTR_STD_PARTICLE); #endif if (!output("Size")->links.empty()) attributes->add(ATTR_STD_PARTICLE); if (!output("Velocity")->links.empty()) attributes->add(ATTR_STD_PARTICLE); if (!output("Angular Velocity")->links.empty()) attributes->add(ATTR_STD_PARTICLE); ShaderNode::attributes(shader, attributes); } void ParticleInfoNode::compile(SVMCompiler &compiler) { ShaderOutput *out; out = output("Index"); if (!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_INDEX, compiler.stack_assign(out)); } out = output("Random"); if (!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_RANDOM, compiler.stack_assign(out)); } out = output("Age"); if (!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_AGE, compiler.stack_assign(out)); } out = output("Lifetime"); if (!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_LIFETIME, compiler.stack_assign(out)); } out = output("Location"); if (!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_LOCATION, compiler.stack_assign(out)); } /* quaternion data is not yet supported by Cycles */ #if 0 out = output("Rotation"); if (!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_ROTATION, compiler.stack_assign(out)); } #endif out = output("Size"); if (!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_SIZE, compiler.stack_assign(out)); } out = output("Velocity"); if (!out->links.empty()) { compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_VELOCITY, compiler.stack_assign(out)); } out = output("Angular Velocity"); if (!out->links.empty()) { compiler.add_node( NODE_PARTICLE_INFO, NODE_INFO_PAR_ANGULAR_VELOCITY, compiler.stack_assign(out)); } } void ParticleInfoNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_particle_info"); } /* Hair Info */ NODE_DEFINE(HairInfoNode) { NodeType *type = NodeType::add("hair_info", create, NodeType::SHADER); SOCKET_OUT_FLOAT(is_strand, "Is Strand"); SOCKET_OUT_FLOAT(intercept, "Intercept"); SOCKET_OUT_FLOAT(size, "Length"); SOCKET_OUT_FLOAT(thickness, "Thickness"); SOCKET_OUT_NORMAL(tangent_normal, "Tangent Normal"); SOCKET_OUT_FLOAT(index, "Random"); return type; } HairInfoNode::HairInfoNode() : ShaderNode(get_node_type()) { } void HairInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (shader->has_surface_link()) { ShaderOutput *intercept_out = output("Intercept"); if (!intercept_out->links.empty()) attributes->add(ATTR_STD_CURVE_INTERCEPT); if (!output("Length")->links.empty()) attributes->add(ATTR_STD_CURVE_LENGTH); if (!output("Random")->links.empty()) attributes->add(ATTR_STD_CURVE_RANDOM); } ShaderNode::attributes(shader, attributes); } void HairInfoNode::compile(SVMCompiler &compiler) { ShaderOutput *out; out = output("Is Strand"); if (!out->links.empty()) { compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_IS_STRAND, compiler.stack_assign(out)); } out = output("Intercept"); if (!out->links.empty()) { int attr = compiler.attribute(ATTR_STD_CURVE_INTERCEPT); compiler.add_node(NODE_ATTR, attr, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT); } out = output("Length"); if (!out->links.empty()) { int attr = compiler.attribute(ATTR_STD_CURVE_LENGTH); compiler.add_node(NODE_ATTR, attr, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT); } out = output("Thickness"); if (!out->links.empty()) { compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_THICKNESS, compiler.stack_assign(out)); } out = output("Tangent Normal"); if (!out->links.empty()) { compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_TANGENT_NORMAL, compiler.stack_assign(out)); } out = output("Random"); if (!out->links.empty()) { int attr = compiler.attribute(ATTR_STD_CURVE_RANDOM); compiler.add_node(NODE_ATTR, attr, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT); } } void HairInfoNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_hair_info"); } /* Point Info */ NODE_DEFINE(PointInfoNode) { NodeType *type = NodeType::add("point_info", create, NodeType::SHADER); SOCKET_OUT_POINT(position, "Position"); SOCKET_OUT_FLOAT(radius, "Radius"); SOCKET_OUT_FLOAT(random, "Random"); return type; } PointInfoNode::PointInfoNode() : ShaderNode(get_node_type()) { } void PointInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (shader->has_surface_link()) { if (!output("Random")->links.empty()) attributes->add(ATTR_STD_POINT_RANDOM); } ShaderNode::attributes(shader, attributes); } void PointInfoNode::compile(SVMCompiler &compiler) { ShaderOutput *out; out = output("Position"); if (!out->links.empty()) { compiler.add_node(NODE_POINT_INFO, NODE_INFO_POINT_POSITION, compiler.stack_assign(out)); } out = output("Radius"); if (!out->links.empty()) { compiler.add_node(NODE_POINT_INFO, NODE_INFO_POINT_RADIUS, compiler.stack_assign(out)); } out = output("Random"); if (!out->links.empty()) { int attr = compiler.attribute(ATTR_STD_POINT_RANDOM); compiler.add_node(NODE_ATTR, attr, compiler.stack_assign(out), NODE_ATTR_OUTPUT_FLOAT); } } void PointInfoNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_point_info"); } /* Volume Info */ NODE_DEFINE(VolumeInfoNode) { NodeType *type = NodeType::add("volume_info", create, NodeType::SHADER); SOCKET_OUT_COLOR(color, "Color"); SOCKET_OUT_FLOAT(density, "Density"); SOCKET_OUT_FLOAT(flame, "Flame"); SOCKET_OUT_FLOAT(temperature, "Temperature"); return type; } VolumeInfoNode::VolumeInfoNode() : ShaderNode(get_node_type()) { } /* The requested attributes are not updated after node expansion. * So we explicitly request the required attributes. */ void VolumeInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (shader->has_volume) { if (!output("Color")->links.empty()) { attributes->add(ATTR_STD_VOLUME_COLOR); } if (!output("Density")->links.empty()) { attributes->add(ATTR_STD_VOLUME_DENSITY); } if (!output("Flame")->links.empty()) { attributes->add(ATTR_STD_VOLUME_FLAME); } if (!output("Temperature")->links.empty()) { attributes->add(ATTR_STD_VOLUME_TEMPERATURE); } attributes->add(ATTR_STD_GENERATED_TRANSFORM); } ShaderNode::attributes(shader, attributes); } void VolumeInfoNode::expand(ShaderGraph *graph) { ShaderOutput *color_out = output("Color"); if (!color_out->links.empty()) { AttributeNode *attr = graph->create_node(); attr->set_attribute(ustring("color")); graph->add(attr); graph->relink(color_out, attr->output("Color")); } ShaderOutput *density_out = output("Density"); if (!density_out->links.empty()) { AttributeNode *attr = graph->create_node(); attr->set_attribute(ustring("density")); graph->add(attr); graph->relink(density_out, attr->output("Fac")); } ShaderOutput *flame_out = output("Flame"); if (!flame_out->links.empty()) { AttributeNode *attr = graph->create_node(); attr->set_attribute(ustring("flame")); graph->add(attr); graph->relink(flame_out, attr->output("Fac")); } ShaderOutput *temperature_out = output("Temperature"); if (!temperature_out->links.empty()) { AttributeNode *attr = graph->create_node(); attr->set_attribute(ustring("temperature")); graph->add(attr); graph->relink(temperature_out, attr->output("Fac")); } } void VolumeInfoNode::compile(SVMCompiler &) { } void VolumeInfoNode::compile(OSLCompiler &) { } NODE_DEFINE(VertexColorNode) { NodeType *type = NodeType::add("vertex_color", create, NodeType::SHADER); SOCKET_STRING(layer_name, "Layer Name", ustring()); SOCKET_OUT_COLOR(color, "Color"); SOCKET_OUT_FLOAT(alpha, "Alpha"); return type; } VertexColorNode::VertexColorNode() : ShaderNode(get_node_type()) { } void VertexColorNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (!(output("Color")->links.empty() && output("Alpha")->links.empty())) { if (layer_name != "") attributes->add_standard(layer_name); else attributes->add(ATTR_STD_VERTEX_COLOR); } ShaderNode::attributes(shader, attributes); } void VertexColorNode::compile(SVMCompiler &compiler) { ShaderOutput *color_out = output("Color"); ShaderOutput *alpha_out = output("Alpha"); int layer_id = 0; if (layer_name != "") { layer_id = compiler.attribute(layer_name); } else { layer_id = compiler.attribute(ATTR_STD_VERTEX_COLOR); } ShaderNodeType node; if (bump == SHADER_BUMP_DX) node = NODE_VERTEX_COLOR_BUMP_DX; else if (bump == SHADER_BUMP_DY) node = NODE_VERTEX_COLOR_BUMP_DY; else { node = NODE_VERTEX_COLOR; } compiler.add_node( node, layer_id, compiler.stack_assign(color_out), compiler.stack_assign(alpha_out)); } void VertexColorNode::compile(OSLCompiler &compiler) { if (bump == SHADER_BUMP_DX) { compiler.parameter("bump_offset", "dx"); } else if (bump == SHADER_BUMP_DY) { compiler.parameter("bump_offset", "dy"); } else { compiler.parameter("bump_offset", "center"); } if (layer_name.empty()) { compiler.parameter("layer_name", ustring("geom:vertex_color")); } else { if (Attribute::name_standard(layer_name.c_str()) != ATTR_STD_NONE) { compiler.parameter("name", (string("geom:") + layer_name.c_str()).c_str()); } else { compiler.parameter("layer_name", layer_name.c_str()); } } compiler.add(this, "node_vertex_color"); } /* Value */ NODE_DEFINE(ValueNode) { NodeType *type = NodeType::add("value", create, NodeType::SHADER); SOCKET_FLOAT(value, "Value", 0.0f); SOCKET_OUT_FLOAT(value, "Value"); return type; } ValueNode::ValueNode() : ShaderNode(get_node_type()) { } void ValueNode::constant_fold(const ConstantFolder &folder) { folder.make_constant(value); } void ValueNode::compile(SVMCompiler &compiler) { ShaderOutput *val_out = output("Value"); compiler.add_node(NODE_VALUE_F, __float_as_int(value), compiler.stack_assign(val_out)); } void ValueNode::compile(OSLCompiler &compiler) { compiler.parameter("value_value", value); compiler.add(this, "node_value"); } /* Color */ NODE_DEFINE(ColorNode) { NodeType *type = NodeType::add("color", create, NodeType::SHADER); SOCKET_COLOR(value, "Value", zero_float3()); SOCKET_OUT_COLOR(color, "Color"); return type; } ColorNode::ColorNode() : ShaderNode(get_node_type()) { } void ColorNode::constant_fold(const ConstantFolder &folder) { folder.make_constant(value); } void ColorNode::compile(SVMCompiler &compiler) { ShaderOutput *color_out = output("Color"); if (!color_out->links.empty()) { compiler.add_node(NODE_VALUE_V, compiler.stack_assign(color_out)); compiler.add_node(NODE_VALUE_V, value); } } void ColorNode::compile(OSLCompiler &compiler) { compiler.parameter_color("color_value", value); compiler.add(this, "node_value"); } /* Add Closure */ NODE_DEFINE(AddClosureNode) { NodeType *type = NodeType::add("add_closure", create, NodeType::SHADER); SOCKET_IN_CLOSURE(closure1, "Closure1"); SOCKET_IN_CLOSURE(closure2, "Closure2"); SOCKET_OUT_CLOSURE(closure, "Closure"); return type; } AddClosureNode::AddClosureNode() : ShaderNode(get_node_type()) { special_type = SHADER_SPECIAL_TYPE_COMBINE_CLOSURE; } void AddClosureNode::compile(SVMCompiler & /*compiler*/) { /* handled in the SVM compiler */ } void AddClosureNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_add_closure"); } void AddClosureNode::constant_fold(const ConstantFolder &folder) { ShaderInput *closure1_in = input("Closure1"); ShaderInput *closure2_in = input("Closure2"); /* remove useless add closures nodes */ if (!closure1_in->link) { folder.bypass_or_discard(closure2_in); } else if (!closure2_in->link) { folder.bypass_or_discard(closure1_in); } } /* Mix Closure */ NODE_DEFINE(MixClosureNode) { NodeType *type = NodeType::add("mix_closure", create, NodeType::SHADER); SOCKET_IN_FLOAT(fac, "Fac", 0.5f); SOCKET_IN_CLOSURE(closure1, "Closure1"); SOCKET_IN_CLOSURE(closure2, "Closure2"); SOCKET_OUT_CLOSURE(closure, "Closure"); return type; } MixClosureNode::MixClosureNode() : ShaderNode(get_node_type()) { special_type = SHADER_SPECIAL_TYPE_COMBINE_CLOSURE; } void MixClosureNode::compile(SVMCompiler & /*compiler*/) { /* handled in the SVM compiler */ } void MixClosureNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_mix_closure"); } void MixClosureNode::constant_fold(const ConstantFolder &folder) { ShaderInput *fac_in = input("Fac"); ShaderInput *closure1_in = input("Closure1"); ShaderInput *closure2_in = input("Closure2"); /* remove useless mix closures nodes */ if (closure1_in->link == closure2_in->link) { folder.bypass_or_discard(closure1_in); } /* remove unused mix closure input when factor is 0.0 or 1.0 * check for closure links and make sure factor link is disconnected */ else if (!fac_in->link) { /* factor 0.0 */ if (fac <= 0.0f) { folder.bypass_or_discard(closure1_in); } /* factor 1.0 */ else if (fac >= 1.0f) { folder.bypass_or_discard(closure2_in); } } } /* Mix Closure */ NODE_DEFINE(MixClosureWeightNode) { NodeType *type = NodeType::add("mix_closure_weight", create, NodeType::SHADER); SOCKET_IN_FLOAT(weight, "Weight", 1.0f); SOCKET_IN_FLOAT(fac, "Fac", 1.0f); SOCKET_OUT_FLOAT(weight1, "Weight1"); SOCKET_OUT_FLOAT(weight2, "Weight2"); return type; } MixClosureWeightNode::MixClosureWeightNode() : ShaderNode(get_node_type()) { } void MixClosureWeightNode::compile(SVMCompiler &compiler) { ShaderInput *weight_in = input("Weight"); ShaderInput *fac_in = input("Fac"); ShaderOutput *weight1_out = output("Weight1"); ShaderOutput *weight2_out = output("Weight2"); compiler.add_node(NODE_MIX_CLOSURE, compiler.encode_uchar4(compiler.stack_assign(fac_in), compiler.stack_assign(weight_in), compiler.stack_assign(weight1_out), compiler.stack_assign(weight2_out))); } void MixClosureWeightNode::compile(OSLCompiler & /*compiler*/) { assert(0); } /* Invert */ NODE_DEFINE(InvertNode) { NodeType *type = NodeType::add("invert", create, NodeType::SHADER); SOCKET_IN_FLOAT(fac, "Fac", 1.0f); SOCKET_IN_COLOR(color, "Color", zero_float3()); SOCKET_OUT_COLOR(color, "Color"); return type; } InvertNode::InvertNode() : ShaderNode(get_node_type()) { } void InvertNode::constant_fold(const ConstantFolder &folder) { ShaderInput *fac_in = input("Fac"); ShaderInput *color_in = input("Color"); if (!fac_in->link) { /* evaluate fully constant node */ if (!color_in->link) { folder.make_constant(interp(color, one_float3() - color, fac)); } /* remove no-op node */ else if (fac == 0.0f) { folder.bypass(color_in->link); } } } void InvertNode::compile(SVMCompiler &compiler) { ShaderInput *fac_in = input("Fac"); ShaderInput *color_in = input("Color"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_INVERT, compiler.stack_assign(fac_in), compiler.stack_assign(color_in), compiler.stack_assign(color_out)); } void InvertNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_invert"); } /* Mix */ NODE_DEFINE(MixNode) { NodeType *type = NodeType::add("mix", create, NodeType::SHADER); static NodeEnum type_enum; type_enum.insert("mix", NODE_MIX_BLEND); type_enum.insert("add", NODE_MIX_ADD); type_enum.insert("multiply", NODE_MIX_MUL); type_enum.insert("screen", NODE_MIX_SCREEN); type_enum.insert("overlay", NODE_MIX_OVERLAY); type_enum.insert("subtract", NODE_MIX_SUB); type_enum.insert("divide", NODE_MIX_DIV); type_enum.insert("difference", NODE_MIX_DIFF); type_enum.insert("darken", NODE_MIX_DARK); type_enum.insert("lighten", NODE_MIX_LIGHT); type_enum.insert("dodge", NODE_MIX_DODGE); type_enum.insert("burn", NODE_MIX_BURN); type_enum.insert("hue", NODE_MIX_HUE); type_enum.insert("saturation", NODE_MIX_SAT); type_enum.insert("value", NODE_MIX_VAL); type_enum.insert("color", NODE_MIX_COL); type_enum.insert("soft_light", NODE_MIX_SOFT); type_enum.insert("linear_light", NODE_MIX_LINEAR); SOCKET_ENUM(mix_type, "Type", type_enum, NODE_MIX_BLEND); SOCKET_BOOLEAN(use_clamp, "Use Clamp", false); SOCKET_IN_FLOAT(fac, "Fac", 0.5f); SOCKET_IN_COLOR(color1, "Color1", zero_float3()); SOCKET_IN_COLOR(color2, "Color2", zero_float3()); SOCKET_OUT_COLOR(color, "Color"); return type; } MixNode::MixNode() : ShaderNode(get_node_type()) { } void MixNode::compile(SVMCompiler &compiler) { ShaderInput *fac_in = input("Fac"); ShaderInput *color1_in = input("Color1"); ShaderInput *color2_in = input("Color2"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_MIX, compiler.stack_assign(fac_in), compiler.stack_assign(color1_in), compiler.stack_assign(color2_in)); compiler.add_node(NODE_MIX, mix_type, compiler.stack_assign(color_out)); if (use_clamp) { compiler.add_node(NODE_MIX, 0, compiler.stack_assign(color_out)); compiler.add_node(NODE_MIX, NODE_MIX_CLAMP, compiler.stack_assign(color_out)); } } void MixNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "mix_type"); compiler.parameter(this, "use_clamp"); compiler.add(this, "node_mix"); } void MixNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { folder.make_constant_clamp(svm_mix_clamped_factor(mix_type, fac, color1, color2), use_clamp); } else { folder.fold_mix(mix_type, use_clamp); } } /* Mix Color */ NODE_DEFINE(MixColorNode) { NodeType *type = NodeType::add("mix_color", create, NodeType::SHADER); static NodeEnum type_enum; type_enum.insert("mix", NODE_MIX_BLEND); type_enum.insert("add", NODE_MIX_ADD); type_enum.insert("multiply", NODE_MIX_MUL); type_enum.insert("screen", NODE_MIX_SCREEN); type_enum.insert("overlay", NODE_MIX_OVERLAY); type_enum.insert("subtract", NODE_MIX_SUB); type_enum.insert("divide", NODE_MIX_DIV); type_enum.insert("difference", NODE_MIX_DIFF); type_enum.insert("darken", NODE_MIX_DARK); type_enum.insert("lighten", NODE_MIX_LIGHT); type_enum.insert("dodge", NODE_MIX_DODGE); type_enum.insert("burn", NODE_MIX_BURN); type_enum.insert("hue", NODE_MIX_HUE); type_enum.insert("saturation", NODE_MIX_SAT); type_enum.insert("value", NODE_MIX_VAL); type_enum.insert("color", NODE_MIX_COL); type_enum.insert("soft_light", NODE_MIX_SOFT); type_enum.insert("linear_light", NODE_MIX_LINEAR); SOCKET_ENUM(blend_type, "Type", type_enum, NODE_MIX_BLEND); SOCKET_IN_FLOAT(fac, "Factor", 0.5f); SOCKET_IN_COLOR(a, "A", zero_float3()); SOCKET_IN_COLOR(b, "B", zero_float3()); SOCKET_BOOLEAN(use_clamp_result, "Use Clamp Result", false); SOCKET_BOOLEAN(use_clamp, "Use Clamp", true); SOCKET_OUT_COLOR(result, "Result"); return type; } MixColorNode::MixColorNode() : ShaderNode(get_node_type()) { } void MixColorNode::compile(SVMCompiler &compiler) { ShaderInput *fac_in = input("Factor"); ShaderInput *a_in = input("A"); ShaderInput *b_in = input("B"); ShaderOutput *result_out = output("Result"); int fac_in_stack_offset = compiler.stack_assign(fac_in); int a_in_stack_offset = compiler.stack_assign(a_in); int b_in_stack_offset = compiler.stack_assign(b_in); compiler.add_node( NODE_MIX_COLOR, compiler.encode_uchar4(use_clamp, blend_type, use_clamp_result), compiler.encode_uchar4(fac_in_stack_offset, a_in_stack_offset, b_in_stack_offset), compiler.stack_assign(result_out)); } void MixColorNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "blend_type"); compiler.parameter(this, "use_clamp"); compiler.parameter(this, "use_clamp_result"); compiler.add(this, "node_mix_color"); } void MixColorNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { if (use_clamp) { fac = clamp(fac, 0.0f, 1.0f); } folder.make_constant_clamp(svm_mix(blend_type, fac, a, b), use_clamp_result); } else { folder.fold_mix_color(blend_type, use_clamp, use_clamp_result); } } /* Mix Float */ NODE_DEFINE(MixFloatNode) { NodeType *type = NodeType::add("mix_float", create, NodeType::SHADER); SOCKET_IN_FLOAT(fac, "Factor", 0.5f); SOCKET_IN_FLOAT(a, "A", 0.0f); SOCKET_IN_FLOAT(b, "B", 0.0f); SOCKET_BOOLEAN(use_clamp, "Use Clamp", true); SOCKET_OUT_FLOAT(result, "Result"); return type; } MixFloatNode::MixFloatNode() : ShaderNode(get_node_type()) { } void MixFloatNode::compile(SVMCompiler &compiler) { ShaderInput *fac_in = input("Factor"); ShaderInput *a_in = input("A"); ShaderInput *b_in = input("B"); ShaderOutput *result_out = output("Result"); int fac_in_stack_offset = compiler.stack_assign(fac_in); int a_in_stack_offset = compiler.stack_assign(a_in); int b_in_stack_offset = compiler.stack_assign(b_in); compiler.add_node( NODE_MIX_FLOAT, use_clamp, compiler.encode_uchar4(fac_in_stack_offset, a_in_stack_offset, b_in_stack_offset), compiler.stack_assign(result_out)); } void MixFloatNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "use_clamp"); compiler.add(this, "node_mix_float"); } void MixFloatNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { if (use_clamp) { fac = clamp(fac, 0.0f, 1.0f); } folder.make_constant(a * (1 - fac) + b * fac); } } /* Mix Vector */ NODE_DEFINE(MixVectorNode) { NodeType *type = NodeType::add("mix_vector", create, NodeType::SHADER); SOCKET_IN_FLOAT(fac, "Factor", 0.5f); SOCKET_IN_VECTOR(a, "A", zero_float3()); SOCKET_IN_VECTOR(b, "B", zero_float3()); SOCKET_BOOLEAN(use_clamp, "Use Clamp", true); SOCKET_OUT_VECTOR(result, "Result"); return type; } MixVectorNode::MixVectorNode() : ShaderNode(get_node_type()) { } void MixVectorNode::compile(SVMCompiler &compiler) { ShaderInput *fac_in = input("Factor"); ShaderInput *a_in = input("A"); ShaderInput *b_in = input("B"); ShaderOutput *result_out = output("Result"); int fac_in_stack_offset = compiler.stack_assign(fac_in); int a_in_stack_offset = compiler.stack_assign(a_in); int b_in_stack_offset = compiler.stack_assign(b_in); compiler.add_node( NODE_MIX_VECTOR, compiler.encode_uchar4(use_clamp, fac_in_stack_offset, a_in_stack_offset, b_in_stack_offset), compiler.stack_assign(result_out)); } void MixVectorNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "use_clamp"); compiler.add(this, "node_mix_vector"); } void MixVectorNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { if (use_clamp) { fac = clamp(fac, 0.0f, 1.0f); } folder.make_constant(a * (one_float3() - fac) + b * fac); } } /* Mix Vector Non Uniform */ NODE_DEFINE(MixVectorNonUniformNode) { NodeType *type = NodeType::add("mix_vector_non_uniform", create, NodeType::SHADER); SOCKET_IN_VECTOR(fac, "Factor", make_float3(0.5f, 0.5f, 0.5f)); SOCKET_IN_VECTOR(a, "A", zero_float3()); SOCKET_IN_VECTOR(b, "B", zero_float3()); SOCKET_BOOLEAN(use_clamp, "Use Clamp", true); SOCKET_OUT_VECTOR(result, "Result"); return type; } MixVectorNonUniformNode::MixVectorNonUniformNode() : ShaderNode(get_node_type()) { } void MixVectorNonUniformNode::compile(SVMCompiler &compiler) { ShaderInput *fac_in = input("Factor"); ShaderInput *a_in = input("A"); ShaderInput *b_in = input("B"); ShaderOutput *result_out = output("Result"); int fac_in_stack_offset = compiler.stack_assign(fac_in); int a_in_stack_offset = compiler.stack_assign(a_in); int b_in_stack_offset = compiler.stack_assign(b_in); compiler.add_node( NODE_MIX_VECTOR_NON_UNIFORM, compiler.encode_uchar4(use_clamp, fac_in_stack_offset, a_in_stack_offset, b_in_stack_offset), compiler.stack_assign(result_out)); } void MixVectorNonUniformNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "use_clamp"); compiler.add(this, "node_mix_vector_non_uniform"); } void MixVectorNonUniformNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { if (use_clamp) { fac = saturate(fac); } folder.make_constant(a * (one_float3() - fac) + b * fac); } } /* Combine Color */ NODE_DEFINE(CombineColorNode) { NodeType *type = NodeType::add("combine_color", create, NodeType::SHADER); static NodeEnum type_enum; type_enum.insert("rgb", NODE_COMBSEP_COLOR_RGB); type_enum.insert("hsv", NODE_COMBSEP_COLOR_HSV); type_enum.insert("hsl", NODE_COMBSEP_COLOR_HSL); SOCKET_ENUM(color_type, "Type", type_enum, NODE_COMBSEP_COLOR_RGB); SOCKET_IN_FLOAT(r, "Red", 0.0f); SOCKET_IN_FLOAT(g, "Green", 0.0f); SOCKET_IN_FLOAT(b, "Blue", 0.0f); SOCKET_OUT_COLOR(color, "Color"); return type; } CombineColorNode::CombineColorNode() : ShaderNode(get_node_type()) { } void CombineColorNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { folder.make_constant(svm_combine_color(color_type, make_float3(r, g, b))); } } void CombineColorNode::compile(SVMCompiler &compiler) { ShaderInput *red_in = input("Red"); ShaderInput *green_in = input("Green"); ShaderInput *blue_in = input("Blue"); ShaderOutput *color_out = output("Color"); int red_stack_offset = compiler.stack_assign(red_in); int green_stack_offset = compiler.stack_assign(green_in); int blue_stack_offset = compiler.stack_assign(blue_in); int color_stack_offset = compiler.stack_assign(color_out); compiler.add_node( NODE_COMBINE_COLOR, color_type, compiler.encode_uchar4(red_stack_offset, green_stack_offset, blue_stack_offset), color_stack_offset); } void CombineColorNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "color_type"); compiler.add(this, "node_combine_color"); } /* Combine RGB */ NODE_DEFINE(CombineRGBNode) { NodeType *type = NodeType::add("combine_rgb", create, NodeType::SHADER); SOCKET_IN_FLOAT(r, "R", 0.0f); SOCKET_IN_FLOAT(g, "G", 0.0f); SOCKET_IN_FLOAT(b, "B", 0.0f); SOCKET_OUT_COLOR(image, "Image"); return type; } CombineRGBNode::CombineRGBNode() : ShaderNode(get_node_type()) { } void CombineRGBNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { folder.make_constant(make_float3(r, g, b)); } } void CombineRGBNode::compile(SVMCompiler &compiler) { ShaderInput *red_in = input("R"); ShaderInput *green_in = input("G"); ShaderInput *blue_in = input("B"); ShaderOutput *color_out = output("Image"); compiler.add_node( NODE_COMBINE_VECTOR, compiler.stack_assign(red_in), 0, compiler.stack_assign(color_out)); compiler.add_node( NODE_COMBINE_VECTOR, compiler.stack_assign(green_in), 1, compiler.stack_assign(color_out)); compiler.add_node( NODE_COMBINE_VECTOR, compiler.stack_assign(blue_in), 2, compiler.stack_assign(color_out)); } void CombineRGBNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_combine_rgb"); } /* Combine XYZ */ NODE_DEFINE(CombineXYZNode) { NodeType *type = NodeType::add("combine_xyz", create, NodeType::SHADER); SOCKET_IN_FLOAT(x, "X", 0.0f); SOCKET_IN_FLOAT(y, "Y", 0.0f); SOCKET_IN_FLOAT(z, "Z", 0.0f); SOCKET_OUT_VECTOR(vector, "Vector"); return type; } CombineXYZNode::CombineXYZNode() : ShaderNode(get_node_type()) { } void CombineXYZNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { folder.make_constant(make_float3(x, y, z)); } } void CombineXYZNode::compile(SVMCompiler &compiler) { ShaderInput *x_in = input("X"); ShaderInput *y_in = input("Y"); ShaderInput *z_in = input("Z"); ShaderOutput *vector_out = output("Vector"); compiler.add_node( NODE_COMBINE_VECTOR, compiler.stack_assign(x_in), 0, compiler.stack_assign(vector_out)); compiler.add_node( NODE_COMBINE_VECTOR, compiler.stack_assign(y_in), 1, compiler.stack_assign(vector_out)); compiler.add_node( NODE_COMBINE_VECTOR, compiler.stack_assign(z_in), 2, compiler.stack_assign(vector_out)); } void CombineXYZNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_combine_xyz"); } /* Combine HSV */ NODE_DEFINE(CombineHSVNode) { NodeType *type = NodeType::add("combine_hsv", create, NodeType::SHADER); SOCKET_IN_FLOAT(h, "H", 0.0f); SOCKET_IN_FLOAT(s, "S", 0.0f); SOCKET_IN_FLOAT(v, "V", 0.0f); SOCKET_OUT_COLOR(color, "Color"); return type; } CombineHSVNode::CombineHSVNode() : ShaderNode(get_node_type()) { } void CombineHSVNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { folder.make_constant(hsv_to_rgb(make_float3(h, s, v))); } } void CombineHSVNode::compile(SVMCompiler &compiler) { ShaderInput *hue_in = input("H"); ShaderInput *saturation_in = input("S"); ShaderInput *value_in = input("V"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_COMBINE_HSV, compiler.stack_assign(hue_in), compiler.stack_assign(saturation_in), compiler.stack_assign(value_in)); compiler.add_node(NODE_COMBINE_HSV, compiler.stack_assign(color_out)); } void CombineHSVNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_combine_hsv"); } /* Gamma */ NODE_DEFINE(GammaNode) { NodeType *type = NodeType::add("gamma", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", zero_float3()); SOCKET_IN_FLOAT(gamma, "Gamma", 1.0f); SOCKET_OUT_COLOR(color, "Color"); return type; } GammaNode::GammaNode() : ShaderNode(get_node_type()) { } void GammaNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { folder.make_constant(svm_math_gamma_color(color, gamma)); } else { ShaderInput *color_in = input("Color"); ShaderInput *gamma_in = input("Gamma"); /* 1 ^ X == X ^ 0 == 1 */ if (folder.is_one(color_in) || folder.is_zero(gamma_in)) { folder.make_one(); } /* X ^ 1 == X */ else if (folder.is_one(gamma_in)) { folder.try_bypass_or_make_constant(color_in, false); } } } void GammaNode::compile(SVMCompiler &compiler) { ShaderInput *color_in = input("Color"); ShaderInput *gamma_in = input("Gamma"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_GAMMA, compiler.stack_assign(gamma_in), compiler.stack_assign(color_in), compiler.stack_assign(color_out)); } void GammaNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_gamma"); } /* Bright Contrast */ NODE_DEFINE(BrightContrastNode) { NodeType *type = NodeType::add("brightness_contrast", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", zero_float3()); SOCKET_IN_FLOAT(bright, "Bright", 0.0f); SOCKET_IN_FLOAT(contrast, "Contrast", 0.0f); SOCKET_OUT_COLOR(color, "Color"); return type; } BrightContrastNode::BrightContrastNode() : ShaderNode(get_node_type()) { } void BrightContrastNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { folder.make_constant(svm_brightness_contrast(color, bright, contrast)); } } void BrightContrastNode::compile(SVMCompiler &compiler) { ShaderInput *color_in = input("Color"); ShaderInput *bright_in = input("Bright"); ShaderInput *contrast_in = input("Contrast"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_BRIGHTCONTRAST, compiler.stack_assign(color_in), compiler.stack_assign(color_out), compiler.encode_uchar4(compiler.stack_assign(bright_in), compiler.stack_assign(contrast_in))); } void BrightContrastNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_brightness"); } /* Separate Color */ NODE_DEFINE(SeparateColorNode) { NodeType *type = NodeType::add("separate_color", create, NodeType::SHADER); static NodeEnum type_enum; type_enum.insert("rgb", NODE_COMBSEP_COLOR_RGB); type_enum.insert("hsv", NODE_COMBSEP_COLOR_HSV); type_enum.insert("hsl", NODE_COMBSEP_COLOR_HSL); SOCKET_ENUM(color_type, "Type", type_enum, NODE_COMBSEP_COLOR_RGB); SOCKET_IN_COLOR(color, "Color", zero_float3()); SOCKET_OUT_FLOAT(r, "Red"); SOCKET_OUT_FLOAT(g, "Green"); SOCKET_OUT_FLOAT(b, "Blue"); return type; } SeparateColorNode::SeparateColorNode() : ShaderNode(get_node_type()) { } void SeparateColorNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { float3 col = svm_separate_color(color_type, color); for (int channel = 0; channel < 3; channel++) { if (outputs[channel] == folder.output) { folder.make_constant(col[channel]); return; } } } } void SeparateColorNode::compile(SVMCompiler &compiler) { ShaderInput *color_in = input("Color"); ShaderOutput *red_out = output("Red"); ShaderOutput *green_out = output("Green"); ShaderOutput *blue_out = output("Blue"); int color_stack_offset = compiler.stack_assign(color_in); int red_stack_offset = compiler.stack_assign(red_out); int green_stack_offset = compiler.stack_assign(green_out); int blue_stack_offset = compiler.stack_assign(blue_out); compiler.add_node( NODE_SEPARATE_COLOR, color_type, color_stack_offset, compiler.encode_uchar4(red_stack_offset, green_stack_offset, blue_stack_offset)); } void SeparateColorNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "color_type"); compiler.add(this, "node_separate_color"); } /* Separate RGB */ NODE_DEFINE(SeparateRGBNode) { NodeType *type = NodeType::add("separate_rgb", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Image", zero_float3()); SOCKET_OUT_FLOAT(r, "R"); SOCKET_OUT_FLOAT(g, "G"); SOCKET_OUT_FLOAT(b, "B"); return type; } SeparateRGBNode::SeparateRGBNode() : ShaderNode(get_node_type()) { } void SeparateRGBNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { for (int channel = 0; channel < 3; channel++) { if (outputs[channel] == folder.output) { folder.make_constant(color[channel]); return; } } } } void SeparateRGBNode::compile(SVMCompiler &compiler) { ShaderInput *color_in = input("Image"); ShaderOutput *red_out = output("R"); ShaderOutput *green_out = output("G"); ShaderOutput *blue_out = output("B"); compiler.add_node( NODE_SEPARATE_VECTOR, compiler.stack_assign(color_in), 0, compiler.stack_assign(red_out)); compiler.add_node( NODE_SEPARATE_VECTOR, compiler.stack_assign(color_in), 1, compiler.stack_assign(green_out)); compiler.add_node( NODE_SEPARATE_VECTOR, compiler.stack_assign(color_in), 2, compiler.stack_assign(blue_out)); } void SeparateRGBNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_separate_rgb"); } /* Separate XYZ */ NODE_DEFINE(SeparateXYZNode) { NodeType *type = NodeType::add("separate_xyz", create, NodeType::SHADER); SOCKET_IN_COLOR(vector, "Vector", zero_float3()); SOCKET_OUT_FLOAT(x, "X"); SOCKET_OUT_FLOAT(y, "Y"); SOCKET_OUT_FLOAT(z, "Z"); return type; } SeparateXYZNode::SeparateXYZNode() : ShaderNode(get_node_type()) { } void SeparateXYZNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { for (int channel = 0; channel < 3; channel++) { if (outputs[channel] == folder.output) { folder.make_constant(vector[channel]); return; } } } } void SeparateXYZNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *x_out = output("X"); ShaderOutput *y_out = output("Y"); ShaderOutput *z_out = output("Z"); compiler.add_node( NODE_SEPARATE_VECTOR, compiler.stack_assign(vector_in), 0, compiler.stack_assign(x_out)); compiler.add_node( NODE_SEPARATE_VECTOR, compiler.stack_assign(vector_in), 1, compiler.stack_assign(y_out)); compiler.add_node( NODE_SEPARATE_VECTOR, compiler.stack_assign(vector_in), 2, compiler.stack_assign(z_out)); } void SeparateXYZNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_separate_xyz"); } /* Separate HSV */ NODE_DEFINE(SeparateHSVNode) { NodeType *type = NodeType::add("separate_hsv", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", zero_float3()); SOCKET_OUT_FLOAT(h, "H"); SOCKET_OUT_FLOAT(s, "S"); SOCKET_OUT_FLOAT(v, "V"); return type; } SeparateHSVNode::SeparateHSVNode() : ShaderNode(get_node_type()) { } void SeparateHSVNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { float3 hsv = rgb_to_hsv(color); for (int channel = 0; channel < 3; channel++) { if (outputs[channel] == folder.output) { folder.make_constant(hsv[channel]); return; } } } } void SeparateHSVNode::compile(SVMCompiler &compiler) { ShaderInput *color_in = input("Color"); ShaderOutput *hue_out = output("H"); ShaderOutput *saturation_out = output("S"); ShaderOutput *value_out = output("V"); compiler.add_node(NODE_SEPARATE_HSV, compiler.stack_assign(color_in), compiler.stack_assign(hue_out), compiler.stack_assign(saturation_out)); compiler.add_node(NODE_SEPARATE_HSV, compiler.stack_assign(value_out)); } void SeparateHSVNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_separate_hsv"); } /* Hue Saturation Value */ NODE_DEFINE(HSVNode) { NodeType *type = NodeType::add("hsv", create, NodeType::SHADER); SOCKET_IN_FLOAT(hue, "Hue", 0.5f); SOCKET_IN_FLOAT(saturation, "Saturation", 1.0f); SOCKET_IN_FLOAT(value, "Value", 1.0f); SOCKET_IN_FLOAT(fac, "Fac", 1.0f); SOCKET_IN_COLOR(color, "Color", zero_float3()); SOCKET_OUT_COLOR(color, "Color"); return type; } HSVNode::HSVNode() : ShaderNode(get_node_type()) { } void HSVNode::compile(SVMCompiler &compiler) { ShaderInput *hue_in = input("Hue"); ShaderInput *saturation_in = input("Saturation"); ShaderInput *value_in = input("Value"); ShaderInput *fac_in = input("Fac"); ShaderInput *color_in = input("Color"); ShaderOutput *color_out = output("Color"); compiler.add_node(NODE_HSV, compiler.encode_uchar4(compiler.stack_assign(color_in), compiler.stack_assign(fac_in), compiler.stack_assign(color_out)), compiler.encode_uchar4(compiler.stack_assign(hue_in), compiler.stack_assign(saturation_in), compiler.stack_assign(value_in))); } void HSVNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_hsv"); } /* Attribute */ NODE_DEFINE(AttributeNode) { NodeType *type = NodeType::add("attribute", create, NodeType::SHADER); SOCKET_STRING(attribute, "Attribute", ustring()); SOCKET_OUT_COLOR(color, "Color"); SOCKET_OUT_VECTOR(vector, "Vector"); SOCKET_OUT_FLOAT(fac, "Fac"); SOCKET_OUT_FLOAT(alpha, "Alpha"); return type; } AttributeNode::AttributeNode() : ShaderNode(get_node_type()) { } void AttributeNode::attributes(Shader *shader, AttributeRequestSet *attributes) { ShaderOutput *color_out = output("Color"); ShaderOutput *vector_out = output("Vector"); ShaderOutput *fac_out = output("Fac"); ShaderOutput *alpha_out = output("Alpha"); if (!color_out->links.empty() || !vector_out->links.empty() || !fac_out->links.empty() || !alpha_out->links.empty()) { attributes->add_standard(attribute); } if (shader->has_volume) { attributes->add(ATTR_STD_GENERATED_TRANSFORM); } ShaderNode::attributes(shader, attributes); } void AttributeNode::compile(SVMCompiler &compiler) { ShaderOutput *color_out = output("Color"); ShaderOutput *vector_out = output("Vector"); ShaderOutput *fac_out = output("Fac"); ShaderOutput *alpha_out = output("Alpha"); ShaderNodeType attr_node = NODE_ATTR; int attr = compiler.attribute_standard(attribute); if (bump == SHADER_BUMP_DX) attr_node = NODE_ATTR_BUMP_DX; else if (bump == SHADER_BUMP_DY) attr_node = NODE_ATTR_BUMP_DY; if (!color_out->links.empty() || !vector_out->links.empty()) { if (!color_out->links.empty()) { compiler.add_node( attr_node, attr, compiler.stack_assign(color_out), NODE_ATTR_OUTPUT_FLOAT3); } if (!vector_out->links.empty()) { compiler.add_node( attr_node, attr, compiler.stack_assign(vector_out), NODE_ATTR_OUTPUT_FLOAT3); } } if (!fac_out->links.empty()) { compiler.add_node(attr_node, attr, compiler.stack_assign(fac_out), NODE_ATTR_OUTPUT_FLOAT); } if (!alpha_out->links.empty()) { compiler.add_node( attr_node, attr, compiler.stack_assign(alpha_out), NODE_ATTR_OUTPUT_FLOAT_ALPHA); } } void AttributeNode::compile(OSLCompiler &compiler) { if (bump == SHADER_BUMP_DX) compiler.parameter("bump_offset", "dx"); else if (bump == SHADER_BUMP_DY) compiler.parameter("bump_offset", "dy"); else compiler.parameter("bump_offset", "center"); if (Attribute::name_standard(attribute.c_str()) != ATTR_STD_NONE) compiler.parameter("name", (string("geom:") + attribute.c_str()).c_str()); else compiler.parameter("name", attribute.c_str()); compiler.add(this, "node_attribute"); } /* Camera */ NODE_DEFINE(CameraNode) { NodeType *type = NodeType::add("camera_info", create, NodeType::SHADER); SOCKET_OUT_VECTOR(view_vector, "View Vector"); SOCKET_OUT_FLOAT(view_z_depth, "View Z Depth"); SOCKET_OUT_FLOAT(view_distance, "View Distance"); return type; } CameraNode::CameraNode() : ShaderNode(get_node_type()) { } void CameraNode::compile(SVMCompiler &compiler) { ShaderOutput *vector_out = output("View Vector"); ShaderOutput *z_depth_out = output("View Z Depth"); ShaderOutput *distance_out = output("View Distance"); compiler.add_node(NODE_CAMERA, compiler.stack_assign(vector_out), compiler.stack_assign(z_depth_out), compiler.stack_assign(distance_out)); } void CameraNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_camera"); } /* Fresnel */ NODE_DEFINE(FresnelNode) { NodeType *type = NodeType::add("fresnel", create, NodeType::SHADER); SOCKET_IN_NORMAL( normal, "Normal", zero_float3(), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL); SOCKET_IN_FLOAT(IOR, "IOR", 1.45f); SOCKET_OUT_FLOAT(fac, "Fac"); return type; } FresnelNode::FresnelNode() : ShaderNode(get_node_type()) { } void FresnelNode::compile(SVMCompiler &compiler) { ShaderInput *normal_in = input("Normal"); ShaderInput *IOR_in = input("IOR"); ShaderOutput *fac_out = output("Fac"); compiler.add_node(NODE_FRESNEL, compiler.stack_assign(IOR_in), __float_as_int(IOR), compiler.encode_uchar4(compiler.stack_assign_if_linked(normal_in), compiler.stack_assign(fac_out))); } void FresnelNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_fresnel"); } /* Layer Weight */ NODE_DEFINE(LayerWeightNode) { NodeType *type = NodeType::add("layer_weight", create, NodeType::SHADER); SOCKET_IN_NORMAL( normal, "Normal", zero_float3(), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL); SOCKET_IN_FLOAT(blend, "Blend", 0.5f); SOCKET_OUT_FLOAT(fresnel, "Fresnel"); SOCKET_OUT_FLOAT(facing, "Facing"); return type; } LayerWeightNode::LayerWeightNode() : ShaderNode(get_node_type()) { } void LayerWeightNode::compile(SVMCompiler &compiler) { ShaderInput *normal_in = input("Normal"); ShaderInput *blend_in = input("Blend"); ShaderOutput *fresnel_out = output("Fresnel"); ShaderOutput *facing_out = output("Facing"); if (!fresnel_out->links.empty()) { compiler.add_node(NODE_LAYER_WEIGHT, compiler.stack_assign_if_linked(blend_in), __float_as_int(blend), compiler.encode_uchar4(NODE_LAYER_WEIGHT_FRESNEL, compiler.stack_assign_if_linked(normal_in), compiler.stack_assign(fresnel_out))); } if (!facing_out->links.empty()) { compiler.add_node(NODE_LAYER_WEIGHT, compiler.stack_assign_if_linked(blend_in), __float_as_int(blend), compiler.encode_uchar4(NODE_LAYER_WEIGHT_FACING, compiler.stack_assign_if_linked(normal_in), compiler.stack_assign(facing_out))); } } void LayerWeightNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_layer_weight"); } /* Wireframe */ NODE_DEFINE(WireframeNode) { NodeType *type = NodeType::add("wireframe", create, NodeType::SHADER); SOCKET_BOOLEAN(use_pixel_size, "Use Pixel Size", false); SOCKET_IN_FLOAT(size, "Size", 0.01f); SOCKET_OUT_FLOAT(fac, "Fac"); return type; } WireframeNode::WireframeNode() : ShaderNode(get_node_type()) { } void WireframeNode::compile(SVMCompiler &compiler) { ShaderInput *size_in = input("Size"); ShaderOutput *fac_out = output("Fac"); NodeBumpOffset bump_offset = NODE_BUMP_OFFSET_CENTER; if (bump == SHADER_BUMP_DX) { bump_offset = NODE_BUMP_OFFSET_DX; } else if (bump == SHADER_BUMP_DY) { bump_offset = NODE_BUMP_OFFSET_DY; } compiler.add_node(NODE_WIREFRAME, compiler.stack_assign(size_in), compiler.stack_assign(fac_out), compiler.encode_uchar4(use_pixel_size, bump_offset, 0, 0)); } void WireframeNode::compile(OSLCompiler &compiler) { if (bump == SHADER_BUMP_DX) { compiler.parameter("bump_offset", "dx"); } else if (bump == SHADER_BUMP_DY) { compiler.parameter("bump_offset", "dy"); } else { compiler.parameter("bump_offset", "center"); } compiler.parameter(this, "use_pixel_size"); compiler.add(this, "node_wireframe"); } /* Wavelength */ NODE_DEFINE(WavelengthNode) { NodeType *type = NodeType::add("wavelength", create, NodeType::SHADER); SOCKET_IN_FLOAT(wavelength, "Wavelength", 500.0f); SOCKET_OUT_COLOR(color, "Color"); return type; } WavelengthNode::WavelengthNode() : ShaderNode(get_node_type()) { } void WavelengthNode::compile(SVMCompiler &compiler) { ShaderInput *wavelength_in = input("Wavelength"); ShaderOutput *color_out = output("Color"); compiler.add_node( NODE_WAVELENGTH, compiler.stack_assign(wavelength_in), compiler.stack_assign(color_out)); } void WavelengthNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_wavelength"); } /* Blackbody */ NODE_DEFINE(BlackbodyNode) { NodeType *type = NodeType::add("blackbody", create, NodeType::SHADER); SOCKET_IN_FLOAT(temperature, "Temperature", 1200.0f); SOCKET_OUT_COLOR(color, "Color"); return type; } BlackbodyNode::BlackbodyNode() : ShaderNode(get_node_type()) { } void BlackbodyNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { const float3 rgb_rec709 = svm_math_blackbody_color_rec709(temperature); const float3 rgb = folder.scene->shader_manager->rec709_to_scene_linear(rgb_rec709); folder.make_constant(max(rgb, zero_float3())); } } void BlackbodyNode::compile(SVMCompiler &compiler) { ShaderInput *temperature_in = input("Temperature"); ShaderOutput *color_out = output("Color"); compiler.add_node( NODE_BLACKBODY, compiler.stack_assign(temperature_in), compiler.stack_assign(color_out)); } void BlackbodyNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_blackbody"); } /* Output */ NODE_DEFINE(OutputNode) { NodeType *type = NodeType::add("output", create, NodeType::SHADER); SOCKET_IN_CLOSURE(surface, "Surface"); SOCKET_IN_CLOSURE(volume, "Volume"); SOCKET_IN_VECTOR(displacement, "Displacement", zero_float3()); SOCKET_IN_NORMAL(normal, "Normal", zero_float3()); return type; } OutputNode::OutputNode() : ShaderNode(get_node_type()) { special_type = SHADER_SPECIAL_TYPE_OUTPUT; } void OutputNode::compile(SVMCompiler &compiler) { if (compiler.output_type() == SHADER_TYPE_DISPLACEMENT) { ShaderInput *displacement_in = input("Displacement"); if (displacement_in->link) { compiler.add_node(NODE_SET_DISPLACEMENT, compiler.stack_assign(displacement_in)); } } } void OutputNode::compile(OSLCompiler &compiler) { if (compiler.output_type() == SHADER_TYPE_SURFACE) compiler.add(this, "node_output_surface"); else if (compiler.output_type() == SHADER_TYPE_VOLUME) compiler.add(this, "node_output_volume"); else if (compiler.output_type() == SHADER_TYPE_DISPLACEMENT) compiler.add(this, "node_output_displacement"); } /* Map Range Node */ NODE_DEFINE(MapRangeNode) { NodeType *type = NodeType::add("map_range", create, NodeType::SHADER); static NodeEnum type_enum; type_enum.insert("linear", NODE_MAP_RANGE_LINEAR); type_enum.insert("stepped", NODE_MAP_RANGE_STEPPED); type_enum.insert("smoothstep", NODE_MAP_RANGE_SMOOTHSTEP); type_enum.insert("smootherstep", NODE_MAP_RANGE_SMOOTHERSTEP); SOCKET_ENUM(range_type, "Type", type_enum, NODE_MAP_RANGE_LINEAR); SOCKET_IN_FLOAT(value, "Value", 1.0f); SOCKET_IN_FLOAT(from_min, "From Min", 0.0f); SOCKET_IN_FLOAT(from_max, "From Max", 1.0f); SOCKET_IN_FLOAT(to_min, "To Min", 0.0f); SOCKET_IN_FLOAT(to_max, "To Max", 1.0f); SOCKET_IN_FLOAT(steps, "Steps", 4.0f); SOCKET_IN_BOOLEAN(clamp, "Clamp", false); SOCKET_OUT_FLOAT(result, "Result"); return type; } MapRangeNode::MapRangeNode() : ShaderNode(get_node_type()) { } void MapRangeNode::expand(ShaderGraph *graph) { if (clamp) { ShaderOutput *result_out = output("Result"); if (!result_out->links.empty()) { ClampNode *clamp_node = graph->create_node(); clamp_node->set_clamp_type(NODE_CLAMP_RANGE); graph->add(clamp_node); graph->relink(result_out, clamp_node->output("Result")); graph->connect(result_out, clamp_node->input("Value")); if (input("To Min")->link) { graph->connect(input("To Min")->link, clamp_node->input("Min")); } else { clamp_node->set_min(to_min); } if (input("To Max")->link) { graph->connect(input("To Max")->link, clamp_node->input("Max")); } else { clamp_node->set_max(to_max); } } } } void MapRangeNode::compile(SVMCompiler &compiler) { ShaderInput *value_in = input("Value"); ShaderInput *from_min_in = input("From Min"); ShaderInput *from_max_in = input("From Max"); ShaderInput *to_min_in = input("To Min"); ShaderInput *to_max_in = input("To Max"); ShaderInput *steps_in = input("Steps"); ShaderOutput *result_out = output("Result"); int value_stack_offset = compiler.stack_assign(value_in); int from_min_stack_offset = compiler.stack_assign_if_linked(from_min_in); int from_max_stack_offset = compiler.stack_assign_if_linked(from_max_in); int to_min_stack_offset = compiler.stack_assign_if_linked(to_min_in); int to_max_stack_offset = compiler.stack_assign_if_linked(to_max_in); int steps_stack_offset = compiler.stack_assign(steps_in); int result_stack_offset = compiler.stack_assign(result_out); compiler.add_node( NODE_MAP_RANGE, value_stack_offset, compiler.encode_uchar4( from_min_stack_offset, from_max_stack_offset, to_min_stack_offset, to_max_stack_offset), compiler.encode_uchar4(range_type, steps_stack_offset, result_stack_offset)); compiler.add_node(__float_as_int(from_min), __float_as_int(from_max), __float_as_int(to_min), __float_as_int(to_max)); compiler.add_node(__float_as_int(steps)); } void MapRangeNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "range_type"); compiler.add(this, "node_map_range"); } /* Vector Map Range Node */ NODE_DEFINE(VectorMapRangeNode) { NodeType *type = NodeType::add("vector_map_range", create, NodeType::SHADER); static NodeEnum type_enum; type_enum.insert("linear", NODE_MAP_RANGE_LINEAR); type_enum.insert("stepped", NODE_MAP_RANGE_STEPPED); type_enum.insert("smoothstep", NODE_MAP_RANGE_SMOOTHSTEP); type_enum.insert("smootherstep", NODE_MAP_RANGE_SMOOTHERSTEP); SOCKET_ENUM(range_type, "Type", type_enum, NODE_MAP_RANGE_LINEAR); SOCKET_IN_VECTOR(vector, "Vector", zero_float3()); SOCKET_IN_VECTOR(from_min, "From_Min_FLOAT3", zero_float3()); SOCKET_IN_VECTOR(from_max, "From_Max_FLOAT3", one_float3()); SOCKET_IN_VECTOR(to_min, "To_Min_FLOAT3", zero_float3()); SOCKET_IN_VECTOR(to_max, "To_Max_FLOAT3", one_float3()); SOCKET_IN_VECTOR(steps, "Steps_FLOAT3", make_float3(4.0f)); SOCKET_BOOLEAN(use_clamp, "Use Clamp", false); SOCKET_OUT_VECTOR(vector, "Vector"); return type; } VectorMapRangeNode::VectorMapRangeNode() : ShaderNode(get_node_type()) { } void VectorMapRangeNode::expand(ShaderGraph * /*graph*/) { } void VectorMapRangeNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *from_min_in = input("From_Min_FLOAT3"); ShaderInput *from_max_in = input("From_Max_FLOAT3"); ShaderInput *to_min_in = input("To_Min_FLOAT3"); ShaderInput *to_max_in = input("To_Max_FLOAT3"); ShaderInput *steps_in = input("Steps_FLOAT3"); ShaderOutput *vector_out = output("Vector"); int value_stack_offset = compiler.stack_assign(vector_in); int from_min_stack_offset = compiler.stack_assign(from_min_in); int from_max_stack_offset = compiler.stack_assign(from_max_in); int to_min_stack_offset = compiler.stack_assign(to_min_in); int to_max_stack_offset = compiler.stack_assign(to_max_in); int steps_stack_offset = compiler.stack_assign(steps_in); int result_stack_offset = compiler.stack_assign(vector_out); compiler.add_node( NODE_VECTOR_MAP_RANGE, value_stack_offset, compiler.encode_uchar4( from_min_stack_offset, from_max_stack_offset, to_min_stack_offset, to_max_stack_offset), compiler.encode_uchar4(steps_stack_offset, use_clamp, range_type, result_stack_offset)); } void VectorMapRangeNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "range_type"); compiler.parameter(this, "use_clamp"); compiler.add(this, "node_vector_map_range"); } /* Clamp Node */ NODE_DEFINE(ClampNode) { NodeType *type = NodeType::add("clamp", create, NodeType::SHADER); static NodeEnum type_enum; type_enum.insert("minmax", NODE_CLAMP_MINMAX); type_enum.insert("range", NODE_CLAMP_RANGE); SOCKET_ENUM(clamp_type, "Type", type_enum, NODE_CLAMP_MINMAX); SOCKET_IN_FLOAT(value, "Value", 1.0f); SOCKET_IN_FLOAT(min, "Min", 0.0f); SOCKET_IN_FLOAT(max, "Max", 1.0f); SOCKET_OUT_FLOAT(result, "Result"); return type; } ClampNode::ClampNode() : ShaderNode(get_node_type()) { } void ClampNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { if (clamp_type == NODE_CLAMP_RANGE && (min > max)) { folder.make_constant(clamp(value, max, min)); } else { folder.make_constant(clamp(value, min, max)); } } } void ClampNode::compile(SVMCompiler &compiler) { ShaderInput *value_in = input("Value"); ShaderInput *min_in = input("Min"); ShaderInput *max_in = input("Max"); ShaderOutput *result_out = output("Result"); int value_stack_offset = compiler.stack_assign(value_in); int min_stack_offset = compiler.stack_assign(min_in); int max_stack_offset = compiler.stack_assign(max_in); int result_stack_offset = compiler.stack_assign(result_out); compiler.add_node(NODE_CLAMP, value_stack_offset, compiler.encode_uchar4(min_stack_offset, max_stack_offset, clamp_type), result_stack_offset); compiler.add_node(__float_as_int(min), __float_as_int(max)); } void ClampNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "clamp_type"); compiler.add(this, "node_clamp"); } /* AOV Output */ NODE_DEFINE(OutputAOVNode) { NodeType *type = NodeType::add("aov_output", create, NodeType::SHADER); SOCKET_IN_COLOR(color, "Color", zero_float3()); SOCKET_IN_FLOAT(value, "Value", 0.0f); SOCKET_STRING(name, "AOV Name", ustring("")); return type; } OutputAOVNode::OutputAOVNode() : ShaderNode(get_node_type()) { special_type = SHADER_SPECIAL_TYPE_OUTPUT_AOV; offset = -1; } void OutputAOVNode::simplify_settings(Scene *scene) { offset = scene->film->get_aov_offset(scene, name.string(), is_color); if (offset == -1) { offset = scene->film->get_aov_offset(scene, name.string(), is_color); } if (offset == -1 || is_color) { input("Value")->disconnect(); } if (offset == -1 || !is_color) { input("Color")->disconnect(); } } void OutputAOVNode::compile(SVMCompiler &compiler) { assert(offset >= 0); if (is_color) { compiler.add_node(NODE_AOV_COLOR, compiler.stack_assign(input("Color")), offset); } else { compiler.add_node(NODE_AOV_VALUE, compiler.stack_assign(input("Value")), offset); } } void OutputAOVNode::compile(OSLCompiler & /*compiler*/) { /* TODO */ } /* Math */ NODE_DEFINE(MathNode) { NodeType *type = NodeType::add("math", create, NodeType::SHADER); static NodeEnum type_enum; type_enum.insert("add", NODE_MATH_ADD); type_enum.insert("subtract", NODE_MATH_SUBTRACT); type_enum.insert("multiply", NODE_MATH_MULTIPLY); type_enum.insert("divide", NODE_MATH_DIVIDE); type_enum.insert("multiply_add", NODE_MATH_MULTIPLY_ADD); type_enum.insert("sine", NODE_MATH_SINE); type_enum.insert("cosine", NODE_MATH_COSINE); type_enum.insert("tangent", NODE_MATH_TANGENT); type_enum.insert("sinh", NODE_MATH_SINH); type_enum.insert("cosh", NODE_MATH_COSH); type_enum.insert("tanh", NODE_MATH_TANH); type_enum.insert("arcsine", NODE_MATH_ARCSINE); type_enum.insert("arccosine", NODE_MATH_ARCCOSINE); type_enum.insert("arctangent", NODE_MATH_ARCTANGENT); type_enum.insert("power", NODE_MATH_POWER); type_enum.insert("logarithm", NODE_MATH_LOGARITHM); type_enum.insert("minimum", NODE_MATH_MINIMUM); type_enum.insert("maximum", NODE_MATH_MAXIMUM); type_enum.insert("round", NODE_MATH_ROUND); type_enum.insert("less_than", NODE_MATH_LESS_THAN); type_enum.insert("greater_than", NODE_MATH_GREATER_THAN); type_enum.insert("modulo", NODE_MATH_MODULO); type_enum.insert("absolute", NODE_MATH_ABSOLUTE); type_enum.insert("arctan2", NODE_MATH_ARCTAN2); type_enum.insert("floor", NODE_MATH_FLOOR); type_enum.insert("ceil", NODE_MATH_CEIL); type_enum.insert("fraction", NODE_MATH_FRACTION); type_enum.insert("trunc", NODE_MATH_TRUNC); type_enum.insert("snap", NODE_MATH_SNAP); type_enum.insert("wrap", NODE_MATH_WRAP); type_enum.insert("pingpong", NODE_MATH_PINGPONG); type_enum.insert("sqrt", NODE_MATH_SQRT); type_enum.insert("inversesqrt", NODE_MATH_INV_SQRT); type_enum.insert("sign", NODE_MATH_SIGN); type_enum.insert("exponent", NODE_MATH_EXPONENT); type_enum.insert("radians", NODE_MATH_RADIANS); type_enum.insert("degrees", NODE_MATH_DEGREES); type_enum.insert("smoothmin", NODE_MATH_SMOOTH_MIN); type_enum.insert("smoothmax", NODE_MATH_SMOOTH_MAX); type_enum.insert("compare", NODE_MATH_COMPARE); SOCKET_ENUM(math_type, "Type", type_enum, NODE_MATH_ADD); SOCKET_BOOLEAN(use_clamp, "Use Clamp", false); SOCKET_IN_FLOAT(value1, "Value1", 0.5f); SOCKET_IN_FLOAT(value2, "Value2", 0.5f); SOCKET_IN_FLOAT(value3, "Value3", 0.0f); SOCKET_OUT_FLOAT(value, "Value"); return type; } MathNode::MathNode() : ShaderNode(get_node_type()) { } void MathNode::expand(ShaderGraph *graph) { if (use_clamp) { ShaderOutput *result_out = output("Value"); if (!result_out->links.empty()) { ClampNode *clamp_node = graph->create_node(); clamp_node->set_clamp_type(NODE_CLAMP_MINMAX); clamp_node->set_min(0.0f); clamp_node->set_max(1.0f); graph->add(clamp_node); graph->relink(result_out, clamp_node->output("Result")); graph->connect(result_out, clamp_node->input("Value")); } } } void MathNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { folder.make_constant(svm_math(math_type, value1, value2, value3)); } else { folder.fold_math(math_type); } } void MathNode::compile(SVMCompiler &compiler) { ShaderInput *value1_in = input("Value1"); ShaderInput *value2_in = input("Value2"); ShaderInput *value3_in = input("Value3"); ShaderOutput *value_out = output("Value"); int value1_stack_offset = compiler.stack_assign(value1_in); int value2_stack_offset = compiler.stack_assign(value2_in); int value3_stack_offset = compiler.stack_assign(value3_in); int value_stack_offset = compiler.stack_assign(value_out); compiler.add_node( NODE_MATH, math_type, compiler.encode_uchar4(value1_stack_offset, value2_stack_offset, value3_stack_offset), value_stack_offset); } void MathNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "math_type"); compiler.add(this, "node_math"); } /* VectorMath */ NODE_DEFINE(VectorMathNode) { NodeType *type = NodeType::add("vector_math", create, NodeType::SHADER); static NodeEnum type_enum; type_enum.insert("add", NODE_VECTOR_MATH_ADD); type_enum.insert("subtract", NODE_VECTOR_MATH_SUBTRACT); type_enum.insert("multiply", NODE_VECTOR_MATH_MULTIPLY); type_enum.insert("divide", NODE_VECTOR_MATH_DIVIDE); type_enum.insert("cross_product", NODE_VECTOR_MATH_CROSS_PRODUCT); type_enum.insert("project", NODE_VECTOR_MATH_PROJECT); type_enum.insert("reflect", NODE_VECTOR_MATH_REFLECT); type_enum.insert("refract", NODE_VECTOR_MATH_REFRACT); type_enum.insert("faceforward", NODE_VECTOR_MATH_FACEFORWARD); type_enum.insert("multiply_add", NODE_VECTOR_MATH_MULTIPLY_ADD); type_enum.insert("dot_product", NODE_VECTOR_MATH_DOT_PRODUCT); type_enum.insert("distance", NODE_VECTOR_MATH_DISTANCE); type_enum.insert("length", NODE_VECTOR_MATH_LENGTH); type_enum.insert("scale", NODE_VECTOR_MATH_SCALE); type_enum.insert("normalize", NODE_VECTOR_MATH_NORMALIZE); type_enum.insert("snap", NODE_VECTOR_MATH_SNAP); type_enum.insert("floor", NODE_VECTOR_MATH_FLOOR); type_enum.insert("ceil", NODE_VECTOR_MATH_CEIL); type_enum.insert("modulo", NODE_VECTOR_MATH_MODULO); type_enum.insert("wrap", NODE_VECTOR_MATH_WRAP); type_enum.insert("fraction", NODE_VECTOR_MATH_FRACTION); type_enum.insert("absolute", NODE_VECTOR_MATH_ABSOLUTE); type_enum.insert("minimum", NODE_VECTOR_MATH_MINIMUM); type_enum.insert("maximum", NODE_VECTOR_MATH_MAXIMUM); type_enum.insert("sine", NODE_VECTOR_MATH_SINE); type_enum.insert("cosine", NODE_VECTOR_MATH_COSINE); type_enum.insert("tangent", NODE_VECTOR_MATH_TANGENT); SOCKET_ENUM(math_type, "Type", type_enum, NODE_VECTOR_MATH_ADD); SOCKET_IN_VECTOR(vector1, "Vector1", zero_float3()); SOCKET_IN_VECTOR(vector2, "Vector2", zero_float3()); SOCKET_IN_VECTOR(vector3, "Vector3", zero_float3()); SOCKET_IN_FLOAT(scale, "Scale", 1.0f); SOCKET_OUT_FLOAT(value, "Value"); SOCKET_OUT_VECTOR(vector, "Vector"); return type; } VectorMathNode::VectorMathNode() : ShaderNode(get_node_type()) { } void VectorMathNode::constant_fold(const ConstantFolder &folder) { float value = 0.0f; float3 vector = zero_float3(); if (folder.all_inputs_constant()) { svm_vector_math(&value, &vector, math_type, vector1, vector2, vector3, scale); if (folder.output == output("Value")) { folder.make_constant(value); } else if (folder.output == output("Vector")) { folder.make_constant(vector); } } else { folder.fold_vector_math(math_type); } } void VectorMathNode::compile(SVMCompiler &compiler) { ShaderInput *vector1_in = input("Vector1"); ShaderInput *vector2_in = input("Vector2"); ShaderInput *param1_in = input("Scale"); ShaderOutput *value_out = output("Value"); ShaderOutput *vector_out = output("Vector"); int vector1_stack_offset = compiler.stack_assign(vector1_in); int vector2_stack_offset = compiler.stack_assign(vector2_in); int param1_stack_offset = compiler.stack_assign(param1_in); int value_stack_offset = compiler.stack_assign_if_linked(value_out); int vector_stack_offset = compiler.stack_assign_if_linked(vector_out); /* 3 Vector Operators */ if (math_type == NODE_VECTOR_MATH_WRAP || math_type == NODE_VECTOR_MATH_FACEFORWARD || math_type == NODE_VECTOR_MATH_MULTIPLY_ADD) { ShaderInput *vector3_in = input("Vector3"); int vector3_stack_offset = compiler.stack_assign(vector3_in); compiler.add_node( NODE_VECTOR_MATH, math_type, compiler.encode_uchar4(vector1_stack_offset, vector2_stack_offset, param1_stack_offset), compiler.encode_uchar4(value_stack_offset, vector_stack_offset)); compiler.add_node(vector3_stack_offset); } else { compiler.add_node( NODE_VECTOR_MATH, math_type, compiler.encode_uchar4(vector1_stack_offset, vector2_stack_offset, param1_stack_offset), compiler.encode_uchar4(value_stack_offset, vector_stack_offset)); } } void VectorMathNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "math_type"); compiler.add(this, "node_vector_math"); } /* Vector Rotate */ NODE_DEFINE(VectorRotateNode) { NodeType *type = NodeType::add("vector_rotate", create, NodeType::SHADER); static NodeEnum type_enum; type_enum.insert("axis", NODE_VECTOR_ROTATE_TYPE_AXIS); type_enum.insert("x_axis", NODE_VECTOR_ROTATE_TYPE_AXIS_X); type_enum.insert("y_axis", NODE_VECTOR_ROTATE_TYPE_AXIS_Y); type_enum.insert("z_axis", NODE_VECTOR_ROTATE_TYPE_AXIS_Z); type_enum.insert("euler_xyz", NODE_VECTOR_ROTATE_TYPE_EULER_XYZ); SOCKET_ENUM(rotate_type, "Type", type_enum, NODE_VECTOR_ROTATE_TYPE_AXIS); SOCKET_BOOLEAN(invert, "Invert", false); SOCKET_IN_VECTOR(vector, "Vector", zero_float3()); SOCKET_IN_POINT(rotation, "Rotation", zero_float3()); SOCKET_IN_POINT(center, "Center", zero_float3()); SOCKET_IN_VECTOR(axis, "Axis", make_float3(0.0f, 0.0f, 1.0f)); SOCKET_IN_FLOAT(angle, "Angle", 0.0f); SOCKET_OUT_VECTOR(vector, "Vector"); return type; } VectorRotateNode::VectorRotateNode() : ShaderNode(get_node_type()) { } void VectorRotateNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *rotation_in = input("Rotation"); ShaderInput *center_in = input("Center"); ShaderInput *axis_in = input("Axis"); ShaderInput *angle_in = input("Angle"); ShaderOutput *vector_out = output("Vector"); compiler.add_node(NODE_VECTOR_ROTATE, compiler.encode_uchar4(rotate_type, compiler.stack_assign(vector_in), compiler.stack_assign(rotation_in), invert), compiler.encode_uchar4(compiler.stack_assign(center_in), compiler.stack_assign(axis_in), compiler.stack_assign(angle_in)), compiler.stack_assign(vector_out)); } void VectorRotateNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "rotate_type"); compiler.parameter(this, "invert"); compiler.add(this, "node_vector_rotate"); } /* VectorTransform */ NODE_DEFINE(VectorTransformNode) { NodeType *type = NodeType::add("vector_transform", create, NodeType::SHADER); static NodeEnum type_enum; type_enum.insert("vector", NODE_VECTOR_TRANSFORM_TYPE_VECTOR); type_enum.insert("point", NODE_VECTOR_TRANSFORM_TYPE_POINT); type_enum.insert("normal", NODE_VECTOR_TRANSFORM_TYPE_NORMAL); SOCKET_ENUM(transform_type, "Type", type_enum, NODE_VECTOR_TRANSFORM_TYPE_VECTOR); static NodeEnum space_enum; space_enum.insert("world", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_WORLD); space_enum.insert("object", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_OBJECT); space_enum.insert("camera", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_CAMERA); SOCKET_ENUM(convert_from, "Convert From", space_enum, NODE_VECTOR_TRANSFORM_CONVERT_SPACE_WORLD); SOCKET_ENUM(convert_to, "Convert To", space_enum, NODE_VECTOR_TRANSFORM_CONVERT_SPACE_OBJECT); SOCKET_IN_VECTOR(vector, "Vector", zero_float3()); SOCKET_OUT_VECTOR(vector, "Vector"); return type; } VectorTransformNode::VectorTransformNode() : ShaderNode(get_node_type()) { } void VectorTransformNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderOutput *vector_out = output("Vector"); compiler.add_node( NODE_VECTOR_TRANSFORM, compiler.encode_uchar4(transform_type, convert_from, convert_to), compiler.encode_uchar4(compiler.stack_assign(vector_in), compiler.stack_assign(vector_out))); } void VectorTransformNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "transform_type"); compiler.parameter(this, "convert_from"); compiler.parameter(this, "convert_to"); compiler.add(this, "node_vector_transform"); } /* BumpNode */ NODE_DEFINE(BumpNode) { NodeType *type = NodeType::add("bump", create, NodeType::SHADER); SOCKET_BOOLEAN(invert, "Invert", false); SOCKET_BOOLEAN(use_object_space, "UseObjectSpace", false); /* this input is used by the user, but after graph transform it is no longer * used and moved to sampler center/x/y instead */ SOCKET_IN_FLOAT(height, "Height", 1.0f); SOCKET_IN_FLOAT(sample_center, "SampleCenter", 0.0f); SOCKET_IN_FLOAT(sample_x, "SampleX", 0.0f); SOCKET_IN_FLOAT(sample_y, "SampleY", 0.0f); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_IN_FLOAT(strength, "Strength", 1.0f); SOCKET_IN_FLOAT(distance, "Distance", 0.1f); SOCKET_OUT_NORMAL(normal, "Normal"); return type; } BumpNode::BumpNode() : ShaderNode(get_node_type()) { special_type = SHADER_SPECIAL_TYPE_BUMP; } void BumpNode::compile(SVMCompiler &compiler) { ShaderInput *center_in = input("SampleCenter"); ShaderInput *dx_in = input("SampleX"); ShaderInput *dy_in = input("SampleY"); ShaderInput *normal_in = input("Normal"); ShaderInput *strength_in = input("Strength"); ShaderInput *distance_in = input("Distance"); ShaderOutput *normal_out = output("Normal"); /* pack all parameters in the node */ compiler.add_node(NODE_SET_BUMP, compiler.encode_uchar4(compiler.stack_assign_if_linked(normal_in), compiler.stack_assign(distance_in), invert, use_object_space), compiler.encode_uchar4(compiler.stack_assign(center_in), compiler.stack_assign(dx_in), compiler.stack_assign(dy_in), compiler.stack_assign(strength_in)), compiler.stack_assign(normal_out)); } void BumpNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "invert"); compiler.parameter(this, "use_object_space"); compiler.add(this, "node_bump"); } void BumpNode::constant_fold(const ConstantFolder &folder) { ShaderInput *height_in = input("Height"); ShaderInput *normal_in = input("Normal"); if (height_in->link == NULL) { if (normal_in->link == NULL) { GeometryNode *geom = folder.graph->create_node(); folder.graph->add(geom); folder.bypass(geom->output("Normal")); } else { folder.bypass(normal_in->link); } } /* TODO(sergey): Ignore bump with zero strength. */ } /* Curves node */ CurvesNode::CurvesNode(const NodeType *node_type) : ShaderNode(node_type) { } void CurvesNode::constant_fold(const ConstantFolder &folder, ShaderInput *value_in) { ShaderInput *fac_in = input("Fac"); /* evaluate fully constant node */ if (folder.all_inputs_constant()) { if (curves.size() == 0) { return; } float3 pos = (value - make_float3(min_x, min_x, min_x)) / (max_x - min_x); float3 result; result[0] = rgb_ramp_lookup(curves.data(), pos[0], true, extrapolate, curves.size()).x; result[1] = rgb_ramp_lookup(curves.data(), pos[1], true, extrapolate, curves.size()).y; result[2] = rgb_ramp_lookup(curves.data(), pos[2], true, extrapolate, curves.size()).z; folder.make_constant(interp(value, result, fac)); } /* remove no-op node */ else if (!fac_in->link && fac == 0.0f) { /* link is not null because otherwise all inputs are constant */ folder.bypass(value_in->link); } } void CurvesNode::compile(SVMCompiler &compiler, int type, ShaderInput *value_in, ShaderOutput *value_out) { if (curves.size() == 0) return; ShaderInput *fac_in = input("Fac"); compiler.add_node(ShaderNodeType(type), compiler.encode_uchar4(compiler.stack_assign(fac_in), compiler.stack_assign(value_in), compiler.stack_assign(value_out), extrapolate), __float_as_int(min_x), __float_as_int(max_x)); compiler.add_node(curves.size()); for (int i = 0; i < curves.size(); i++) compiler.add_node(float3_to_float4(curves[i])); } void CurvesNode::compile(OSLCompiler &compiler, const char *name) { if (curves.size() == 0) return; compiler.parameter_color_array("ramp", curves); compiler.parameter(this, "min_x"); compiler.parameter(this, "max_x"); compiler.parameter(this, "extrapolate"); compiler.add(this, name); } void CurvesNode::compile(SVMCompiler & /*compiler*/) { assert(0); } void CurvesNode::compile(OSLCompiler & /*compiler*/) { assert(0); } /* RGBCurvesNode */ NODE_DEFINE(RGBCurvesNode) { NodeType *type = NodeType::add("rgb_curves", create, NodeType::SHADER); SOCKET_COLOR_ARRAY(curves, "Curves", array()); SOCKET_FLOAT(min_x, "Min X", 0.0f); SOCKET_FLOAT(max_x, "Max X", 1.0f); SOCKET_BOOLEAN(extrapolate, "Extrapolate", true); SOCKET_IN_FLOAT(fac, "Fac", 0.0f); SOCKET_IN_COLOR(value, "Color", zero_float3()); SOCKET_OUT_COLOR(value, "Color"); return type; } RGBCurvesNode::RGBCurvesNode() : CurvesNode(get_node_type()) { } void RGBCurvesNode::constant_fold(const ConstantFolder &folder) { CurvesNode::constant_fold(folder, input("Color")); } void RGBCurvesNode::compile(SVMCompiler &compiler) { CurvesNode::compile(compiler, NODE_CURVES, input("Color"), output("Color")); } void RGBCurvesNode::compile(OSLCompiler &compiler) { CurvesNode::compile(compiler, "node_rgb_curves"); } /* VectorCurvesNode */ NODE_DEFINE(VectorCurvesNode) { NodeType *type = NodeType::add("vector_curves", create, NodeType::SHADER); SOCKET_VECTOR_ARRAY(curves, "Curves", array()); SOCKET_FLOAT(min_x, "Min X", 0.0f); SOCKET_FLOAT(max_x, "Max X", 1.0f); SOCKET_BOOLEAN(extrapolate, "Extrapolate", true); SOCKET_IN_FLOAT(fac, "Fac", 0.0f); SOCKET_IN_VECTOR(value, "Vector", zero_float3()); SOCKET_OUT_VECTOR(value, "Vector"); return type; } VectorCurvesNode::VectorCurvesNode() : CurvesNode(get_node_type()) { } void VectorCurvesNode::constant_fold(const ConstantFolder &folder) { CurvesNode::constant_fold(folder, input("Vector")); } void VectorCurvesNode::compile(SVMCompiler &compiler) { CurvesNode::compile(compiler, NODE_CURVES, input("Vector"), output("Vector")); } void VectorCurvesNode::compile(OSLCompiler &compiler) { CurvesNode::compile(compiler, "node_vector_curves"); } /* FloatCurveNode */ NODE_DEFINE(FloatCurveNode) { NodeType *type = NodeType::add("float_curve", create, NodeType::SHADER); SOCKET_FLOAT_ARRAY(curve, "Curve", array()); SOCKET_FLOAT(min_x, "Min X", 0.0f); SOCKET_FLOAT(max_x, "Max X", 1.0f); SOCKET_BOOLEAN(extrapolate, "Extrapolate", true); SOCKET_IN_FLOAT(fac, "Factor", 0.0f); SOCKET_IN_FLOAT(value, "Value", 0.0f); SOCKET_OUT_FLOAT(value, "Value"); return type; } FloatCurveNode::FloatCurveNode() : ShaderNode(get_node_type()) { } void FloatCurveNode::constant_fold(const ConstantFolder &folder) { ShaderInput *value_in = input("Value"); ShaderInput *fac_in = input("Factor"); /* evaluate fully constant node */ if (folder.all_inputs_constant()) { if (curve.size() == 0) { return; } float pos = (value - min_x) / (max_x - min_x); float result = float_ramp_lookup(curve.data(), pos, true, extrapolate, curve.size()); folder.make_constant(value + fac * (result - value)); } /* remove no-op node */ else if (!fac_in->link && fac == 0.0f) { /* link is not null because otherwise all inputs are constant */ folder.bypass(value_in->link); } } void FloatCurveNode::compile(SVMCompiler &compiler) { if (curve.size() == 0) return; ShaderInput *value_in = input("Value"); ShaderInput *fac_in = input("Factor"); ShaderOutput *value_out = output("Value"); compiler.add_node(NODE_FLOAT_CURVE, compiler.encode_uchar4(compiler.stack_assign(fac_in), compiler.stack_assign(value_in), compiler.stack_assign(value_out), extrapolate), __float_as_int(min_x), __float_as_int(max_x)); compiler.add_node(curve.size()); for (int i = 0; i < curve.size(); i++) compiler.add_node(make_float4(curve[i])); } void FloatCurveNode::compile(OSLCompiler &compiler) { if (curve.size() == 0) return; compiler.parameter_array("ramp", curve.data(), curve.size()); compiler.parameter(this, "min_x"); compiler.parameter(this, "max_x"); compiler.parameter(this, "extrapolate"); compiler.add(this, "node_float_curve"); } /* RGBRampNode */ NODE_DEFINE(RGBRampNode) { NodeType *type = NodeType::add("rgb_ramp", create, NodeType::SHADER); SOCKET_COLOR_ARRAY(ramp, "Ramp", array()); SOCKET_FLOAT_ARRAY(ramp_alpha, "Ramp Alpha", array()); SOCKET_BOOLEAN(interpolate, "Interpolate", true); SOCKET_IN_FLOAT(fac, "Fac", 0.0f); SOCKET_OUT_COLOR(color, "Color"); SOCKET_OUT_FLOAT(alpha, "Alpha"); return type; } RGBRampNode::RGBRampNode() : ShaderNode(get_node_type()) { } void RGBRampNode::constant_fold(const ConstantFolder &folder) { if (ramp.size() == 0 || ramp.size() != ramp_alpha.size()) return; if (folder.all_inputs_constant()) { float f = clamp(fac, 0.0f, 1.0f) * (ramp.size() - 1); /* clamp int as well in case of NaN */ int i = clamp((int)f, 0, ramp.size() - 1); float t = f - (float)i; bool use_lerp = interpolate && t > 0.0f; if (folder.output == output("Color")) { float3 color = rgb_ramp_lookup(ramp.data(), fac, use_lerp, false, ramp.size()); folder.make_constant(color); } else if (folder.output == output("Alpha")) { float alpha = float_ramp_lookup(ramp_alpha.data(), fac, use_lerp, false, ramp_alpha.size()); folder.make_constant(alpha); } } } void RGBRampNode::compile(SVMCompiler &compiler) { if (ramp.size() == 0 || ramp.size() != ramp_alpha.size()) return; ShaderInput *fac_in = input("Fac"); ShaderOutput *color_out = output("Color"); ShaderOutput *alpha_out = output("Alpha"); compiler.add_node(NODE_RGB_RAMP, compiler.encode_uchar4(compiler.stack_assign(fac_in), compiler.stack_assign_if_linked(color_out), compiler.stack_assign_if_linked(alpha_out)), interpolate); compiler.add_node(ramp.size()); for (int i = 0; i < ramp.size(); i++) compiler.add_node(make_float4(ramp[i].x, ramp[i].y, ramp[i].z, ramp_alpha[i])); } void RGBRampNode::compile(OSLCompiler &compiler) { if (ramp.size() == 0 || ramp.size() != ramp_alpha.size()) return; compiler.parameter_color_array("ramp_color", ramp); compiler.parameter_array("ramp_alpha", ramp_alpha.data(), ramp_alpha.size()); compiler.parameter(this, "interpolate"); compiler.add(this, "node_rgb_ramp"); } /* Set Normal Node */ NODE_DEFINE(SetNormalNode) { NodeType *type = NodeType::add("set_normal", create, NodeType::SHADER); SOCKET_IN_VECTOR(direction, "Direction", zero_float3()); SOCKET_OUT_NORMAL(normal, "Normal"); return type; } SetNormalNode::SetNormalNode() : ShaderNode(get_node_type()) { } void SetNormalNode::compile(SVMCompiler &compiler) { ShaderInput *direction_in = input("Direction"); ShaderOutput *normal_out = output("Normal"); compiler.add_node(NODE_CLOSURE_SET_NORMAL, compiler.stack_assign(direction_in), compiler.stack_assign(normal_out)); } void SetNormalNode::compile(OSLCompiler &compiler) { compiler.add(this, "node_set_normal"); } /* OSLNode */ OSLNode::OSLNode() : ShaderNode(new NodeType(NodeType::SHADER)) { special_type = SHADER_SPECIAL_TYPE_OSL; } OSLNode::~OSLNode() { delete type; } ShaderNode *OSLNode::clone(ShaderGraph *graph) const { return OSLNode::create(graph, this->inputs.size(), this); } OSLNode *OSLNode::create(ShaderGraph *graph, size_t num_inputs, const OSLNode *from) { /* allocate space for the node itself and parameters, aligned to 16 bytes * assuming that's the most parameter types need */ size_t node_size = align_up(sizeof(OSLNode), 16); size_t inputs_size = align_up(SocketType::max_size(), 16) * num_inputs; char *node_memory = (char *)operator new(node_size + inputs_size); memset(node_memory, 0, node_size + inputs_size); if (!from) { OSLNode *node = new (node_memory) OSLNode(); node->set_owner(graph); return node; } else { /* copy input default values and node type for cloning */ memcpy(node_memory + node_size, (char *)from + node_size, inputs_size); OSLNode *node = new (node_memory) OSLNode(*from); node->type = new NodeType(*(from->type)); node->set_owner(from->owner); return node; } } char *OSLNode::input_default_value() { /* pointer to default value storage, which is the same as our actual value */ size_t num_inputs = type->inputs.size(); size_t inputs_size = align_up(SocketType::max_size(), 16) * num_inputs; return (char *)this + align_up(sizeof(OSLNode), 16) + inputs_size; } void OSLNode::add_input(ustring name, SocketType::Type socket_type) { char *memory = input_default_value(); size_t offset = memory - (char *)this; const_cast(type)->register_input( name, name, socket_type, offset, memory, NULL, NULL, SocketType::LINKABLE); } void OSLNode::add_output(ustring name, SocketType::Type socket_type) { const_cast(type)->register_output(name, name, socket_type); } void OSLNode::compile(SVMCompiler &) { /* doesn't work for SVM, obviously ... */ } void OSLNode::compile(OSLCompiler &compiler) { if (!filepath.empty()) compiler.add(this, filepath.c_str(), true); else compiler.add(this, bytecode_hash.c_str(), false); } /* Normal Map */ NODE_DEFINE(NormalMapNode) { NodeType *type = NodeType::add("normal_map", create, NodeType::SHADER); static NodeEnum space_enum; space_enum.insert("tangent", NODE_NORMAL_MAP_TANGENT); space_enum.insert("object", NODE_NORMAL_MAP_OBJECT); space_enum.insert("world", NODE_NORMAL_MAP_WORLD); space_enum.insert("blender_object", NODE_NORMAL_MAP_BLENDER_OBJECT); space_enum.insert("blender_world", NODE_NORMAL_MAP_BLENDER_WORLD); SOCKET_ENUM(space, "Space", space_enum, NODE_NORMAL_MAP_TANGENT); SOCKET_STRING(attribute, "Attribute", ustring()); SOCKET_IN_NORMAL( normal_osl, "NormalIn", zero_float3(), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL); SOCKET_IN_FLOAT(strength, "Strength", 1.0f); SOCKET_IN_COLOR(color, "Color", make_float3(0.5f, 0.5f, 1.0f)); SOCKET_OUT_NORMAL(normal, "Normal"); return type; } NormalMapNode::NormalMapNode() : ShaderNode(get_node_type()) { } void NormalMapNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (shader->has_surface_link() && space == NODE_NORMAL_MAP_TANGENT) { if (attribute.empty()) { attributes->add(ATTR_STD_UV_TANGENT); attributes->add(ATTR_STD_UV_TANGENT_SIGN); } else { attributes->add(ustring((string(attribute.c_str()) + ".tangent").c_str())); attributes->add(ustring((string(attribute.c_str()) + ".tangent_sign").c_str())); } } ShaderNode::attributes(shader, attributes); } void NormalMapNode::compile(SVMCompiler &compiler) { ShaderInput *color_in = input("Color"); ShaderInput *strength_in = input("Strength"); ShaderOutput *normal_out = output("Normal"); int attr = 0, attr_sign = 0; if (space == NODE_NORMAL_MAP_TANGENT) { if (attribute.empty()) { attr = compiler.attribute(ATTR_STD_UV_TANGENT); attr_sign = compiler.attribute(ATTR_STD_UV_TANGENT_SIGN); } else { attr = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent").c_str())); attr_sign = compiler.attribute( ustring((string(attribute.c_str()) + ".tangent_sign").c_str())); } } compiler.add_node(NODE_NORMAL_MAP, compiler.encode_uchar4(compiler.stack_assign(color_in), compiler.stack_assign(strength_in), compiler.stack_assign(normal_out), space), attr, attr_sign); } void NormalMapNode::compile(OSLCompiler &compiler) { if (space == NODE_NORMAL_MAP_TANGENT) { if (attribute.empty()) { compiler.parameter("attr_name", ustring("geom:tangent")); compiler.parameter("attr_sign_name", ustring("geom:tangent_sign")); } else { compiler.parameter("attr_name", ustring((string(attribute.c_str()) + ".tangent").c_str())); compiler.parameter("attr_sign_name", ustring((string(attribute.c_str()) + ".tangent_sign").c_str())); } } compiler.parameter(this, "space"); compiler.add(this, "node_normal_map"); } /* Tangent */ NODE_DEFINE(TangentNode) { NodeType *type = NodeType::add("tangent", create, NodeType::SHADER); static NodeEnum direction_type_enum; direction_type_enum.insert("radial", NODE_TANGENT_RADIAL); direction_type_enum.insert("uv_map", NODE_TANGENT_UVMAP); SOCKET_ENUM(direction_type, "Direction Type", direction_type_enum, NODE_TANGENT_RADIAL); static NodeEnum axis_enum; axis_enum.insert("x", NODE_TANGENT_AXIS_X); axis_enum.insert("y", NODE_TANGENT_AXIS_Y); axis_enum.insert("z", NODE_TANGENT_AXIS_Z); SOCKET_ENUM(axis, "Axis", axis_enum, NODE_TANGENT_AXIS_X); SOCKET_STRING(attribute, "Attribute", ustring()); SOCKET_IN_NORMAL( normal_osl, "NormalIn", zero_float3(), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL); SOCKET_OUT_NORMAL(tangent, "Tangent"); return type; } TangentNode::TangentNode() : ShaderNode(get_node_type()) { } void TangentNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (shader->has_surface_link()) { if (direction_type == NODE_TANGENT_UVMAP) { if (attribute.empty()) attributes->add(ATTR_STD_UV_TANGENT); else attributes->add(ustring((string(attribute.c_str()) + ".tangent").c_str())); } else attributes->add(ATTR_STD_GENERATED); } ShaderNode::attributes(shader, attributes); } void TangentNode::compile(SVMCompiler &compiler) { ShaderOutput *tangent_out = output("Tangent"); int attr; if (direction_type == NODE_TANGENT_UVMAP) { if (attribute.empty()) attr = compiler.attribute(ATTR_STD_UV_TANGENT); else attr = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent").c_str())); } else attr = compiler.attribute(ATTR_STD_GENERATED); compiler.add_node( NODE_TANGENT, compiler.encode_uchar4(compiler.stack_assign(tangent_out), direction_type, axis), attr); } void TangentNode::compile(OSLCompiler &compiler) { if (direction_type == NODE_TANGENT_UVMAP) { if (attribute.empty()) compiler.parameter("attr_name", ustring("geom:tangent")); else compiler.parameter("attr_name", ustring((string(attribute.c_str()) + ".tangent").c_str())); } compiler.parameter(this, "direction_type"); compiler.parameter(this, "axis"); compiler.add(this, "node_tangent"); } /* Bevel */ NODE_DEFINE(BevelNode) { NodeType *type = NodeType::add("bevel", create, NodeType::SHADER); SOCKET_INT(samples, "Samples", 4); SOCKET_IN_FLOAT(radius, "Radius", 0.05f); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_OUT_NORMAL(bevel, "Normal"); return type; } BevelNode::BevelNode() : ShaderNode(get_node_type()) { } void BevelNode::compile(SVMCompiler &compiler) { ShaderInput *radius_in = input("Radius"); ShaderInput *normal_in = input("Normal"); ShaderOutput *normal_out = output("Normal"); compiler.add_node(NODE_BEVEL, compiler.encode_uchar4(samples, compiler.stack_assign(radius_in), compiler.stack_assign_if_linked(normal_in), compiler.stack_assign(normal_out))); } void BevelNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "samples"); compiler.add(this, "node_bevel"); } /* Displacement */ NODE_DEFINE(DisplacementNode) { NodeType *type = NodeType::add("displacement", create, NodeType::SHADER); static NodeEnum space_enum; space_enum.insert("object", NODE_NORMAL_MAP_OBJECT); space_enum.insert("world", NODE_NORMAL_MAP_WORLD); SOCKET_ENUM(space, "Space", space_enum, NODE_NORMAL_MAP_OBJECT); SOCKET_IN_FLOAT(height, "Height", 0.0f); SOCKET_IN_FLOAT(midlevel, "Midlevel", 0.5f); SOCKET_IN_FLOAT(scale, "Scale", 1.0f); SOCKET_IN_NORMAL(normal, "Normal", zero_float3(), SocketType::LINK_NORMAL); SOCKET_OUT_VECTOR(displacement, "Displacement"); return type; } DisplacementNode::DisplacementNode() : ShaderNode(get_node_type()) { } void DisplacementNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { if ((height - midlevel == 0.0f) || (scale == 0.0f)) { folder.make_zero(); } } } void DisplacementNode::compile(SVMCompiler &compiler) { ShaderInput *height_in = input("Height"); ShaderInput *midlevel_in = input("Midlevel"); ShaderInput *scale_in = input("Scale"); ShaderInput *normal_in = input("Normal"); ShaderOutput *displacement_out = output("Displacement"); compiler.add_node(NODE_DISPLACEMENT, compiler.encode_uchar4(compiler.stack_assign(height_in), compiler.stack_assign(midlevel_in), compiler.stack_assign(scale_in), compiler.stack_assign_if_linked(normal_in)), compiler.stack_assign(displacement_out), space); } void DisplacementNode::compile(OSLCompiler &compiler) { compiler.parameter(this, "space"); compiler.add(this, "node_displacement"); } /* Vector Displacement */ NODE_DEFINE(VectorDisplacementNode) { NodeType *type = NodeType::add("vector_displacement", create, NodeType::SHADER); static NodeEnum space_enum; space_enum.insert("tangent", NODE_NORMAL_MAP_TANGENT); space_enum.insert("object", NODE_NORMAL_MAP_OBJECT); space_enum.insert("world", NODE_NORMAL_MAP_WORLD); SOCKET_ENUM(space, "Space", space_enum, NODE_NORMAL_MAP_TANGENT); SOCKET_STRING(attribute, "Attribute", ustring()); SOCKET_IN_COLOR(vector, "Vector", zero_float3()); SOCKET_IN_FLOAT(midlevel, "Midlevel", 0.0f); SOCKET_IN_FLOAT(scale, "Scale", 1.0f); SOCKET_OUT_VECTOR(displacement, "Displacement"); return type; } VectorDisplacementNode::VectorDisplacementNode() : ShaderNode(get_node_type()) { } void VectorDisplacementNode::constant_fold(const ConstantFolder &folder) { if (folder.all_inputs_constant()) { if ((vector == zero_float3() && midlevel == 0.0f) || (scale == 0.0f)) { folder.make_zero(); } } } void VectorDisplacementNode::attributes(Shader *shader, AttributeRequestSet *attributes) { if (shader->has_surface_link() && space == NODE_NORMAL_MAP_TANGENT) { if (attribute.empty()) { attributes->add(ATTR_STD_UV_TANGENT); attributes->add(ATTR_STD_UV_TANGENT_SIGN); } else { attributes->add(ustring((string(attribute.c_str()) + ".tangent").c_str())); attributes->add(ustring((string(attribute.c_str()) + ".tangent_sign").c_str())); } } ShaderNode::attributes(shader, attributes); } void VectorDisplacementNode::compile(SVMCompiler &compiler) { ShaderInput *vector_in = input("Vector"); ShaderInput *midlevel_in = input("Midlevel"); ShaderInput *scale_in = input("Scale"); ShaderOutput *displacement_out = output("Displacement"); int attr = 0, attr_sign = 0; if (space == NODE_NORMAL_MAP_TANGENT) { if (attribute.empty()) { attr = compiler.attribute(ATTR_STD_UV_TANGENT); attr_sign = compiler.attribute(ATTR_STD_UV_TANGENT_SIGN); } else { attr = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent").c_str())); attr_sign = compiler.attribute( ustring((string(attribute.c_str()) + ".tangent_sign").c_str())); } } compiler.add_node(NODE_VECTOR_DISPLACEMENT, compiler.encode_uchar4(compiler.stack_assign(vector_in), compiler.stack_assign(midlevel_in), compiler.stack_assign(scale_in), compiler.stack_assign(displacement_out)), attr, attr_sign); compiler.add_node(space); } void VectorDisplacementNode::compile(OSLCompiler &compiler) { if (space == NODE_NORMAL_MAP_TANGENT) { if (attribute.empty()) { compiler.parameter("attr_name", ustring("geom:tangent")); compiler.parameter("attr_sign_name", ustring("geom:tangent_sign")); } else { compiler.parameter("attr_name", ustring((string(attribute.c_str()) + ".tangent").c_str())); compiler.parameter("attr_sign_name", ustring((string(attribute.c_str()) + ".tangent_sign").c_str())); } } compiler.parameter(this, "space"); compiler.add(this, "node_vector_displacement"); } CCL_NAMESPACE_END