/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "render/camera.h" #include "render/mesh.h" #include "subd/subd_dice.h" #include "subd/subd_patch.h" CCL_NAMESPACE_BEGIN /* EdgeDice Base */ EdgeDice::EdgeDice(const SubdParams ¶ms_) : params(params_) { mesh_P = NULL; mesh_N = NULL; vert_offset = 0; params.mesh->attributes.add(ATTR_STD_VERTEX_NORMAL); if (params.ptex) { params.mesh->attributes.add(ATTR_STD_PTEX_UV); params.mesh->attributes.add(ATTR_STD_PTEX_FACE_ID); } } void EdgeDice::reserve(int num_verts) { Mesh *mesh = params.mesh; vert_offset = mesh->verts.size(); tri_offset = mesh->num_triangles(); /* todo: optimize so we can reserve in advance, this is like push_back_slow() */ if (vert_offset + num_verts > mesh->verts.capacity()) { mesh->reserve_mesh(size_t((vert_offset + num_verts) * 1.2), mesh->num_triangles()); } mesh->resize_mesh(vert_offset + num_verts, tri_offset); Attribute *attr_vN = mesh->attributes.add(ATTR_STD_VERTEX_NORMAL); mesh_P = mesh->verts.data(); mesh_N = attr_vN->data_float3(); } int EdgeDice::add_vert(Patch *patch, float2 uv) { float3 P, N; patch->eval(&P, NULL, NULL, &N, uv.x, uv.y); assert(vert_offset < params.mesh->verts.size()); mesh_P[vert_offset] = P; mesh_N[vert_offset] = N; params.mesh->vert_patch_uv[vert_offset] = make_float2(uv.x, uv.y); if (params.ptex) { Attribute *attr_ptex_uv = params.mesh->attributes.add(ATTR_STD_PTEX_UV); params.mesh->attributes.resize(); float3 *ptex_uv = attr_ptex_uv->data_float3(); ptex_uv[vert_offset] = make_float3(uv.x, uv.y, 0.0f); } params.mesh->num_subd_verts++; return vert_offset++; } void EdgeDice::add_triangle(Patch *patch, int v0, int v1, int v2) { Mesh *mesh = params.mesh; /* todo: optimize so we can reserve in advance, this is like push_back_slow() */ if (mesh->triangles.size() == mesh->triangles.capacity()) mesh->reserve_mesh(mesh->verts.size(), size_t(max(mesh->num_triangles() + 1, 1) * 1.2)); mesh->add_triangle(v0, v1, v2, patch->shader, true); params.mesh->triangle_patch[params.mesh->num_triangles() - 1] = patch->patch_index; if (params.ptex) { Attribute *attr_ptex_face_id = params.mesh->attributes.add(ATTR_STD_PTEX_FACE_ID); params.mesh->attributes.resize(); float *ptex_face_id = attr_ptex_face_id->data_float(); ptex_face_id[tri_offset] = (float)patch->ptex_face_id(); } tri_offset++; } void EdgeDice::stitch_triangles(Patch *patch, vector &outer, vector &inner) { if (inner.size() == 0 || outer.size() == 0) return; // XXX avoid crashes for Mu or Mv == 1, missing polygons /* stitch together two arrays of verts with triangles. at each step, * we compare using the next verts on both sides, to find the split * direction with the smallest diagonal, and use that in order to keep * the triangle shape reasonable. */ for (size_t i = 0, j = 0; i + 1 < inner.size() || j + 1 < outer.size();) { int v0, v1, v2; v0 = inner[i]; v1 = outer[j]; if (j + 1 == outer.size()) { v2 = inner[++i]; } else if (i + 1 == inner.size()) { v2 = outer[++j]; } else { /* length of diagonals */ float len1 = len_squared(mesh_P[inner[i]] - mesh_P[outer[j + 1]]); float len2 = len_squared(mesh_P[outer[j]] - mesh_P[inner[i + 1]]); /* use smallest diagonal */ if (len1 < len2) v2 = outer[++j]; else v2 = inner[++i]; } add_triangle(patch, v0, v1, v2); } } /* QuadDice */ QuadDice::QuadDice(const SubdParams ¶ms_) : EdgeDice(params_) { } void QuadDice::reserve(EdgeFactors &ef, int Mu, int Mv) { /* XXX need to make this also work for edge factor 0 and 1 */ int num_verts = (ef.tu0 + ef.tu1 + ef.tv0 + ef.tv1) + (Mu - 1) * (Mv - 1); EdgeDice::reserve(num_verts); } float2 QuadDice::map_uv(SubPatch &sub, float u, float v) { /* map UV from subpatch to patch parametric coordinates */ float2 d0 = interp(sub.P00, sub.P01, v); float2 d1 = interp(sub.P10, sub.P11, v); return interp(d0, d1, u); } float3 QuadDice::eval_projected(SubPatch &sub, float u, float v) { float2 uv = map_uv(sub, u, v); float3 P; sub.patch->eval(&P, NULL, NULL, NULL, uv.x, uv.y); if (params.camera) P = transform_perspective(¶ms.camera->worldtoraster, P); return P; } int QuadDice::add_vert(SubPatch &sub, float u, float v) { return EdgeDice::add_vert(sub.patch, map_uv(sub, u, v)); } void QuadDice::add_side_u(SubPatch &sub, vector &outer, vector &inner, int Mu, int Mv, int tu, int side, int offset) { outer.clear(); inner.clear(); /* set verts on the edge of the patch */ outer.push_back(offset + ((side) ? 2 : 0)); for (int i = 1; i < tu; i++) { float u = i / (float)tu; float v = (side) ? 1.0f : 0.0f; outer.push_back(add_vert(sub, u, v)); } outer.push_back(offset + ((side) ? 3 : 1)); /* set verts on the edge of the inner grid */ for (int i = 0; i < Mu - 1; i++) { int j = (side) ? Mv - 1 - 1 : 0; inner.push_back(offset + 4 + i + j * (Mu - 1)); } } void QuadDice::add_side_v(SubPatch &sub, vector &outer, vector &inner, int Mu, int Mv, int tv, int side, int offset) { outer.clear(); inner.clear(); /* set verts on the edge of the patch */ outer.push_back(offset + ((side) ? 1 : 0)); for (int j = 1; j < tv; j++) { float u = (side) ? 1.0f : 0.0f; float v = j / (float)tv; outer.push_back(add_vert(sub, u, v)); } outer.push_back(offset + ((side) ? 3 : 2)); /* set verts on the edge of the inner grid */ for (int j = 0; j < Mv - 1; j++) { int i = (side) ? Mu - 1 - 1 : 0; inner.push_back(offset + 4 + i + j * (Mu - 1)); } } float QuadDice::quad_area(const float3 &a, const float3 &b, const float3 &c, const float3 &d) { return triangle_area(a, b, d) + triangle_area(a, d, c); } float QuadDice::scale_factor(SubPatch &sub, EdgeFactors &ef, int Mu, int Mv) { /* estimate area as 4x largest of 4 quads */ float3 P[3][3]; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) P[i][j] = eval_projected(sub, i * 0.5f, j * 0.5f); float A1 = quad_area(P[0][0], P[1][0], P[0][1], P[1][1]); float A2 = quad_area(P[1][0], P[2][0], P[1][1], P[2][1]); float A3 = quad_area(P[0][1], P[1][1], P[0][2], P[1][2]); float A4 = quad_area(P[1][1], P[2][1], P[1][2], P[2][2]); float Apatch = max(A1, max(A2, max(A3, A4))) * 4.0f; /* solve for scaling factor */ float Atri = params.dicing_rate * params.dicing_rate * 0.5f; float Ntris = Apatch / Atri; // XXX does the -sqrt solution matter // XXX max(D, 0.0) is highly suspicious, need to test cases // where D goes negative float N = 0.5f * (Ntris - (ef.tu0 + ef.tu1 + ef.tv0 + ef.tv1)); float D = 4.0f * N * Mu * Mv + (Mu + Mv) * (Mu + Mv); float S = (Mu + Mv + sqrtf(max(D, 0.0f))) / (2 * Mu * Mv); return S; } void QuadDice::add_corners(SubPatch &sub) { /* add verts for patch corners */ add_vert(sub, 0.0f, 0.0f); add_vert(sub, 1.0f, 0.0f); add_vert(sub, 0.0f, 1.0f); add_vert(sub, 1.0f, 1.0f); } void QuadDice::add_grid(SubPatch &sub, int Mu, int Mv, int offset) { /* create inner grid */ float du = 1.0f / (float)Mu; float dv = 1.0f / (float)Mv; for (int j = 1; j < Mv; j++) { for (int i = 1; i < Mu; i++) { float u = i * du; float v = j * dv; add_vert(sub, u, v); if (i < Mu - 1 && j < Mv - 1) { int i1 = offset + 4 + (i - 1) + (j - 1) * (Mu - 1); int i2 = offset + 4 + i + (j - 1) * (Mu - 1); int i3 = offset + 4 + i + j * (Mu - 1); int i4 = offset + 4 + (i - 1) + j * (Mu - 1); add_triangle(sub.patch, i1, i2, i3); add_triangle(sub.patch, i1, i3, i4); } } } } void QuadDice::dice(SubPatch &sub, EdgeFactors &ef) { /* compute inner grid size with scale factor */ int Mu = max(ef.tu0, ef.tu1); int Mv = max(ef.tv0, ef.tv1); #if 0 /* Doesn't work very well, especially at grazing angles. */ float S = scale_factor(sub, ef, Mu, Mv); #else float S = 1.0f; #endif Mu = max((int)ceil(S * Mu), 2); // XXX handle 0 & 1? Mv = max((int)ceil(S * Mv), 2); // XXX handle 0 & 1? /* reserve space for new verts */ int offset = params.mesh->verts.size(); reserve(ef, Mu, Mv); /* corners and inner grid */ add_corners(sub); add_grid(sub, Mu, Mv, offset); /* bottom side */ vector outer, inner; add_side_u(sub, outer, inner, Mu, Mv, ef.tu0, 0, offset); stitch_triangles(sub.patch, outer, inner); /* top side */ add_side_u(sub, outer, inner, Mu, Mv, ef.tu1, 1, offset); stitch_triangles(sub.patch, inner, outer); /* left side */ add_side_v(sub, outer, inner, Mu, Mv, ef.tv0, 0, offset); stitch_triangles(sub.patch, inner, outer); /* right side */ add_side_v(sub, outer, inner, Mu, Mv, ef.tv1, 1, offset); stitch_triangles(sub.patch, outer, inner); assert(vert_offset == params.mesh->verts.size()); } CCL_NAMESPACE_END