/* SPDX-License-Identifier: Apache-2.0 * Copyright 2011-2022 Blender Foundation */ #ifndef __UTIL_MATH_H__ #define __UTIL_MATH_H__ /* Math * * Basic math functions on scalar and vector types. This header is used by * both the kernel code when compiled as C++, and other C++ non-kernel code. */ #ifndef __KERNEL_GPU__ # include #endif #ifdef __HIP__ # include #endif #if !defined(__KERNEL_METAL__) # include # include # include #endif /* !defined(__KERNEL_METAL__) */ #include "util/types.h" CCL_NAMESPACE_BEGIN /* Float Pi variations */ /* Division */ #ifndef M_PI_F # define M_PI_F (3.1415926535897932f) /* pi */ #endif #ifndef M_PI_2_F # define M_PI_2_F (1.5707963267948966f) /* pi/2 */ #endif #ifndef M_PI_4_F # define M_PI_4_F (0.7853981633974830f) /* pi/4 */ #endif #ifndef M_1_PI_F # define M_1_PI_F (0.3183098861837067f) /* 1/pi */ #endif #ifndef M_2_PI_F # define M_2_PI_F (0.6366197723675813f) /* 2/pi */ #endif #ifndef M_1_2PI_F # define M_1_2PI_F (0.1591549430918953f) /* 1/(2*pi) */ #endif #ifndef M_SQRT_PI_8_F # define M_SQRT_PI_8_F (0.6266570686577501f) /* sqrt(pi/8) */ #endif #ifndef M_LN_2PI_F # define M_LN_2PI_F (1.8378770664093454f) /* ln(2*pi) */ #endif /* Multiplication */ #ifndef M_2PI_F # define M_2PI_F (6.2831853071795864f) /* 2*pi */ #endif #ifndef M_4PI_F # define M_4PI_F (12.566370614359172f) /* 4*pi */ #endif /* Float sqrt variations */ #ifndef M_SQRT2_F # define M_SQRT2_F (1.4142135623730950f) /* sqrt(2) */ #endif #ifndef M_SQRT3_F # define M_SQRT3_F (1.7320508075688772f) /* sqrt(3) */ #endif #ifndef M_LN2_F # define M_LN2_F (0.6931471805599453f) /* ln(2) */ #endif #ifndef M_LN10_F # define M_LN10_F (2.3025850929940457f) /* ln(10) */ #endif /* Scalar */ #if !defined(__HIP__) && !defined(__KERNEL_ONEAPI__) # ifdef _WIN32 ccl_device_inline float fmaxf(float a, float b) { return (a > b) ? a : b; } ccl_device_inline float fminf(float a, float b) { return (a < b) ? a : b; } # endif /* _WIN32 */ #endif /* __HIP__, __KERNEL_ONEAPI__ */ #if !defined(__KERNEL_GPU__) || defined(__KERNEL_ONEAPI__) # ifndef __KERNEL_ONEAPI__ using std::isfinite; using std::isnan; using std::sqrt; # else using sycl::sqrt; # define isfinite(x) sycl::isfinite((x)) # define isnan(x) sycl::isnan((x)) # endif ccl_device_inline int abs(int x) { return (x > 0) ? x : -x; } ccl_device_inline int max(int a, int b) { return (a > b) ? a : b; } ccl_device_inline int min(int a, int b) { return (a < b) ? a : b; } ccl_device_inline uint32_t max(uint32_t a, uint32_t b) { return (a > b) ? a : b; } ccl_device_inline uint32_t min(uint32_t a, uint32_t b) { return (a < b) ? a : b; } ccl_device_inline uint64_t max(uint64_t a, uint64_t b) { return (a > b) ? a : b; } ccl_device_inline uint64_t min(uint64_t a, uint64_t b) { return (a < b) ? a : b; } /* NOTE: On 64bit Darwin the `size_t` is defined as `unsigned long int` and `uint64_t` is defined * as `unsigned long long`. Both of the definitions are 64 bit unsigned integer, but the automatic * substitution does not allow to automatically pick function defined for `uint64_t` as it is not * exactly the same type definition. * Work this around by adding a templated function enabled for `size_t` type which will be used * when there is no explicit specialization of `min()`/`max()` above. */ template ccl_device_inline typename std::enable_if_t, T> max(T a, T b) { return (a > b) ? a : b; } template ccl_device_inline typename std::enable_if_t, T> min(T a, T b) { return (a < b) ? a : b; } ccl_device_inline float max(float a, float b) { return (a > b) ? a : b; } ccl_device_inline float min(float a, float b) { return (a < b) ? a : b; } ccl_device_inline double max(double a, double b) { return (a > b) ? a : b; } ccl_device_inline double min(double a, double b) { return (a < b) ? a : b; } /* These 2 guys are templated for usage with registers data. * * NOTE: Since this is CPU-only functions it is ok to use references here. * But for other devices we'll need to be careful about this. */ template ccl_device_inline T min4(const T &a, const T &b, const T &c, const T &d) { return min(min(a, b), min(c, d)); } template ccl_device_inline T max4(const T &a, const T &b, const T &c, const T &d) { return max(max(a, b), max(c, d)); } #endif /* __KERNEL_GPU__ */ ccl_device_inline float min4(float a, float b, float c, float d) { return min(min(a, b), min(c, d)); } ccl_device_inline float max4(float a, float b, float c, float d) { return max(max(a, b), max(c, d)); } #if !defined(__KERNEL_METAL__) /* Int/Float conversion */ ccl_device_inline int as_int(uint i) { union { uint ui; int i; } u; u.ui = i; return u.i; } ccl_device_inline uint as_uint(int i) { union { uint ui; int i; } u; u.i = i; return u.ui; } ccl_device_inline uint as_uint(float f) { union { uint i; float f; } u; u.f = f; return u.i; } # ifndef __HIP__ ccl_device_inline int __float_as_int(float f) { union { int i; float f; } u; u.f = f; return u.i; } ccl_device_inline float __int_as_float(int i) { union { int i; float f; } u; u.i = i; return u.f; } ccl_device_inline uint __float_as_uint(float f) { union { uint i; float f; } u; u.f = f; return u.i; } ccl_device_inline float __uint_as_float(uint i) { union { uint i; float f; } u; u.i = i; return u.f; } # endif ccl_device_inline int4 __float4_as_int4(float4 f) { # ifdef __KERNEL_SSE__ return int4(_mm_castps_si128(f.m128)); # else return make_int4( __float_as_int(f.x), __float_as_int(f.y), __float_as_int(f.z), __float_as_int(f.w)); # endif } ccl_device_inline float4 __int4_as_float4(int4 i) { # ifdef __KERNEL_SSE__ return float4(_mm_castsi128_ps(i.m128)); # else return make_float4( __int_as_float(i.x), __int_as_float(i.y), __int_as_float(i.z), __int_as_float(i.w)); # endif } #endif /* !defined(__KERNEL_METAL__) */ #if defined(__KERNEL_METAL__) ccl_device_forceinline bool isnan_safe(float f) { return isnan(f); } ccl_device_forceinline bool isfinite_safe(float f) { return isfinite(f); } #else template ccl_device_inline uint pointer_pack_to_uint_0(T *ptr) { return ((uint64_t)ptr) & 0xFFFFFFFF; } template ccl_device_inline uint pointer_pack_to_uint_1(T *ptr) { return (((uint64_t)ptr) >> 32) & 0xFFFFFFFF; } template ccl_device_inline T *pointer_unpack_from_uint(const uint a, const uint b) { return (T *)(((uint64_t)b << 32) | a); } ccl_device_inline uint uint16_pack_to_uint(const uint a, const uint b) { return (a << 16) | b; } ccl_device_inline uint uint16_unpack_from_uint_0(const uint i) { return i >> 16; } ccl_device_inline uint uint16_unpack_from_uint_1(const uint i) { return i & 0xFFFF; } /* Versions of functions which are safe for fast math. */ ccl_device_inline bool isnan_safe(float f) { unsigned int x = __float_as_uint(f); return (x << 1) > 0xff000000u; } ccl_device_inline bool isfinite_safe(float f) { /* By IEEE 754 rule, 2*Inf equals Inf */ unsigned int x = __float_as_uint(f); return (f == f) && (x == 0 || x == (1u << 31) || (f != 2.0f * f)) && !((x << 1) > 0xff000000u); } #endif ccl_device_inline float ensure_finite(float v) { return isfinite_safe(v) ? v : 0.0f; } #if !defined(__KERNEL_METAL__) ccl_device_inline int clamp(int a, int mn, int mx) { return min(max(a, mn), mx); } ccl_device_inline float clamp(float a, float mn, float mx) { return min(max(a, mn), mx); } ccl_device_inline float mix(float a, float b, float t) { return a + t * (b - a); } ccl_device_inline float smoothstep(float edge0, float edge1, float x) { float result; if (x < edge0) result = 0.0f; else if (x >= edge1) result = 1.0f; else { float t = (x - edge0) / (edge1 - edge0); result = (3.0f - 2.0f * t) * (t * t); } return result; } #endif /* !defined(__KERNEL_METAL__) */ #if defined(__KERNEL_CUDA__) ccl_device_inline float saturatef(float a) { return __saturatef(a); } #elif !defined(__KERNEL_METAL__) ccl_device_inline float saturatef(float a) { return clamp(a, 0.0f, 1.0f); } #endif /* __KERNEL_CUDA__ */ ccl_device_inline int float_to_int(float f) { return (int)f; } ccl_device_inline int floor_to_int(float f) { return float_to_int(floorf(f)); } ccl_device_inline float floorfrac(float x, ccl_private int *i) { float f = floorf(x); *i = float_to_int(f); return x - f; } ccl_device_inline int ceil_to_int(float f) { return float_to_int(ceilf(f)); } ccl_device_inline float fractf(float x) { return x - floorf(x); } /* Adapted from `godot-engine` math_funcs.h. */ ccl_device_inline float wrapf(float value, float max, float min) { float range = max - min; return (range != 0.0f) ? value - (range * floorf((value - min) / range)) : min; } ccl_device_inline float pingpongf(float a, float b) { return (b != 0.0f) ? fabsf(fractf((a - b) / (b * 2.0f)) * b * 2.0f - b) : 0.0f; } ccl_device_inline float smoothminf(float a, float b, float k) { if (k != 0.0f) { float h = fmaxf(k - fabsf(a - b), 0.0f) / k; return fminf(a, b) - h * h * h * k * (1.0f / 6.0f); } else { return fminf(a, b); } } ccl_device_inline float signf(float f) { return (f < 0.0f) ? -1.0f : 1.0f; } ccl_device_inline float nonzerof(float f, float eps) { if (fabsf(f) < eps) return signf(f) * eps; else return f; } /* `signum` function testing for zero. Matches GLSL and OSL functions. */ ccl_device_inline float compatible_signf(float f) { if (f == 0.0f) { return 0.0f; } else { return signf(f); } } ccl_device_inline float smoothstepf(float f) { float ff = f * f; return (3.0f * ff - 2.0f * ff * f); } ccl_device_inline int mod(int x, int m) { return (x % m + m) % m; } ccl_device_inline float3 float2_to_float3(const float2 a) { return make_float3(a.x, a.y, 0.0f); } ccl_device_inline float3 float4_to_float3(const float4 a) { return make_float3(a.x, a.y, a.z); } ccl_device_inline float4 float3_to_float4(const float3 a) { return make_float4(a.x, a.y, a.z, 1.0f); } ccl_device_inline float4 float3_to_float4(const float3 a, const float w) { return make_float4(a.x, a.y, a.z, w); } ccl_device_inline float inverse_lerp(float a, float b, float x) { return (x - a) / (b - a); } /* Cubic interpolation between b and c, a and d are the previous and next point. */ ccl_device_inline float cubic_interp(float a, float b, float c, float d, float x) { return 0.5f * (((d + 3.0f * (b - c) - a) * x + (2.0f * a - 5.0f * b + 4.0f * c - d)) * x + (c - a)) * x + b; } CCL_NAMESPACE_END #include "util/math_int2.h" #include "util/math_int3.h" #include "util/math_int4.h" #include "util/math_float2.h" #include "util/math_float3.h" #include "util/math_float4.h" #include "util/math_float8.h" #include "util/rect.h" CCL_NAMESPACE_BEGIN #if !defined(__KERNEL_METAL__) /* Interpolation */ template A lerp(const A &a, const A &b, const B &t) { return (A)(a * ((B)1 - t) + b * t); } #endif /* __KERNEL_METAL__ */ /* Triangle */ ccl_device_inline float triangle_area(ccl_private const float3 &v1, ccl_private const float3 &v2, ccl_private const float3 &v3) { return len(cross(v3 - v2, v1 - v2)) * 0.5f; } /* Orthonormal vectors */ ccl_device_inline void make_orthonormals(const float3 N, ccl_private float3 *a, ccl_private float3 *b) { #if 0 if (fabsf(N.y) >= 0.999f) { *a = make_float3(1, 0, 0); *b = make_float3(0, 0, 1); return; } if (fabsf(N.z) >= 0.999f) { *a = make_float3(1, 0, 0); *b = make_float3(0, 1, 0); return; } #endif if (N.x != N.y || N.x != N.z) *a = make_float3(N.z - N.y, N.x - N.z, N.y - N.x); //(1,1,1)x N else *a = make_float3(N.z - N.y, N.x + N.z, -N.y - N.x); //(-1,1,1)x N *a = normalize(*a); *b = cross(N, *a); } /* Color division */ ccl_device_inline Spectrum safe_invert_color(Spectrum a) { FOREACH_SPECTRUM_CHANNEL (i) { GET_SPECTRUM_CHANNEL(a, i) = (GET_SPECTRUM_CHANNEL(a, i) != 0.0f) ? 1.0f / GET_SPECTRUM_CHANNEL(a, i) : 0.0f; } return a; } ccl_device_inline Spectrum safe_divide_color(Spectrum a, Spectrum b) { FOREACH_SPECTRUM_CHANNEL (i) { GET_SPECTRUM_CHANNEL(a, i) = (GET_SPECTRUM_CHANNEL(b, i) != 0.0f) ? GET_SPECTRUM_CHANNEL(a, i) / GET_SPECTRUM_CHANNEL(b, i) : 0.0f; } return a; } ccl_device_inline float3 safe_divide_even_color(float3 a, float3 b) { float x, y, z; x = (b.x != 0.0f) ? a.x / b.x : 0.0f; y = (b.y != 0.0f) ? a.y / b.y : 0.0f; z = (b.z != 0.0f) ? a.z / b.z : 0.0f; /* try to get gray even if b is zero */ if (b.x == 0.0f) { if (b.y == 0.0f) { x = z; y = z; } else if (b.z == 0.0f) { x = y; z = y; } else x = 0.5f * (y + z); } else if (b.y == 0.0f) { if (b.z == 0.0f) { y = x; z = x; } else y = 0.5f * (x + z); } else if (b.z == 0.0f) { z = 0.5f * (x + y); } return make_float3(x, y, z); } /* Rotation of point around axis and angle */ ccl_device_inline float3 rotate_around_axis(float3 p, float3 axis, float angle) { float costheta = cosf(angle); float sintheta = sinf(angle); float3 r; r.x = ((costheta + (1 - costheta) * axis.x * axis.x) * p.x) + (((1 - costheta) * axis.x * axis.y - axis.z * sintheta) * p.y) + (((1 - costheta) * axis.x * axis.z + axis.y * sintheta) * p.z); r.y = (((1 - costheta) * axis.x * axis.y + axis.z * sintheta) * p.x) + ((costheta + (1 - costheta) * axis.y * axis.y) * p.y) + (((1 - costheta) * axis.y * axis.z - axis.x * sintheta) * p.z); r.z = (((1 - costheta) * axis.x * axis.z - axis.y * sintheta) * p.x) + (((1 - costheta) * axis.y * axis.z + axis.x * sintheta) * p.y) + ((costheta + (1 - costheta) * axis.z * axis.z) * p.z); return r; } /* NaN-safe math ops */ ccl_device_inline float safe_sqrtf(float f) { return sqrtf(max(f, 0.0f)); } ccl_device_inline float inversesqrtf(float f) { #if defined(__KERNEL_METAL__) return (f > 0.0f) ? rsqrt(f) : 0.0f; #else return (f > 0.0f) ? 1.0f / sqrtf(f) : 0.0f; #endif } ccl_device float safe_asinf(float a) { return asinf(clamp(a, -1.0f, 1.0f)); } ccl_device float safe_acosf(float a) { return acosf(clamp(a, -1.0f, 1.0f)); } ccl_device float compatible_powf(float x, float y) { #ifdef __KERNEL_GPU__ if (y == 0.0f) /* x^0 -> 1, including 0^0 */ return 1.0f; /* GPU pow doesn't accept negative x, do manual checks here */ if (x < 0.0f) { if (fmodf(-y, 2.0f) == 0.0f) return powf(-x, y); else return -powf(-x, y); } else if (x == 0.0f) return 0.0f; #endif return powf(x, y); } ccl_device float safe_powf(float a, float b) { if (UNLIKELY(a < 0.0f && b != float_to_int(b))) return 0.0f; return compatible_powf(a, b); } ccl_device float safe_divide(float a, float b) { return (b != 0.0f) ? a / b : 0.0f; } ccl_device float safe_logf(float a, float b) { if (UNLIKELY(a <= 0.0f || b <= 0.0f)) return 0.0f; return safe_divide(logf(a), logf(b)); } ccl_device float safe_modulo(float a, float b) { return (b != 0.0f) ? fmodf(a, b) : 0.0f; } ccl_device_inline float sqr(float a) { return a * a; } ccl_device_inline float pow20(float a) { return sqr(sqr(sqr(sqr(a)) * a)); } ccl_device_inline float pow22(float a) { return sqr(a * sqr(sqr(sqr(a)) * a)); } #ifdef __KERNEL_METAL__ ccl_device_inline float lgammaf(float x) { /* Nemes, Gergő (2010), "New asymptotic expansion for the Gamma function", Archiv der Mathematik */ const float _1_180 = 1.0f / 180.0f; const float log2pi = 1.83787706641f; const float logx = log(x); return (log2pi - logx + x * (logx * 2.0f + log(x * sinh(1.0f / x) + (_1_180 / pow(x, 6.0f))) - 2.0f)) * 0.5f; } #endif ccl_device_inline float beta(float x, float y) { return expf(lgammaf(x) + lgammaf(y) - lgammaf(x + y)); } ccl_device_inline float xor_signmask(float x, int y) { return __int_as_float(__float_as_int(x) ^ y); } ccl_device float bits_to_01(uint bits) { return bits * (1.0f / (float)0xFFFFFFFF); } #if !defined(__KERNEL_GPU__) # if defined(__GNUC__) # define popcount(x) __builtin_popcount(x) # else ccl_device_inline uint popcount(uint x) { /* TODO(Stefan): pop-count intrinsic for Windows with fallback for older CPUs. */ uint i = x & 0xaaaaaaaa; i = i - ((i >> 1) & 0x55555555); i = (i & 0x33333333) + ((i >> 2) & 0x33333333); i = (((i + (i >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24; return i & 1; } # endif #elif defined(__KERNEL_ONEAPI__) # define popcount(x) sycl::popcount(x) #elif defined(__KERNEL_HIP__) /* Use popcll to support 64-bit wave for pre-RDNA AMD GPUs */ # define popcount(x) __popcll(x) #elif !defined(__KERNEL_METAL__) # define popcount(x) __popc(x) #endif ccl_device_inline uint count_leading_zeros(uint x) { #if defined(__KERNEL_CUDA__) || defined(__KERNEL_OPTIX__) || defined(__KERNEL_HIP__) return __clz(x); #elif defined(__KERNEL_METAL__) return clz(x); #elif defined(__KERNEL_ONEAPI__) return sycl::clz(x); #else assert(x != 0); # ifdef _MSC_VER unsigned long leading_zero = 0; _BitScanReverse(&leading_zero, x); return (31 - leading_zero); # else return __builtin_clz(x); # endif #endif } ccl_device_inline uint count_trailing_zeros(uint x) { #if defined(__KERNEL_CUDA__) || defined(__KERNEL_OPTIX__) || defined(__KERNEL_HIP__) return (__ffs(x) - 1); #elif defined(__KERNEL_METAL__) return ctz(x); #elif defined(__KERNEL_ONEAPI__) return sycl::ctz(x); #else assert(x != 0); # ifdef _MSC_VER unsigned long ctz = 0; _BitScanForward(&ctz, x); return ctz; # else return __builtin_ctz(x); # endif #endif } ccl_device_inline uint find_first_set(uint x) { #if defined(__KERNEL_CUDA__) || defined(__KERNEL_OPTIX__) || defined(__KERNEL_HIP__) return __ffs(x); #elif defined(__KERNEL_METAL__) return (x != 0) ? ctz(x) + 1 : 0; #else # ifdef _MSC_VER return (x != 0) ? (32 - count_leading_zeros(x & (-x))) : 0; # else return __builtin_ffs(x); # endif #endif } /* projections */ ccl_device_inline float2 map_to_tube(const float3 co) { float len, u, v; len = sqrtf(co.x * co.x + co.y * co.y); if (len > 0.0f) { u = (1.0f - (atan2f(co.x / len, co.y / len) / M_PI_F)) * 0.5f; v = (co.z + 1.0f) * 0.5f; } else { u = v = 0.0f; } return make_float2(u, v); } ccl_device_inline float2 map_to_sphere(const float3 co) { float l = dot(co, co); float u, v; if (l > 0.0f) { if (UNLIKELY(co.x == 0.0f && co.y == 0.0f)) { u = 0.0f; /* Otherwise domain error. */ } else { u = (0.5f - atan2f(co.x, co.y) * M_1_2PI_F); } v = 1.0f - safe_acosf(co.z / sqrtf(l)) * M_1_PI_F; } else { u = v = 0.0f; } return make_float2(u, v); } /* Compares two floats. * Returns true if their absolute difference is smaller than abs_diff (for numbers near zero) * or their relative difference is less than ulp_diff ULPs. * Based on * https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ */ ccl_device_inline bool compare_floats(float a, float b, float abs_diff, int ulp_diff) { if (fabsf(a - b) < abs_diff) { return true; } if ((a < 0.0f) != (b < 0.0f)) { return false; } return (abs(__float_as_int(a) - __float_as_int(b)) < ulp_diff); } /* Calculate the angle between the two vectors a and b. * The usual approach `acos(dot(a, b))` has severe precision issues for small angles, * which are avoided by this method. * Based on "Mangled Angles" from https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf */ ccl_device_inline float precise_angle(float3 a, float3 b) { return 2.0f * atan2f(len(a - b), len(a + b)); } /* Return value which is greater than the given one and is a power of two. */ ccl_device_inline uint next_power_of_two(uint x) { return x == 0 ? 1 : 1 << (32 - count_leading_zeros(x)); } /* Return value which is lower than the given one and is a power of two. */ ccl_device_inline uint prev_power_of_two(uint x) { return x < 2 ? x : 1 << (31 - count_leading_zeros(x - 1)); } #ifndef __has_builtin # define __has_builtin(v) 0 #endif /* Reverses the bits of a 32 bit integer. */ ccl_device_inline uint32_t reverse_integer_bits(uint32_t x) { /* Use a native instruction if it exists. */ #if defined(__KERNEL_CUDA__) return __brev(x); #elif defined(__KERNEL_METAL__) return reverse_bits(x); #elif defined(__aarch64__) || defined(_M_ARM64) /* Assume the rbit is always available on 64bit ARM architecture. */ __asm__("rbit %w0, %w1" : "=r"(x) : "r"(x)); return x; #elif defined(__arm__) && ((__ARM_ARCH > 7) || __ARM_ARCH == 6 && __ARM_ARCH_ISA_THUMB >= 2) /* This ARM instruction is available in ARMv6T2 and above. * This 32-bit Thumb instruction is available in ARMv6T2 and above. */ __asm__("rbit %0, %1" : "=r"(x) : "r"(x)); return x; #elif __has_builtin(__builtin_bitreverse32) return __builtin_bitreverse32(x); #else /* Flip pairwise. */ x = ((x & 0x55555555) << 1) | ((x & 0xAAAAAAAA) >> 1); /* Flip pairs. */ x = ((x & 0x33333333) << 2) | ((x & 0xCCCCCCCC) >> 2); /* Flip nibbles. */ x = ((x & 0x0F0F0F0F) << 4) | ((x & 0xF0F0F0F0) >> 4); /* Flip bytes. CPUs have an instruction for that, pretty fast one. */ # ifdef _MSC_VER return _byteswap_ulong(x); # elif defined(__INTEL_COMPILER) return (uint32_t)_bswap((int)x); # else /* Assuming gcc or clang. */ return __builtin_bswap32(x); # endif #endif } CCL_NAMESPACE_END #endif /* __UTIL_MATH_H__ */