/* SPDX-License-Identifier: Apache-2.0 * Copyright 2011-2013 Intel Corporation * Modifications Copyright 2014-2022 Blender Foundation. */ #ifndef __UTIL_SSEF_H__ #define __UTIL_SSEF_H__ #include #include "util/ssei.h" CCL_NAMESPACE_BEGIN #ifdef __KERNEL_SSE2__ struct sseb; struct ssef; /*! 4-wide SSE float type. */ struct ssef { typedef sseb Mask; // mask type typedef ssei Int; // int type typedef ssef Float; // float type enum { size = 4 }; // number of SIMD elements union { __m128 m128; float f[4]; int i[4]; }; // data //////////////////////////////////////////////////////////////////////////////// /// Constructors, Assignment & Cast Operators //////////////////////////////////////////////////////////////////////////////// __forceinline ssef() { } __forceinline ssef(const ssef &other) { m128 = other.m128; } __forceinline ssef &operator=(const ssef &other) { m128 = other.m128; return *this; } __forceinline ssef(const __m128 a) : m128(a) { } __forceinline operator const __m128 &() const { return m128; } __forceinline operator __m128 &() { return m128; } __forceinline ssef(float a) : m128(_mm_set1_ps(a)) { } __forceinline ssef(float a, float b, float c, float d) : m128(_mm_setr_ps(a, b, c, d)) { } __forceinline explicit ssef(const __m128i a) : m128(_mm_cvtepi32_ps(a)) { } //////////////////////////////////////////////////////////////////////////////// /// Loads and Stores //////////////////////////////////////////////////////////////////////////////// # if defined(__KERNEL_AVX__) static __forceinline ssef broadcast(const void *const a) { return _mm_broadcast_ss((float *)a); } # else static __forceinline ssef broadcast(const void *const a) { return _mm_set1_ps(*(float *)a); } # endif //////////////////////////////////////////////////////////////////////////////// /// Array Access //////////////////////////////////////////////////////////////////////////////// __forceinline const float &operator[](const size_t i) const { assert(i < 4); return f[i]; } __forceinline float &operator[](const size_t i) { assert(i < 4); return f[i]; } }; //////////////////////////////////////////////////////////////////////////////// /// Unary Operators //////////////////////////////////////////////////////////////////////////////// __forceinline const ssef cast(const __m128i &a) { return _mm_castsi128_ps(a); } __forceinline const ssef operator+(const ssef &a) { return a; } __forceinline const ssef operator-(const ssef &a) { return _mm_xor_ps(a.m128, _mm_castsi128_ps(_mm_set1_epi32(0x80000000))); } __forceinline const ssef abs(const ssef &a) { return _mm_and_ps(a.m128, _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff))); } # if defined(__KERNEL_SSE41__) __forceinline const ssef sign(const ssef &a) { return _mm_blendv_ps(ssef(1.0f), -ssef(1.0f), _mm_cmplt_ps(a, ssef(0.0f))); } # endif __forceinline const ssef signmsk(const ssef &a) { return _mm_and_ps(a.m128, _mm_castsi128_ps(_mm_set1_epi32(0x80000000))); } __forceinline const ssef rcp(const ssef &a) { const ssef r = _mm_rcp_ps(a.m128); return _mm_sub_ps(_mm_add_ps(r, r), _mm_mul_ps(_mm_mul_ps(r, r), a)); } __forceinline const ssef sqr(const ssef &a) { return _mm_mul_ps(a, a); } __forceinline const ssef mm_sqrt(const ssef &a) { return _mm_sqrt_ps(a.m128); } __forceinline const ssef rsqrt(const ssef &a) { const ssef r = _mm_rsqrt_ps(a.m128); return _mm_add_ps( _mm_mul_ps(_mm_set_ps(1.5f, 1.5f, 1.5f, 1.5f), r), _mm_mul_ps(_mm_mul_ps(_mm_mul_ps(a, _mm_set_ps(-0.5f, -0.5f, -0.5f, -0.5f)), r), _mm_mul_ps(r, r))); } //////////////////////////////////////////////////////////////////////////////// /// Binary Operators //////////////////////////////////////////////////////////////////////////////// __forceinline const ssef operator+(const ssef &a, const ssef &b) { return _mm_add_ps(a.m128, b.m128); } __forceinline const ssef operator+(const ssef &a, const float &b) { return a + ssef(b); } __forceinline const ssef operator+(const float &a, const ssef &b) { return ssef(a) + b; } __forceinline const ssef operator-(const ssef &a, const ssef &b) { return _mm_sub_ps(a.m128, b.m128); } __forceinline const ssef operator-(const ssef &a, const float &b) { return a - ssef(b); } __forceinline const ssef operator-(const float &a, const ssef &b) { return ssef(a) - b; } __forceinline const ssef operator*(const ssef &a, const ssef &b) { return _mm_mul_ps(a.m128, b.m128); } __forceinline const ssef operator*(const ssef &a, const float &b) { return a * ssef(b); } __forceinline const ssef operator*(const float &a, const ssef &b) { return ssef(a) * b; } __forceinline const ssef operator/(const ssef &a, const ssef &b) { return _mm_div_ps(a.m128, b.m128); } __forceinline const ssef operator/(const ssef &a, const float &b) { return a / ssef(b); } __forceinline const ssef operator/(const float &a, const ssef &b) { return ssef(a) / b; } __forceinline const ssef operator^(const ssef &a, const ssef &b) { return _mm_xor_ps(a.m128, b.m128); } __forceinline const ssef operator^(const ssef &a, const ssei &b) { return _mm_xor_ps(a.m128, _mm_castsi128_ps(b.m128)); } __forceinline const ssef operator&(const ssef &a, const ssef &b) { return _mm_and_ps(a.m128, b.m128); } __forceinline const ssef operator&(const ssef &a, const ssei &b) { return _mm_and_ps(a.m128, _mm_castsi128_ps(b.m128)); } __forceinline const ssef operator|(const ssef &a, const ssef &b) { return _mm_or_ps(a.m128, b.m128); } __forceinline const ssef operator|(const ssef &a, const ssei &b) { return _mm_or_ps(a.m128, _mm_castsi128_ps(b.m128)); } __forceinline const ssef andnot(const ssef &a, const ssef &b) { return _mm_andnot_ps(a.m128, b.m128); } __forceinline const ssef min(const ssef &a, const ssef &b) { return _mm_min_ps(a.m128, b.m128); } __forceinline const ssef min(const ssef &a, const float &b) { return _mm_min_ps(a.m128, ssef(b)); } __forceinline const ssef min(const float &a, const ssef &b) { return _mm_min_ps(ssef(a), b.m128); } __forceinline const ssef max(const ssef &a, const ssef &b) { return _mm_max_ps(a.m128, b.m128); } __forceinline const ssef max(const ssef &a, const float &b) { return _mm_max_ps(a.m128, ssef(b)); } __forceinline const ssef max(const float &a, const ssef &b) { return _mm_max_ps(ssef(a), b.m128); } # if defined(__KERNEL_SSE41__) __forceinline ssef mini(const ssef &a, const ssef &b) { const ssei ai = _mm_castps_si128(a); const ssei bi = _mm_castps_si128(b); const ssei ci = _mm_min_epi32(ai, bi); return _mm_castsi128_ps(ci); } # endif # if defined(__KERNEL_SSE41__) __forceinline ssef maxi(const ssef &a, const ssef &b) { const ssei ai = _mm_castps_si128(a); const ssei bi = _mm_castps_si128(b); const ssei ci = _mm_max_epi32(ai, bi); return _mm_castsi128_ps(ci); } # endif //////////////////////////////////////////////////////////////////////////////// /// Ternary Operators //////////////////////////////////////////////////////////////////////////////// __forceinline const ssef madd(const ssef &a, const ssef &b, const ssef &c) { # if defined(__KERNEL_NEON__) return vfmaq_f32(c, a, b); # elif defined(__KERNEL_AVX2__) return _mm_fmadd_ps(a, b, c); # else return a * b + c; # endif } __forceinline const ssef msub(const ssef &a, const ssef &b, const ssef &c) { # if defined(__KERNEL_NEON__) return vfmaq_f32(vnegq_f32(c), a, b); # elif defined(__KERNEL_AVX2__) return _mm_fmsub_ps(a, b, c); # else return a * b - c; # endif } __forceinline const ssef nmadd(const ssef &a, const ssef &b, const ssef &c) { # if defined(__KERNEL_NEON__) return vfmsq_f32(c, a, b); # elif defined(__KERNEL_AVX2__) return _mm_fnmadd_ps(a, b, c); # else return c - a * b; # endif } __forceinline const ssef nmsub(const ssef &a, const ssef &b, const ssef &c) { # if defined(__KERNEL_NEON__) return vfmsq_f32(vnegq_f32(c), a, b); # elif defined(__KERNEL_AVX2__) return _mm_fnmsub_ps(a, b, c); # else return -a * b - c; # endif } //////////////////////////////////////////////////////////////////////////////// /// Assignment Operators //////////////////////////////////////////////////////////////////////////////// __forceinline ssef &operator+=(ssef &a, const ssef &b) { return a = a + b; } __forceinline ssef &operator+=(ssef &a, const float &b) { return a = a + b; } __forceinline ssef &operator-=(ssef &a, const ssef &b) { return a = a - b; } __forceinline ssef &operator-=(ssef &a, const float &b) { return a = a - b; } __forceinline ssef &operator*=(ssef &a, const ssef &b) { return a = a * b; } __forceinline ssef &operator*=(ssef &a, const float &b) { return a = a * b; } __forceinline ssef &operator/=(ssef &a, const ssef &b) { return a = a / b; } __forceinline ssef &operator/=(ssef &a, const float &b) { return a = a / b; } //////////////////////////////////////////////////////////////////////////////// /// Comparison Operators + Select //////////////////////////////////////////////////////////////////////////////// __forceinline const sseb operator==(const ssef &a, const ssef &b) { return _mm_cmpeq_ps(a.m128, b.m128); } __forceinline const sseb operator==(const ssef &a, const float &b) { return a == ssef(b); } __forceinline const sseb operator==(const float &a, const ssef &b) { return ssef(a) == b; } __forceinline const sseb operator!=(const ssef &a, const ssef &b) { return _mm_cmpneq_ps(a.m128, b.m128); } __forceinline const sseb operator!=(const ssef &a, const float &b) { return a != ssef(b); } __forceinline const sseb operator!=(const float &a, const ssef &b) { return ssef(a) != b; } __forceinline const sseb operator<(const ssef &a, const ssef &b) { return _mm_cmplt_ps(a.m128, b.m128); } __forceinline const sseb operator<(const ssef &a, const float &b) { return a < ssef(b); } __forceinline const sseb operator<(const float &a, const ssef &b) { return ssef(a) < b; } __forceinline const sseb operator>=(const ssef &a, const ssef &b) { return _mm_cmpnlt_ps(a.m128, b.m128); } __forceinline const sseb operator>=(const ssef &a, const float &b) { return a >= ssef(b); } __forceinline const sseb operator>=(const float &a, const ssef &b) { return ssef(a) >= b; } __forceinline const sseb operator>(const ssef &a, const ssef &b) { return _mm_cmpnle_ps(a.m128, b.m128); } __forceinline const sseb operator>(const ssef &a, const float &b) { return a > ssef(b); } __forceinline const sseb operator>(const float &a, const ssef &b) { return ssef(a) > b; } __forceinline const sseb operator<=(const ssef &a, const ssef &b) { return _mm_cmple_ps(a.m128, b.m128); } __forceinline const sseb operator<=(const ssef &a, const float &b) { return a <= ssef(b); } __forceinline const sseb operator<=(const float &a, const ssef &b) { return ssef(a) <= b; } __forceinline const ssef select(const sseb &m, const ssef &t, const ssef &f) { # ifdef __KERNEL_SSE41__ return _mm_blendv_ps(f, t, m); # else return _mm_or_ps(_mm_and_ps(m, t), _mm_andnot_ps(m, f)); # endif } __forceinline const ssef select(const ssef &m, const ssef &t, const ssef &f) { # ifdef __KERNEL_SSE41__ return _mm_blendv_ps(f, t, m); # else return _mm_or_ps(_mm_and_ps(m, t), _mm_andnot_ps(m, f)); # endif } __forceinline const ssef select(const int mask, const ssef &t, const ssef &f) { # if defined(__KERNEL_SSE41__) && \ ((!defined(__clang__) && !defined(_MSC_VER)) || defined(__INTEL_COMPILER)) return _mm_blend_ps(f, t, mask); # else return select(sseb(mask), t, f); # endif } //////////////////////////////////////////////////////////////////////////////// /// Rounding Functions //////////////////////////////////////////////////////////////////////////////// # if defined(__KERNEL_SSE41__) __forceinline const ssef round_even(const ssef &a) { # ifdef __KERNEL_NEON__ return vrndnq_f32(a); # else return _mm_round_ps(a, _MM_FROUND_TO_NEAREST_INT); # endif } __forceinline const ssef round_down(const ssef &a) { # ifdef __KERNEL_NEON__ return vrndmq_f32(a); # else return _mm_round_ps(a, _MM_FROUND_TO_NEG_INF); # endif } __forceinline const ssef round_up(const ssef &a) { # ifdef __KERNEL_NEON__ return vrndpq_f32(a); # else return _mm_round_ps(a, _MM_FROUND_TO_POS_INF); # endif } __forceinline const ssef round_zero(const ssef &a) { # ifdef __KERNEL_NEON__ return vrndq_f32(a); # else return _mm_round_ps(a, _MM_FROUND_TO_ZERO); # endif } __forceinline const ssef floor(const ssef &a) { # ifdef __KERNEL_NEON__ return vrndmq_f32(a); # else return _mm_round_ps(a, _MM_FROUND_TO_NEG_INF); # endif } __forceinline const ssef ceil(const ssef &a) { # ifdef __KERNEL_NEON__ return vrndpq_f32(a); # else return _mm_round_ps(a, _MM_FROUND_TO_POS_INF); # endif } # else /* Non-SSE4.1 fallback, needed for floorfrac. */ __forceinline const ssef floor(const ssef &a) { return _mm_set_ps(floorf(a.f[3]), floorf(a.f[2]), floorf(a.f[1]), floorf(a.f[0])); } # endif __forceinline ssei truncatei(const ssef &a) { return _mm_cvttps_epi32(a.m128); } __forceinline ssef floorfrac(const ssef &x, ssei *i) { ssef f = floor(x); *i = truncatei(f); return x - f; } //////////////////////////////////////////////////////////////////////////////// /// Common Functions //////////////////////////////////////////////////////////////////////////////// __forceinline ssef mix(const ssef &a, const ssef &b, const ssef &t) { return madd(t, b, (ssef(1.0f) - t) * a); } //////////////////////////////////////////////////////////////////////////////// /// Movement/Shifting/Shuffling Functions //////////////////////////////////////////////////////////////////////////////// __forceinline ssef unpacklo(const ssef &a, const ssef &b) { return _mm_unpacklo_ps(a.m128, b.m128); } __forceinline ssef unpackhi(const ssef &a, const ssef &b) { return _mm_unpackhi_ps(a.m128, b.m128); } template __forceinline const ssef shuffle(const ssef &b) { # ifdef __KERNEL_NEON__ return shuffle_neon(b.m128); # else return _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(b), _MM_SHUFFLE(i3, i2, i1, i0))); # endif } template<> __forceinline const ssef shuffle<0, 1, 0, 1>(const ssef &a) { return _mm_movelh_ps(a, a); } template<> __forceinline const ssef shuffle<2, 3, 2, 3>(const ssef &a) { return _mm_movehl_ps(a, a); } template __forceinline const ssef shuffle(const ssef &a, const ssef &b) { # ifdef __KERNEL_NEON__ return shuffle_neon(a, b); # else return _mm_shuffle_ps(a, b, _MM_SHUFFLE(i3, i2, i1, i0)); # endif } template __forceinline const ssef shuffle(const ssef &a, const ssef &b) { # ifdef __KERNEL_NEON__ return shuffle_neon(a, b); # else return _mm_shuffle_ps(a, b, _MM_SHUFFLE(i0, i0, i0, i0)); # endif } # ifndef __KERNEL_NEON__ template<> __forceinline const ssef shuffle<0, 1, 0, 1>(const ssef &a, const ssef &b) { return _mm_movelh_ps(a, b); } template<> __forceinline const ssef shuffle<2, 3, 2, 3>(const ssef &a, const ssef &b) { return _mm_movehl_ps(b, a); } # endif # if defined(__KERNEL_SSSE3__) __forceinline const ssef shuffle8(const ssef &a, const ssei &shuf) { return _mm_castsi128_ps(_mm_shuffle_epi8(_mm_castps_si128(a), shuf)); } # endif # if defined(__KERNEL_SSE3__) template<> __forceinline const ssef shuffle<0, 0, 2, 2>(const ssef &b) { return _mm_moveldup_ps(b); } template<> __forceinline const ssef shuffle<1, 1, 3, 3>(const ssef &b) { return _mm_movehdup_ps(b); } # endif template __forceinline const ssef shuffle(const ssef &b) { return shuffle(b); } # if defined(__KERNEL_AVX__) __forceinline const ssef shuffle(const ssef &a, const ssei &shuf) { return _mm_permutevar_ps(a, shuf); } # endif template __forceinline float extract(const ssef &a) { return _mm_cvtss_f32(shuffle(a)); } template<> __forceinline float extract<0>(const ssef &a) { return _mm_cvtss_f32(a); } # if defined(__KERNEL_SSE41__) template __forceinline const ssef insert(const ssef &a, const ssef &b) { # ifdef __KERNEL_NEON__ ssef res = a; if (clr) res[dst] = 0; else res[dst] = b[src]; return res; # else return _mm_insert_ps(a, b, (dst << 4) | (src << 6) | clr); # endif } template __forceinline const ssef insert(const ssef &a, const ssef &b) { return insert(a, b); } template __forceinline const ssef insert(const ssef &a, const float b) { return insert(a, _mm_set_ss(b)); } # else template __forceinline const ssef insert(const ssef &a, const float b) { ssef c = a; c[dst] = b; return c; } # endif //////////////////////////////////////////////////////////////////////////////// /// Transpose //////////////////////////////////////////////////////////////////////////////// __forceinline void transpose(const ssef &r0, const ssef &r1, const ssef &r2, const ssef &r3, ssef &c0, ssef &c1, ssef &c2, ssef &c3) { ssef l02 = unpacklo(r0, r2); ssef h02 = unpackhi(r0, r2); ssef l13 = unpacklo(r1, r3); ssef h13 = unpackhi(r1, r3); c0 = unpacklo(l02, l13); c1 = unpackhi(l02, l13); c2 = unpacklo(h02, h13); c3 = unpackhi(h02, h13); } __forceinline void transpose( const ssef &r0, const ssef &r1, const ssef &r2, const ssef &r3, ssef &c0, ssef &c1, ssef &c2) { ssef l02 = unpacklo(r0, r2); ssef h02 = unpackhi(r0, r2); ssef l13 = unpacklo(r1, r3); ssef h13 = unpackhi(r1, r3); c0 = unpacklo(l02, l13); c1 = unpackhi(l02, l13); c2 = unpacklo(h02, h13); } //////////////////////////////////////////////////////////////////////////////// /// Reductions //////////////////////////////////////////////////////////////////////////////// __forceinline const ssef vreduce_min(const ssef &v) { # ifdef __KERNEL_NEON__ return vdupq_n_f32(vminvq_f32(v)); # else ssef h = min(shuffle<1, 0, 3, 2>(v), v); return min(shuffle<2, 3, 0, 1>(h), h); # endif } __forceinline const ssef vreduce_max(const ssef &v) { # ifdef __KERNEL_NEON__ return vdupq_n_f32(vmaxvq_f32(v)); # else ssef h = max(shuffle<1, 0, 3, 2>(v), v); return max(shuffle<2, 3, 0, 1>(h), h); # endif } __forceinline const ssef vreduce_add(const ssef &v) { # ifdef __KERNEL_NEON__ return vdupq_n_f32(vaddvq_f32(v)); # else ssef h = shuffle<1, 0, 3, 2>(v) + v; return shuffle<2, 3, 0, 1>(h) + h; # endif } __forceinline float reduce_min(const ssef &v) { # ifdef __KERNEL_NEON__ return vminvq_f32(v); # else return _mm_cvtss_f32(vreduce_min(v)); # endif } __forceinline float reduce_max(const ssef &v) { # ifdef __KERNEL_NEON__ return vmaxvq_f32(v); # else return _mm_cvtss_f32(vreduce_max(v)); # endif } __forceinline float reduce_add(const ssef &v) { # ifdef __KERNEL_NEON__ return vaddvq_f32(v); # else return _mm_cvtss_f32(vreduce_add(v)); # endif } __forceinline uint32_t select_min(const ssef &v) { return __bsf(movemask(v == vreduce_min(v))); } __forceinline uint32_t select_max(const ssef &v) { return __bsf(movemask(v == vreduce_max(v))); } __forceinline uint32_t select_min(const sseb &valid, const ssef &v) { const ssef a = select(valid, v, ssef(pos_inf)); return __bsf(movemask(valid & (a == vreduce_min(a)))); } __forceinline uint32_t select_max(const sseb &valid, const ssef &v) { const ssef a = select(valid, v, ssef(neg_inf)); return __bsf(movemask(valid & (a == vreduce_max(a)))); } __forceinline uint32_t movemask(const ssef &a) { return _mm_movemask_ps(a); } //////////////////////////////////////////////////////////////////////////////// /// Memory load and store operations //////////////////////////////////////////////////////////////////////////////// __forceinline ssef load4f(const float4 &a) { # ifdef __KERNEL_WITH_SSE_ALIGN__ return _mm_load_ps(&a.x); # else return _mm_loadu_ps(&a.x); # endif } __forceinline ssef load4f(const float3 &a) { # ifdef __KERNEL_WITH_SSE_ALIGN__ return _mm_load_ps(&a.x); # else return _mm_loadu_ps(&a.x); # endif } __forceinline ssef load4f(const void *const a) { return _mm_load_ps((float *)a); } __forceinline ssef load1f_first(const float a) { return _mm_set_ss(a); } __forceinline void store4f(void *ptr, const ssef &v) { _mm_store_ps((float *)ptr, v); } __forceinline ssef loadu4f(const void *const a) { return _mm_loadu_ps((float *)a); } __forceinline void storeu4f(void *ptr, const ssef &v) { _mm_storeu_ps((float *)ptr, v); } __forceinline void store4f(const sseb &mask, void *ptr, const ssef &f) { # if defined(__KERNEL_AVX__) _mm_maskstore_ps((float *)ptr, (__m128i)mask, f); # else *(ssef *)ptr = select(mask, f, *(ssef *)ptr); # endif } __forceinline ssef load4f_nt(void *ptr) { # if defined(__KERNEL_SSE41__) return _mm_castsi128_ps(_mm_stream_load_si128((__m128i *)ptr)); # else return _mm_load_ps((float *)ptr); # endif } __forceinline void store4f_nt(void *ptr, const ssef &v) { # if defined(__KERNEL_SSE41__) _mm_stream_ps((float *)ptr, v); # else _mm_store_ps((float *)ptr, v); # endif } //////////////////////////////////////////////////////////////////////////////// /// Euclidean Space Operators //////////////////////////////////////////////////////////////////////////////// __forceinline float dot(const ssef &a, const ssef &b) { return reduce_add(a * b); } /* calculate shuffled cross product, useful when order of components does not matter */ __forceinline ssef cross_zxy(const ssef &a, const ssef &b) { const ssef a0 = a; const ssef b0 = shuffle<1, 2, 0, 3>(b); const ssef a1 = shuffle<1, 2, 0, 3>(a); const ssef b1 = b; return msub(a0, b0, a1 * b1); } __forceinline ssef cross(const ssef &a, const ssef &b) { return shuffle<1, 2, 0, 3>(cross_zxy(a, b)); } ccl_device_inline const ssef dot3_splat(const ssef &a, const ssef &b) { # ifdef __KERNEL_SSE41__ return _mm_dp_ps(a.m128, b.m128, 0x7f); # else ssef t = a * b; return ssef(((float *)&t)[0] + ((float *)&t)[1] + ((float *)&t)[2]); # endif } /* squared length taking only specified axes into account */ template ccl_device_inline float len_squared(const ssef &a) { # ifndef __KERNEL_SSE41__ float4 &t = (float4 &)a; return (X ? t.x * t.x : 0.0f) + (Y ? t.y * t.y : 0.0f) + (Z ? t.z * t.z : 0.0f) + (W ? t.w * t.w : 0.0f); # else return extract<0>( ssef(_mm_dp_ps(a.m128, a.m128, (X << 4) | (Y << 5) | (Z << 6) | (W << 7) | 0xf))); # endif } ccl_device_inline float dot3(const ssef &a, const ssef &b) { # ifdef __KERNEL_SSE41__ return extract<0>(ssef(_mm_dp_ps(a.m128, b.m128, 0x7f))); # else ssef t = a * b; return ((float *)&t)[0] + ((float *)&t)[1] + ((float *)&t)[2]; # endif } ccl_device_inline const ssef len3_squared_splat(const ssef &a) { return dot3_splat(a, a); } ccl_device_inline float len3_squared(const ssef &a) { return dot3(a, a); } ccl_device_inline float len3(const ssef &a) { return extract<0>(mm_sqrt(dot3_splat(a, a))); } /* SSE shuffle utility functions */ # ifdef __KERNEL_SSSE3__ /* faster version for SSSE3 */ typedef ssei shuffle_swap_t; ccl_device_inline shuffle_swap_t shuffle_swap_identity() { return _mm_set_epi8(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); } ccl_device_inline shuffle_swap_t shuffle_swap_swap() { return _mm_set_epi8(7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8); } ccl_device_inline const ssef shuffle_swap(const ssef &a, const shuffle_swap_t &shuf) { return cast(_mm_shuffle_epi8(cast(a), shuf)); } # else /* somewhat slower version for SSE2 */ typedef int shuffle_swap_t; ccl_device_inline shuffle_swap_t shuffle_swap_identity() { return 0; } ccl_device_inline shuffle_swap_t shuffle_swap_swap() { return 1; } ccl_device_inline const ssef shuffle_swap(const ssef &a, shuffle_swap_t shuf) { /* shuffle value must be a constant, so we need to branch */ if (shuf) return shuffle<1, 0, 3, 2>(a); else return shuffle<3, 2, 1, 0>(a); } # endif # if defined(__KERNEL_SSE41__) && !defined(__KERNEL_NEON__) ccl_device_inline void gen_idirsplat_swap(const ssef &pn, const shuffle_swap_t &shuf_identity, const shuffle_swap_t &shuf_swap, const float3 &idir, ssef idirsplat[3], shuffle_swap_t shufflexyz[3]) { const __m128 idirsplat_raw[] = {_mm_set_ps1(idir.x), _mm_set_ps1(idir.y), _mm_set_ps1(idir.z)}; idirsplat[0] = _mm_xor_ps(idirsplat_raw[0], pn); idirsplat[1] = _mm_xor_ps(idirsplat_raw[1], pn); idirsplat[2] = _mm_xor_ps(idirsplat_raw[2], pn); const ssef signmask = cast(ssei(0x80000000)); const ssef shuf_identity_f = cast(shuf_identity); const ssef shuf_swap_f = cast(shuf_swap); shufflexyz[0] = _mm_castps_si128( _mm_blendv_ps(shuf_identity_f, shuf_swap_f, _mm_and_ps(idirsplat_raw[0], signmask))); shufflexyz[1] = _mm_castps_si128( _mm_blendv_ps(shuf_identity_f, shuf_swap_f, _mm_and_ps(idirsplat_raw[1], signmask))); shufflexyz[2] = _mm_castps_si128( _mm_blendv_ps(shuf_identity_f, shuf_swap_f, _mm_and_ps(idirsplat_raw[2], signmask))); } # else ccl_device_inline void gen_idirsplat_swap(const ssef &pn, const shuffle_swap_t &shuf_identity, const shuffle_swap_t &shuf_swap, const float3 &idir, ssef idirsplat[3], shuffle_swap_t shufflexyz[3]) { idirsplat[0] = ssef(idir.x) ^ pn; idirsplat[1] = ssef(idir.y) ^ pn; idirsplat[2] = ssef(idir.z) ^ pn; shufflexyz[0] = (idir.x >= 0) ? shuf_identity : shuf_swap; shufflexyz[1] = (idir.y >= 0) ? shuf_identity : shuf_swap; shufflexyz[2] = (idir.z >= 0) ? shuf_identity : shuf_swap; } # endif ccl_device_inline const ssef uint32_to_float(const ssei &in) { ssei a = _mm_srli_epi32(in, 16); ssei b = _mm_and_si128(in, _mm_set1_epi32(0x0000ffff)); ssei c = _mm_or_si128(a, _mm_set1_epi32(0x53000000)); ssef d = _mm_cvtepi32_ps(b); ssef e = _mm_sub_ps(_mm_castsi128_ps(c), _mm_castsi128_ps(_mm_set1_epi32(0x53000000))); return _mm_add_ps(e, d); } template ccl_device_inline const ssef set_sign_bit(const ssef &a) { return cast(cast(a) ^ ssei(S1 << 31, S2 << 31, S3 << 31, S4 << 31)); } //////////////////////////////////////////////////////////////////////////////// /// Debug Functions //////////////////////////////////////////////////////////////////////////////// ccl_device_inline void print_ssef(const char *label, const ssef &a) { printf( "%s: %.8f %.8f %.8f %.8f\n", label, (double)a[0], (double)a[1], (double)a[2], (double)a[3]); } #endif CCL_NAMESPACE_END #endif