/* SPDX-License-Identifier: Apache-2.0 * Copyright 2011-2022 Blender Foundation */ #include "util/transform.h" #include "util/projection.h" #include "util/boundbox.h" #include "util/math.h" CCL_NAMESPACE_BEGIN /* Transform Inverse */ static bool projection_matrix4_inverse(float R[][4], float M[][4]) { /* SPDX-License-Identifier: BSD-3-Clause * Adapted from code: * Copyright (c) 2002, Industrial Light & Magic, a division of Lucas * Digital Ltd. LLC. All rights reserved. */ /* forward elimination */ for (int i = 0; i < 4; i++) { int pivot = i; float pivotsize = M[i][i]; if (pivotsize < 0) pivotsize = -pivotsize; for (int j = i + 1; j < 4; j++) { float tmp = M[j][i]; if (tmp < 0) tmp = -tmp; if (tmp > pivotsize) { pivot = j; pivotsize = tmp; } } if (UNLIKELY(pivotsize == 0.0f)) return false; if (pivot != i) { for (int j = 0; j < 4; j++) { float tmp; tmp = M[i][j]; M[i][j] = M[pivot][j]; M[pivot][j] = tmp; tmp = R[i][j]; R[i][j] = R[pivot][j]; R[pivot][j] = tmp; } } for (int j = i + 1; j < 4; j++) { float f = M[j][i] / M[i][i]; for (int k = 0; k < 4; k++) { M[j][k] -= f * M[i][k]; R[j][k] -= f * R[i][k]; } } } /* backward substitution */ for (int i = 3; i >= 0; --i) { float f; if (UNLIKELY((f = M[i][i]) == 0.0f)) return false; for (int j = 0; j < 4; j++) { M[i][j] /= f; R[i][j] /= f; } for (int j = 0; j < i; j++) { f = M[j][i]; for (int k = 0; k < 4; k++) { M[j][k] -= f * M[i][k]; R[j][k] -= f * R[i][k]; } } } return true; } ProjectionTransform projection_inverse(const ProjectionTransform &tfm) { ProjectionTransform tfmR = projection_identity(); float M[4][4], R[4][4]; memcpy(R, &tfmR, sizeof(R)); memcpy(M, &tfm, sizeof(M)); if (UNLIKELY(!projection_matrix4_inverse(R, M))) { return projection_identity(); } memcpy(&tfmR, R, sizeof(R)); return tfmR; } Transform transform_transposed_inverse(const Transform &tfm) { ProjectionTransform iprojection(transform_inverse(tfm)); return projection_to_transform(projection_transpose(iprojection)); } /* Motion Transform */ float4 transform_to_quat(const Transform &tfm) { double trace = (double)(tfm[0][0] + tfm[1][1] + tfm[2][2]); float4 qt; if (trace > 0.0) { double s = sqrt(trace + 1.0); qt.w = (float)(s / 2.0); s = 0.5 / s; qt.x = (float)((double)(tfm[2][1] - tfm[1][2]) * s); qt.y = (float)((double)(tfm[0][2] - tfm[2][0]) * s); qt.z = (float)((double)(tfm[1][0] - tfm[0][1]) * s); } else { int i = 0; if (tfm[1][1] > tfm[i][i]) i = 1; if (tfm[2][2] > tfm[i][i]) i = 2; int j = (i + 1) % 3; int k = (j + 1) % 3; double s = sqrt((double)(tfm[i][i] - (tfm[j][j] + tfm[k][k])) + 1.0); double q[3]; q[i] = s * 0.5; if (s != 0.0) s = 0.5 / s; double w = (double)(tfm[k][j] - tfm[j][k]) * s; q[j] = (double)(tfm[j][i] + tfm[i][j]) * s; q[k] = (double)(tfm[k][i] + tfm[i][k]) * s; qt.x = (float)q[0]; qt.y = (float)q[1]; qt.z = (float)q[2]; qt.w = (float)w; } return qt; } static void transform_decompose(DecomposedTransform *decomp, const Transform *tfm) { /* extract translation */ decomp->y = make_float4(tfm->x.w, tfm->y.w, tfm->z.w, 0.0f); /* extract rotation */ Transform M = *tfm; M.x.w = 0.0f; M.y.w = 0.0f; M.z.w = 0.0f; #if 0 Transform R = M; float norm; int iteration = 0; do { Transform Rnext; Transform Rit = transform_transposed_inverse(R); for (int i = 0; i < 3; i++) for (int j = 0; j < 4; j++) Rnext[i][j] = 0.5f * (R[i][j] + Rit[i][j]); norm = 0.0f; for (int i = 0; i < 3; i++) { norm = max(norm, fabsf(R[i][0] - Rnext[i][0]) + fabsf(R[i][1] - Rnext[i][1]) + fabsf(R[i][2] - Rnext[i][2])); } R = Rnext; iteration++; } while (iteration < 100 && norm > 1e-4f); if (transform_negative_scale(R)) R = R * transform_scale(-1.0f, -1.0f, -1.0f); decomp->x = transform_to_quat(R); /* extract scale and pack it */ Transform scale = transform_inverse(R) * M; decomp->y.w = scale.x.x; decomp->z = make_float4(scale.x.y, scale.x.z, scale.y.x, scale.y.y); decomp->w = make_float4(scale.y.z, scale.z.x, scale.z.y, scale.z.z); #else float3 colx = transform_get_column(&M, 0); float3 coly = transform_get_column(&M, 1); float3 colz = transform_get_column(&M, 2); /* extract scale and shear first */ float3 scale, shear; scale.x = len(colx); colx = safe_divide(colx, scale.x); shear.z = dot(colx, coly); coly -= shear.z * colx; scale.y = len(coly); coly = safe_divide(coly, scale.y); shear.y = dot(colx, colz); colz -= shear.y * colx; shear.x = dot(coly, colz); colz -= shear.x * coly; scale.z = len(colz); colz = safe_divide(colz, scale.z); transform_set_column(&M, 0, colx); transform_set_column(&M, 1, coly); transform_set_column(&M, 2, colz); if (transform_negative_scale(M)) { scale *= -1.0f; M = M * transform_scale(-1.0f, -1.0f, -1.0f); } decomp->x = transform_to_quat(M); decomp->y.w = scale.x; decomp->z = make_float4(shear.z, shear.y, 0.0f, scale.y); decomp->w = make_float4(shear.x, 0.0f, 0.0f, scale.z); #endif } void transform_motion_decompose(DecomposedTransform *decomp, const Transform *motion, size_t size) { /* Decompose and correct rotation. */ for (size_t i = 0; i < size; i++) { transform_decompose(decomp + i, motion + i); if (i > 0) { /* Ensure rotation around shortest angle, negated quaternions are the same * but this means we don't have to do the check in quat_interpolate */ if (dot(decomp[i - 1].x, decomp[i].x) < 0.0f) decomp[i].x = -decomp[i].x; } } /* Copy rotation to decomposed transform where scale is degenerate. This avoids weird object * rotation interpolation when the scale goes to 0 for a time step. * * Note that this is very simple and naive implementation, which only deals with degenerated * scale happening only on one frame. It is possible to improve it further by interpolating * rotation into s degenerated range using rotation from time-steps from adjacent non-degenerated * time steps. */ for (size_t i = 0; i < size; i++) { const float3 scale = make_float3(decomp[i].y.w, decomp[i].z.w, decomp[i].w.w); if (!is_zero(scale)) { continue; } if (i > 0) { decomp[i].x = decomp[i - 1].x; } else if (i < size - 1) { decomp[i].x = decomp[i + 1].x; } } } Transform transform_from_viewplane(BoundBox2D &viewplane) { return transform_scale(1.0f / (viewplane.right - viewplane.left), 1.0f / (viewplane.top - viewplane.bottom), 1.0f) * transform_translate(-viewplane.left, -viewplane.bottom, 0.0f); } CCL_NAMESPACE_END