/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __UTIL_HALF_H__ #define __UTIL_HALF_H__ #include "util/util_types.h" #include "util/util_math.h" #ifdef __KERNEL_SSE2__ #include "util/util_simd.h" #endif CCL_NAMESPACE_BEGIN /* Half Floats */ #ifdef __KERNEL_OPENCL__ #define float4_store_half(h, f, scale) vstore_half4(f * (scale), 0, h); #else /* CUDA has its own half data type, no need to define then */ #ifndef __KERNEL_CUDA__ /* Implementing this as a class rather than a typedef so that the compiler can tell it apart from unsigned shorts. */ class half { public: half() : v(0) {} half(const unsigned short& i) : v(i) {} operator unsigned short() { return v; } half& operator =(const unsigned short& i) { v = i; return *this; } private: unsigned short v; }; #endif struct half4 { half x, y, z, w; }; #ifdef __KERNEL_CUDA__ ccl_device_inline void float4_store_half(half *h, float4 f, float scale) { h[0] = __float2half(f.x * scale); h[1] = __float2half(f.y * scale); h[2] = __float2half(f.z * scale); h[3] = __float2half(f.w * scale); } #else ccl_device_inline void float4_store_half(half *h, float4 f, float scale) { #ifndef __KERNEL_SSE2__ for(int i = 0; i < 4; i++) { /* optimized float to half for pixels: * assumes no negative, no nan, no inf, and sets denormal to 0 */ union { uint i; float f; } in; float fscale = f[i] * scale; in.f = (fscale > 0.0f)? ((fscale < 65504.0f)? fscale: 65504.0f): 0.0f; int x = in.i; int absolute = x & 0x7FFFFFFF; int Z = absolute + 0xC8000000; int result = (absolute < 0x38800000)? 0: Z; int rshift = (result >> 13); h[i] = (rshift & 0x7FFF); } #else /* same as above with SSE */ ssef fscale = load4f(f) * scale; ssef x = min(max(fscale, 0.0f), 65504.0f); #ifdef __KERNEL_AVX2__ ssei rpack = _mm_cvtps_ph(x, 0); #else ssei absolute = cast(x) & 0x7FFFFFFF; ssei Z = absolute + 0xC8000000; ssei result = andnot(absolute < 0x38800000, Z); ssei rshift = (result >> 13) & 0x7FFF; ssei rpack = _mm_packs_epi32(rshift, rshift); #endif _mm_storel_pi((__m64*)h, _mm_castsi128_ps(rpack)); #endif } ccl_device_inline float half_to_float(half h) { float f; *((int*) &f) = ((h & 0x8000) << 16) | (((h & 0x7c00) + 0x1C000) << 13) | ((h & 0x03FF) << 13); return f; } ccl_device_inline float4 half4_to_float4(half4 h) { float4 f; f.x = half_to_float(h.x); f.y = half_to_float(h.y); f.z = half_to_float(h.z); f.w = half_to_float(h.w); return f; } ccl_device_inline half float_to_half(float f) { const uint u = __float_as_uint(f); /* Sign bit, shifted to it's position. */ uint sign_bit = u & 0x80000000; sign_bit >>= 16; /* Exponent. */ uint exponent_bits = u & 0x7f800000; /* Non-sign bits. */ uint value_bits = u & 0x7fffffff; value_bits >>= 13; /* Align mantissa on MSB. */ value_bits -= 0x1c000; /* Adjust bias. */ /* Flush-to-zero. */ value_bits = (exponent_bits < 0x38800000) ? 0 : value_bits; /* Clamp-to-max. */ value_bits = (exponent_bits > 0x47000000) ? 0x7bff : value_bits; /* Denormals-as-zero. */ value_bits = (exponent_bits == 0 ? 0 : value_bits); /* Re-insert sign bit and return. */ return (value_bits | sign_bit); } #endif #endif CCL_NAMESPACE_END #endif /* __UTIL_HALF_H__ */