/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __UTIL_MATH_H__ #define __UTIL_MATH_H__ /* Math * * Basic math functions on scalar and vector types. This header is used by * both the kernel code when compiled as C++, and other C++ non-kernel code. */ #ifndef __KERNEL_GPU__ # include #endif #ifndef __KERNEL_OPENCL__ # include # include # include #endif /* __KERNEL_OPENCL__ */ #include "util/util_types.h" CCL_NAMESPACE_BEGIN /* Float Pi variations */ /* Division */ #ifndef M_PI_F # define M_PI_F (3.1415926535897932f) /* pi */ #endif #ifndef M_PI_2_F # define M_PI_2_F (1.5707963267948966f) /* pi/2 */ #endif #ifndef M_PI_4_F # define M_PI_4_F (0.7853981633974830f) /* pi/4 */ #endif #ifndef M_1_PI_F # define M_1_PI_F (0.3183098861837067f) /* 1/pi */ #endif #ifndef M_2_PI_F # define M_2_PI_F (0.6366197723675813f) /* 2/pi */ #endif /* Multiplication */ #ifndef M_2PI_F # define M_2PI_F (6.2831853071795864f) /* 2*pi */ #endif #ifndef M_4PI_F # define M_4PI_F (12.566370614359172f) /* 4*pi */ #endif /* Float sqrt variations */ #ifndef M_SQRT2_F # define M_SQRT2_F (1.4142135623730950f) /* sqrt(2) */ #endif #ifndef M_LN2_F # define M_LN2_F (0.6931471805599453f) /* ln(2) */ #endif #ifndef M_LN10_F # define M_LN10_F (2.3025850929940457f) /* ln(10) */ #endif /* Scalar */ #ifdef _WIN32 # ifndef __KERNEL_OPENCL__ ccl_device_inline float fmaxf(float a, float b) { return (a > b)? a: b; } ccl_device_inline float fminf(float a, float b) { return (a < b)? a: b; } # endif /* !__KERNEL_OPENCL__ */ #endif /* _WIN32 */ #ifndef __KERNEL_GPU__ using std::isfinite; using std::isnan; ccl_device_inline int abs(int x) { return (x > 0)? x: -x; } ccl_device_inline int max(int a, int b) { return (a > b)? a: b; } ccl_device_inline int min(int a, int b) { return (a < b)? a: b; } ccl_device_inline float max(float a, float b) { return (a > b)? a: b; } ccl_device_inline float min(float a, float b) { return (a < b)? a: b; } ccl_device_inline double max(double a, double b) { return (a > b)? a: b; } ccl_device_inline double min(double a, double b) { return (a < b)? a: b; } /* These 2 guys are templated for usage with registers data. * * NOTE: Since this is CPU-only functions it is ok to use references here. * But for other devices we'll need to be careful about this. */ template ccl_device_inline T min4(const T& a, const T& b, const T& c, const T& d) { return min(min(a,b),min(c,d)); } template ccl_device_inline T max4(const T& a, const T& b, const T& c, const T& d) { return max(max(a,b),max(c,d)); } #endif /* __KERNEL_GPU__ */ ccl_device_inline float min4(float a, float b, float c, float d) { return min(min(a, b), min(c, d)); } ccl_device_inline float max4(float a, float b, float c, float d) { return max(max(a, b), max(c, d)); } #ifndef __KERNEL_OPENCL__ /* Int/Float conversion */ ccl_device_inline int as_int(uint i) { union { uint ui; int i; } u; u.ui = i; return u.i; } ccl_device_inline uint as_uint(int i) { union { uint ui; int i; } u; u.i = i; return u.ui; } ccl_device_inline uint as_uint(float f) { union { uint i; float f; } u; u.f = f; return u.i; } ccl_device_inline int __float_as_int(float f) { union { int i; float f; } u; u.f = f; return u.i; } ccl_device_inline float __int_as_float(int i) { union { int i; float f; } u; u.i = i; return u.f; } ccl_device_inline uint __float_as_uint(float f) { union { uint i; float f; } u; u.f = f; return u.i; } ccl_device_inline float __uint_as_float(uint i) { union { uint i; float f; } u; u.i = i; return u.f; } #endif /* __KERNEL_OPENCL__ */ /* Versions of functions which are safe for fast math. */ ccl_device_inline bool isnan_safe(float f) { unsigned int x = __float_as_uint(f); return (x << 1) > 0xff000000u; } ccl_device_inline bool isfinite_safe(float f) { /* By IEEE 754 rule, 2*Inf equals Inf */ unsigned int x = __float_as_uint(f); return (f == f) && (x == 0 || (f != 2.0f*f)) && !((x << 1) > 0xff000000u); } ccl_device_inline float ensure_finite(float v) { return isfinite_safe(v)? v : 0.0f; } #ifndef __KERNEL_OPENCL__ ccl_device_inline int clamp(int a, int mn, int mx) { return min(max(a, mn), mx); } ccl_device_inline float clamp(float a, float mn, float mx) { return min(max(a, mn), mx); } ccl_device_inline float mix(float a, float b, float t) { return a + t*(b - a); } #endif /* __KERNEL_OPENCL__ */ #ifndef __KERNEL_CUDA__ ccl_device_inline float saturate(float a) { return clamp(a, 0.0f, 1.0f); } #endif /* __KERNEL_CUDA__ */ ccl_device_inline int float_to_int(float f) { return (int)f; } ccl_device_inline int floor_to_int(float f) { return float_to_int(floorf(f)); } ccl_device_inline int ceil_to_int(float f) { return float_to_int(ceilf(f)); } ccl_device_inline float signf(float f) { return (f < 0.0f)? -1.0f: 1.0f; } ccl_device_inline float nonzerof(float f, float eps) { if(fabsf(f) < eps) return signf(f)*eps; else return f; } ccl_device_inline float smoothstepf(float f) { float ff = f*f; return (3.0f*ff - 2.0f*ff*f); } ccl_device_inline int mod(int x, int m) { return (x % m + m) % m; } ccl_device_inline float3 float2_to_float3(const float2 a) { return make_float3(a.x, a.y, 0.0f); } ccl_device_inline float3 float4_to_float3(const float4 a) { return make_float3(a.x, a.y, a.z); } ccl_device_inline float4 float3_to_float4(const float3 a) { return make_float4(a.x, a.y, a.z, 1.0f); } CCL_NAMESPACE_END #include "util/util_math_int2.h" #include "util/util_math_int3.h" #include "util/util_math_int4.h" #include "util/util_math_float2.h" #include "util/util_math_float3.h" #include "util/util_math_float4.h" CCL_NAMESPACE_BEGIN #ifndef __KERNEL_OPENCL__ /* Interpolation */ template A lerp(const A& a, const A& b, const B& t) { return (A)(a * ((B)1 - t) + b * t); } /* Triangle */ ccl_device_inline float triangle_area(const float3& v1, const float3& v2, const float3& v3) { return len(cross(v3 - v2, v1 - v2))*0.5f; } #endif /* __KERNEL_OPENCL__ */ /* Orthonormal vectors */ ccl_device_inline void make_orthonormals(const float3 N, float3 *a, float3 *b) { #if 0 if(fabsf(N.y) >= 0.999f) { *a = make_float3(1, 0, 0); *b = make_float3(0, 0, 1); return; } if(fabsf(N.z) >= 0.999f) { *a = make_float3(1, 0, 0); *b = make_float3(0, 1, 0); return; } #endif if(N.x != N.y || N.x != N.z) *a = make_float3(N.z-N.y, N.x-N.z, N.y-N.x); //(1,1,1)x N else *a = make_float3(N.z-N.y, N.x+N.z, -N.y-N.x); //(-1,1,1)x N *a = normalize(*a); *b = cross(N, *a); } /* Color division */ ccl_device_inline float3 safe_invert_color(float3 a) { float x, y, z; x = (a.x != 0.0f)? 1.0f/a.x: 0.0f; y = (a.y != 0.0f)? 1.0f/a.y: 0.0f; z = (a.z != 0.0f)? 1.0f/a.z: 0.0f; return make_float3(x, y, z); } ccl_device_inline float3 safe_divide_color(float3 a, float3 b) { float x, y, z; x = (b.x != 0.0f)? a.x/b.x: 0.0f; y = (b.y != 0.0f)? a.y/b.y: 0.0f; z = (b.z != 0.0f)? a.z/b.z: 0.0f; return make_float3(x, y, z); } ccl_device_inline float3 safe_divide_even_color(float3 a, float3 b) { float x, y, z; x = (b.x != 0.0f)? a.x/b.x: 0.0f; y = (b.y != 0.0f)? a.y/b.y: 0.0f; z = (b.z != 0.0f)? a.z/b.z: 0.0f; /* try to get gray even if b is zero */ if(b.x == 0.0f) { if(b.y == 0.0f) { x = z; y = z; } else if(b.z == 0.0f) { x = y; z = y; } else x = 0.5f*(y + z); } else if(b.y == 0.0f) { if(b.z == 0.0f) { y = x; z = x; } else y = 0.5f*(x + z); } else if(b.z == 0.0f) { z = 0.5f*(x + y); } return make_float3(x, y, z); } /* Rotation of point around axis and angle */ ccl_device_inline float3 rotate_around_axis(float3 p, float3 axis, float angle) { float costheta = cosf(angle); float sintheta = sinf(angle); float3 r; r.x = ((costheta + (1 - costheta) * axis.x * axis.x) * p.x) + (((1 - costheta) * axis.x * axis.y - axis.z * sintheta) * p.y) + (((1 - costheta) * axis.x * axis.z + axis.y * sintheta) * p.z); r.y = (((1 - costheta) * axis.x * axis.y + axis.z * sintheta) * p.x) + ((costheta + (1 - costheta) * axis.y * axis.y) * p.y) + (((1 - costheta) * axis.y * axis.z - axis.x * sintheta) * p.z); r.z = (((1 - costheta) * axis.x * axis.z - axis.y * sintheta) * p.x) + (((1 - costheta) * axis.y * axis.z + axis.x * sintheta) * p.y) + ((costheta + (1 - costheta) * axis.z * axis.z) * p.z); return r; } /* NaN-safe math ops */ ccl_device_inline float safe_sqrtf(float f) { return sqrtf(max(f, 0.0f)); } ccl_device float safe_asinf(float a) { return asinf(clamp(a, -1.0f, 1.0f)); } ccl_device float safe_acosf(float a) { return acosf(clamp(a, -1.0f, 1.0f)); } ccl_device float compatible_powf(float x, float y) { #ifdef __KERNEL_GPU__ if(y == 0.0f) /* x^0 -> 1, including 0^0 */ return 1.0f; /* GPU pow doesn't accept negative x, do manual checks here */ if(x < 0.0f) { if(fmodf(-y, 2.0f) == 0.0f) return powf(-x, y); else return -powf(-x, y); } else if(x == 0.0f) return 0.0f; #endif return powf(x, y); } ccl_device float safe_powf(float a, float b) { if(UNLIKELY(a < 0.0f && b != float_to_int(b))) return 0.0f; return compatible_powf(a, b); } ccl_device float safe_divide(float a, float b) { return (b != 0.0f)? a/b: 0.0f; } ccl_device float safe_logf(float a, float b) { if(UNLIKELY(a <= 0.0f || b <= 0.0f)) return 0.0f; return safe_divide(logf(a),logf(b)); } ccl_device float safe_modulo(float a, float b) { return (b != 0.0f)? fmodf(a, b): 0.0f; } ccl_device_inline float beta(float x, float y) { #ifndef __KERNEL_OPENCL__ return expf(lgammaf(x) + lgammaf(y) - lgammaf(x+y)); #else return expf(lgamma(x) + lgamma(y) - lgamma(x+y)); #endif } ccl_device_inline float xor_signmask(float x, int y) { return __int_as_float(__float_as_int(x) ^ y); } /* projections */ ccl_device_inline float2 map_to_tube(const float3 co) { float len, u, v; len = sqrtf(co.x * co.x + co.y * co.y); if(len > 0.0f) { u = (1.0f - (atan2f(co.x / len, co.y / len) / M_PI_F)) * 0.5f; v = (co.z + 1.0f) * 0.5f; } else { u = v = 0.0f; } return make_float2(u, v); } ccl_device_inline float2 map_to_sphere(const float3 co) { float l = len(co); float u, v; if(l > 0.0f) { if(UNLIKELY(co.x == 0.0f && co.y == 0.0f)) { u = 0.0f; /* othwise domain error */ } else { u = (1.0f - atan2f(co.x, co.y) / M_PI_F) / 2.0f; } v = 1.0f - safe_acosf(co.z / l) / M_PI_F; } else { u = v = 0.0f; } return make_float2(u, v); } CCL_NAMESPACE_END #endif /* __UTIL_MATH_H__ */