// Gawain immediate mode work-alike // // This code is part of the Gawain library, with modifications // specific to integration with Blender. // // Copyright 2016 Mike Erwin // // This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of // the MPL was not distributed with this file, You can obtain one at https://mozilla.org/MPL/2.0/. #include "immediate.h" #include "buffer_id.h" #include "attrib_binding.h" #include "attrib_binding_private.h" #include "vertex_format_private.h" #include "primitive_private.h" #include // necessary functions from matrix API extern void gpuBindMatrices(const Gwn_ShaderInterface*); extern bool gpuMatricesDirty(void); typedef struct { // TODO: organize this struct by frequency of change (run-time) #if IMM_BATCH_COMBO Gwn_Batch* batch; #endif // current draw call GLubyte* buffer_data; unsigned buffer_offset; unsigned buffer_bytes_mapped; unsigned vertex_ct; bool strict_vertex_ct; Gwn_PrimType prim_type; Gwn_VertFormat vertex_format; // current vertex unsigned vertex_idx; GLubyte* vertex_data; uint16_t unassigned_attrib_bits; // which attributes of current vertex have not been given values? GLuint vbo_id; GLuint vao_id; GLuint bound_program; const Gwn_ShaderInterface* shader_interface; Gwn_AttrBinding attrib_binding; uint16_t prev_enabled_attrib_bits; // <-- only affects this VAO, so we're ok } Immediate; // size of internal buffer -- make this adjustable? #define IMM_BUFFER_SIZE (4 * 1024 * 1024) static bool initialized = false; static Immediate imm; void immInit(void) { #if TRUST_NO_ONE assert(!initialized); #endif memset(&imm, 0, sizeof(Immediate)); imm.vbo_id = GWN_buf_id_alloc(); glBindBuffer(GL_ARRAY_BUFFER, imm.vbo_id); glBufferData(GL_ARRAY_BUFFER, IMM_BUFFER_SIZE, NULL, GL_DYNAMIC_DRAW); imm.prim_type = GWN_PRIM_NONE; imm.strict_vertex_ct = true; glBindBuffer(GL_ARRAY_BUFFER, 0); initialized = true; immActivate(); } void immActivate(void) { #if TRUST_NO_ONE assert(initialized); assert(imm.prim_type == GWN_PRIM_NONE); // make sure we're not between a Begin/End pair assert(imm.vao_id == 0); #endif imm.vao_id = GWN_vao_alloc(); } void immDeactivate(void) { #if TRUST_NO_ONE assert(initialized); assert(imm.prim_type == GWN_PRIM_NONE); // make sure we're not between a Begin/End pair assert(imm.vao_id != 0); #endif GWN_vao_free(imm.vao_id); imm.vao_id = 0; imm.prev_enabled_attrib_bits = 0; } void immDestroy(void) { immDeactivate(); GWN_buf_id_free(imm.vbo_id); initialized = false; } Gwn_VertFormat* immVertexFormat(void) { GWN_vertformat_clear(&imm.vertex_format); return &imm.vertex_format; } void immBindProgram(GLuint program, const Gwn_ShaderInterface* shaderface) { #if TRUST_NO_ONE assert(imm.bound_program == 0); assert(glIsProgram(program)); #endif imm.bound_program = program; imm.shader_interface = shaderface; if (!imm.vertex_format.packed) VertexFormat_pack(&imm.vertex_format); glUseProgram(program); get_attrib_locations(&imm.vertex_format, &imm.attrib_binding, shaderface); gpuBindMatrices(shaderface); } void immUnbindProgram(void) { #if TRUST_NO_ONE assert(imm.bound_program != 0); #endif glUseProgram(0); imm.bound_program = 0; } #if TRUST_NO_ONE static bool vertex_count_makes_sense_for_primitive(unsigned vertex_ct, Gwn_PrimType prim_type) { // does vertex_ct make sense for this primitive type? if (vertex_ct == 0) return false; switch (prim_type) { case GWN_PRIM_POINTS: return true; case GWN_PRIM_LINES: return vertex_ct % 2 == 0; case GWN_PRIM_LINE_STRIP: case GWN_PRIM_LINE_LOOP: return vertex_ct >= 2; case GWN_PRIM_LINE_STRIP_ADJ: return vertex_ct >= 4; case GWN_PRIM_TRIS: return vertex_ct % 3 == 0; case GWN_PRIM_TRI_STRIP: case GWN_PRIM_TRI_FAN: return vertex_ct >= 3; default: return false; } } #endif void immBegin(Gwn_PrimType prim_type, unsigned vertex_ct) { #if TRUST_NO_ONE assert(initialized); assert(imm.prim_type == GWN_PRIM_NONE); // make sure we haven't already begun assert(vertex_count_makes_sense_for_primitive(vertex_ct, prim_type)); #endif imm.prim_type = prim_type; imm.vertex_ct = vertex_ct; imm.vertex_idx = 0; imm.unassigned_attrib_bits = imm.attrib_binding.enabled_bits; // how many bytes do we need for this draw call? const unsigned bytes_needed = vertex_buffer_size(&imm.vertex_format, vertex_ct); #if TRUST_NO_ONE assert(bytes_needed <= IMM_BUFFER_SIZE); #endif glBindBuffer(GL_ARRAY_BUFFER, imm.vbo_id); // does the current buffer have enough room? const unsigned available_bytes = IMM_BUFFER_SIZE - imm.buffer_offset; // ensure vertex data is aligned const unsigned pre_padding = padding(imm.buffer_offset, imm.vertex_format.stride); // might waste a little space, but it's safe if ((bytes_needed + pre_padding) <= available_bytes) imm.buffer_offset += pre_padding; else { // orphan this buffer & start with a fresh one #if 1 // this method works on all platforms, old & new glBufferData(GL_ARRAY_BUFFER, IMM_BUFFER_SIZE, NULL, GL_DYNAMIC_DRAW); #else // TODO: use other (more recent) methods after thorough testing if (GLEW_VERSION_4_3 || GLEW_ARB_invalidate_subdata) glInvalidateBufferData(imm.vbo_id); else { // glitches! // glMapBufferRange(GL_ARRAY_BUFFER, 0, IMM_BUFFER_SIZE, GL_MAP_INVALIDATE_BUFFER_BIT); // works // glMapBufferRange(GL_ARRAY_BUFFER, 0, IMM_BUFFER_SIZE, // GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT | GL_MAP_UNSYNCHRONIZED_BIT | GL_MAP_FLUSH_EXPLICIT_BIT); // glUnmapBuffer(GL_ARRAY_BUFFER); // also works glBufferData(GL_ARRAY_BUFFER, IMM_BUFFER_SIZE, NULL, GL_DYNAMIC_DRAW); } #endif imm.buffer_offset = 0; } // printf("mapping %u to %u\n", imm.buffer_offset, imm.buffer_offset + bytes_needed - 1); imm.buffer_data = glMapBufferRange(GL_ARRAY_BUFFER, imm.buffer_offset, bytes_needed, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT | (imm.strict_vertex_ct ? 0 : GL_MAP_FLUSH_EXPLICIT_BIT)); #if TRUST_NO_ONE assert(imm.buffer_data != NULL); #endif imm.buffer_bytes_mapped = bytes_needed; imm.vertex_data = imm.buffer_data; } void immBeginAtMost(Gwn_PrimType prim_type, unsigned vertex_ct) { #if TRUST_NO_ONE assert(vertex_ct > 0); #endif imm.strict_vertex_ct = false; immBegin(prim_type, vertex_ct); } #if IMM_BATCH_COMBO Gwn_Batch* immBeginBatch(Gwn_PrimType prim_type, unsigned vertex_ct) { #if TRUST_NO_ONE assert(initialized); assert(imm.prim_type == GWN_PRIM_NONE); // make sure we haven't already begun assert(vertex_count_makes_sense_for_primitive(vertex_ct, prim_type)); #endif imm.prim_type = prim_type; imm.vertex_ct = vertex_ct; imm.vertex_idx = 0; imm.unassigned_attrib_bits = imm.attrib_binding.enabled_bits; Gwn_VertBuf* verts = GWN_vertbuf_create_with_format(&imm.vertex_format); GWN_vertbuf_data_alloc(verts, vertex_ct); imm.buffer_bytes_mapped = GWN_vertbuf_size_get(verts); imm.vertex_data = verts->data; imm.batch = GWN_batch_create(prim_type, verts, NULL); imm.batch->phase = GWN_BATCH_BUILDING; GWN_batch_program_set(imm.batch, imm.bound_program, imm.shader_interface); return imm.batch; } Gwn_Batch* immBeginBatchAtMost(Gwn_PrimType prim_type, unsigned vertex_ct) { imm.strict_vertex_ct = false; return immBeginBatch(prim_type, vertex_ct); } #endif // IMM_BATCH_COMBO static void immDrawSetup(void) { // set up VAO -- can be done during Begin or End really glBindVertexArray(imm.vao_id); // enable/disable vertex attribs as needed if (imm.attrib_binding.enabled_bits != imm.prev_enabled_attrib_bits) { for (unsigned loc = 0; loc < GWN_VERT_ATTR_MAX_LEN; ++loc) { bool is_enabled = imm.attrib_binding.enabled_bits & (1 << loc); bool was_enabled = imm.prev_enabled_attrib_bits & (1 << loc); if (is_enabled && !was_enabled) { // printf("enabling attrib %u\n", loc); glEnableVertexAttribArray(loc); } else if (was_enabled && !is_enabled) { // printf("disabling attrib %u\n", loc); glDisableVertexAttribArray(loc); } } imm.prev_enabled_attrib_bits = imm.attrib_binding.enabled_bits; } const unsigned stride = imm.vertex_format.stride; for (unsigned a_idx = 0; a_idx < imm.vertex_format.attrib_ct; ++a_idx) { const Gwn_VertAttr* a = imm.vertex_format.attribs + a_idx; const unsigned offset = imm.buffer_offset + a->offset; const GLvoid* pointer = (const GLubyte*)0 + offset; const unsigned loc = read_attrib_location(&imm.attrib_binding, a_idx); // printf("specifying attrib %u '%s' with offset %u, stride %u\n", loc, a->name, offset, stride); switch (a->fetch_mode) { case GWN_FETCH_FLOAT: case GWN_FETCH_INT_TO_FLOAT: glVertexAttribPointer(loc, a->comp_ct, a->gl_comp_type, GL_FALSE, stride, pointer); break; case GWN_FETCH_INT_TO_FLOAT_UNIT: glVertexAttribPointer(loc, a->comp_ct, a->gl_comp_type, GL_TRUE, stride, pointer); break; case GWN_FETCH_INT: glVertexAttribIPointer(loc, a->comp_ct, a->gl_comp_type, stride, pointer); } } if (gpuMatricesDirty()) gpuBindMatrices(imm.shader_interface); } void immEnd(void) { #if TRUST_NO_ONE assert(imm.prim_type != GWN_PRIM_NONE); // make sure we're between a Begin/End pair #endif unsigned buffer_bytes_used; if (imm.strict_vertex_ct) { #if TRUST_NO_ONE assert(imm.vertex_idx == imm.vertex_ct); // with all vertices defined #endif buffer_bytes_used = imm.buffer_bytes_mapped; } else { #if TRUST_NO_ONE assert(imm.vertex_idx <= imm.vertex_ct); #endif // printf("used %u of %u verts,", imm.vertex_idx, imm.vertex_ct); if (imm.vertex_idx == imm.vertex_ct) { buffer_bytes_used = imm.buffer_bytes_mapped; } else { #if TRUST_NO_ONE assert(imm.vertex_idx == 0 || vertex_count_makes_sense_for_primitive(imm.vertex_idx, imm.prim_type)); #endif imm.vertex_ct = imm.vertex_idx; buffer_bytes_used = vertex_buffer_size(&imm.vertex_format, imm.vertex_ct); // unused buffer bytes are available to the next immBegin // printf(" %u of %u bytes\n", buffer_bytes_used, imm.buffer_bytes_mapped); } // tell OpenGL what range was modified so it doesn't copy the whole mapped range // printf("flushing %u to %u\n", imm.buffer_offset, imm.buffer_offset + buffer_bytes_used - 1); glFlushMappedBufferRange(GL_ARRAY_BUFFER, 0, buffer_bytes_used); } #if IMM_BATCH_COMBO if (imm.batch) { if (buffer_bytes_used != imm.buffer_bytes_mapped) { GWN_vertbuf_data_resize(imm.batch->verts[0], imm.vertex_ct); // TODO: resize only if vertex count is much smaller } imm.batch->phase = GWN_BATCH_READY_TO_DRAW; imm.batch = NULL; // don't free, batch belongs to caller } else #endif { glUnmapBuffer(GL_ARRAY_BUFFER); if (imm.vertex_ct > 0) { immDrawSetup(); glDrawArrays(convert_prim_type_to_gl(imm.prim_type), 0, imm.vertex_ct); } glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); // prep for next immBegin imm.buffer_offset += buffer_bytes_used; } // prep for next immBegin imm.prim_type = GWN_PRIM_NONE; imm.strict_vertex_ct = true; } static void setAttribValueBit(unsigned attrib_id) { uint16_t mask = 1 << attrib_id; #if TRUST_NO_ONE assert(imm.unassigned_attrib_bits & mask); // not already set #endif imm.unassigned_attrib_bits &= ~mask; } // --- generic attribute functions --- void immAttrib1f(unsigned attrib_id, float x) { Gwn_VertAttr* attrib = imm.vertex_format.attribs + attrib_id; #if TRUST_NO_ONE assert(attrib_id < imm.vertex_format.attrib_ct); assert(attrib->comp_type == GWN_COMP_F32); assert(attrib->comp_ct == 1); assert(imm.vertex_idx < imm.vertex_ct); assert(imm.prim_type != GWN_PRIM_NONE); // make sure we're between a Begin/End pair #endif setAttribValueBit(attrib_id); float* data = (float*)(imm.vertex_data + attrib->offset); // printf("%s %td %p\n", __FUNCTION__, (GLubyte*)data - imm.buffer_data, data); data[0] = x; } void immAttrib2f(unsigned attrib_id, float x, float y) { Gwn_VertAttr* attrib = imm.vertex_format.attribs + attrib_id; #if TRUST_NO_ONE assert(attrib_id < imm.vertex_format.attrib_ct); assert(attrib->comp_type == GWN_COMP_F32); assert(attrib->comp_ct == 2); assert(imm.vertex_idx < imm.vertex_ct); assert(imm.prim_type != GWN_PRIM_NONE); // make sure we're between a Begin/End pair #endif setAttribValueBit(attrib_id); float* data = (float*)(imm.vertex_data + attrib->offset); // printf("%s %td %p\n", __FUNCTION__, (GLubyte*)data - imm.buffer_data, data); data[0] = x; data[1] = y; } void immAttrib3f(unsigned attrib_id, float x, float y, float z) { Gwn_VertAttr* attrib = imm.vertex_format.attribs + attrib_id; #if TRUST_NO_ONE assert(attrib_id < imm.vertex_format.attrib_ct); assert(attrib->comp_type == GWN_COMP_F32); assert(attrib->comp_ct == 3); assert(imm.vertex_idx < imm.vertex_ct); assert(imm.prim_type != GWN_PRIM_NONE); // make sure we're between a Begin/End pair #endif setAttribValueBit(attrib_id); float* data = (float*)(imm.vertex_data + attrib->offset); // printf("%s %td %p\n", __FUNCTION__, (GLubyte*)data - imm.buffer_data, data); data[0] = x; data[1] = y; data[2] = z; } void immAttrib4f(unsigned attrib_id, float x, float y, float z, float w) { Gwn_VertAttr* attrib = imm.vertex_format.attribs + attrib_id; #if TRUST_NO_ONE assert(attrib_id < imm.vertex_format.attrib_ct); assert(attrib->comp_type == GWN_COMP_F32); assert(attrib->comp_ct == 4); assert(imm.vertex_idx < imm.vertex_ct); assert(imm.prim_type != GWN_PRIM_NONE); // make sure we're between a Begin/End pair #endif setAttribValueBit(attrib_id); float* data = (float*)(imm.vertex_data + attrib->offset); // printf("%s %td %p\n", __FUNCTION__, (GLubyte*)data - imm.buffer_data, data); data[0] = x; data[1] = y; data[2] = z; data[3] = w; } void immAttrib1u(unsigned attrib_id, unsigned x) { Gwn_VertAttr* attrib = imm.vertex_format.attribs + attrib_id; #if TRUST_NO_ONE assert(attrib_id < imm.vertex_format.attrib_ct); assert(attrib->comp_type == GWN_COMP_U32); assert(attrib->comp_ct == 1); assert(imm.vertex_idx < imm.vertex_ct); assert(imm.prim_type != GWN_PRIM_NONE); // make sure we're between a Begin/End pair #endif setAttribValueBit(attrib_id); unsigned* data = (unsigned*)(imm.vertex_data + attrib->offset); data[0] = x; } void immAttrib2i(unsigned attrib_id, int x, int y) { Gwn_VertAttr* attrib = imm.vertex_format.attribs + attrib_id; #if TRUST_NO_ONE assert(attrib_id < imm.vertex_format.attrib_ct); assert(attrib->comp_type == GWN_COMP_I32); assert(attrib->comp_ct == 2); assert(imm.vertex_idx < imm.vertex_ct); assert(imm.prim_type != GWN_PRIM_NONE); // make sure we're between a Begin/End pair #endif setAttribValueBit(attrib_id); int* data = (int*)(imm.vertex_data + attrib->offset); data[0] = x; data[1] = y; } void immAttrib2s(unsigned attrib_id, short x, short y) { Gwn_VertAttr* attrib = imm.vertex_format.attribs + attrib_id; #if TRUST_NO_ONE assert(attrib_id < imm.vertex_format.attrib_ct); assert(attrib->comp_type == GWN_COMP_I16); assert(attrib->comp_ct == 2); assert(imm.vertex_idx < imm.vertex_ct); assert(imm.prim_type != GWN_PRIM_NONE); // make sure we're between a Begin/End pair #endif setAttribValueBit(attrib_id); short* data = (short*)(imm.vertex_data + attrib->offset); data[0] = x; data[1] = y; } void immAttrib2fv(unsigned attrib_id, const float data[2]) { immAttrib2f(attrib_id, data[0], data[1]); } void immAttrib3fv(unsigned attrib_id, const float data[3]) { immAttrib3f(attrib_id, data[0], data[1], data[2]); } void immAttrib4fv(unsigned attrib_id, const float data[4]) { immAttrib4f(attrib_id, data[0], data[1], data[2], data[3]); } void immAttrib3ub(unsigned attrib_id, unsigned char r, unsigned char g, unsigned char b) { Gwn_VertAttr* attrib = imm.vertex_format.attribs + attrib_id; #if TRUST_NO_ONE assert(attrib_id < imm.vertex_format.attrib_ct); assert(attrib->comp_type == GWN_COMP_U8); assert(attrib->comp_ct == 3); assert(imm.vertex_idx < imm.vertex_ct); assert(imm.prim_type != GWN_PRIM_NONE); // make sure we're between a Begin/End pair #endif setAttribValueBit(attrib_id); GLubyte* data = imm.vertex_data + attrib->offset; // printf("%s %td %p\n", __FUNCTION__, data - imm.buffer_data, data); data[0] = r; data[1] = g; data[2] = b; } void immAttrib4ub(unsigned attrib_id, unsigned char r, unsigned char g, unsigned char b, unsigned char a) { Gwn_VertAttr* attrib = imm.vertex_format.attribs + attrib_id; #if TRUST_NO_ONE assert(attrib_id < imm.vertex_format.attrib_ct); assert(attrib->comp_type == GWN_COMP_U8); assert(attrib->comp_ct == 4); assert(imm.vertex_idx < imm.vertex_ct); assert(imm.prim_type != GWN_PRIM_NONE); // make sure we're between a Begin/End pair #endif setAttribValueBit(attrib_id); GLubyte* data = imm.vertex_data + attrib->offset; // printf("%s %td %p\n", __FUNCTION__, data - imm.buffer_data, data); data[0] = r; data[1] = g; data[2] = b; data[3] = a; } void immAttrib3ubv(unsigned attrib_id, const unsigned char data[3]) { immAttrib3ub(attrib_id, data[0], data[1], data[2]); } void immAttrib4ubv(unsigned attrib_id, const unsigned char data[4]) { immAttrib4ub(attrib_id, data[0], data[1], data[2], data[3]); } void immSkipAttrib(unsigned attrib_id) { #if TRUST_NO_ONE assert(attrib_id < imm.vertex_format.attrib_ct); assert(imm.vertex_idx < imm.vertex_ct); assert(imm.prim_type != GWN_PRIM_NONE); // make sure we're between a Begin/End pair #endif setAttribValueBit(attrib_id); } static void immEndVertex(void) // and move on to the next vertex { #if TRUST_NO_ONE assert(imm.prim_type != GWN_PRIM_NONE); // make sure we're between a Begin/End pair assert(imm.vertex_idx < imm.vertex_ct); #endif // have all attribs been assigned values? // if not, copy value from previous vertex if (imm.unassigned_attrib_bits) { #if TRUST_NO_ONE assert(imm.vertex_idx > 0); // first vertex must have all attribs specified #endif for (unsigned a_idx = 0; a_idx < imm.vertex_format.attrib_ct; ++a_idx) { if ((imm.unassigned_attrib_bits >> a_idx) & 1) { const Gwn_VertAttr* a = imm.vertex_format.attribs + a_idx; // printf("copying %s from vertex %u to %u\n", a->name, imm.vertex_idx - 1, imm.vertex_idx); GLubyte* data = imm.vertex_data + a->offset; memcpy(data, data - imm.vertex_format.stride, a->sz); // TODO: consolidate copy of adjacent attributes } } } imm.vertex_idx++; imm.vertex_data += imm.vertex_format.stride; imm.unassigned_attrib_bits = imm.attrib_binding.enabled_bits; } void immVertex2f(unsigned attrib_id, float x, float y) { immAttrib2f(attrib_id, x, y); immEndVertex(); } void immVertex3f(unsigned attrib_id, float x, float y, float z) { immAttrib3f(attrib_id, x, y, z); immEndVertex(); } void immVertex2i(unsigned attrib_id, int x, int y) { immAttrib2i(attrib_id, x, y); immEndVertex(); } void immVertex2s(unsigned attrib_id, short x, short y) { immAttrib2s(attrib_id, x, y); immEndVertex(); } void immVertex2fv(unsigned attrib_id, const float data[2]) { immAttrib2f(attrib_id, data[0], data[1]); immEndVertex(); } void immVertex3fv(unsigned attrib_id, const float data[3]) { immAttrib3f(attrib_id, data[0], data[1], data[2]); immEndVertex(); } void immVertex2iv(unsigned attrib_id, const int data[2]) { immAttrib2i(attrib_id, data[0], data[1]); immEndVertex(); } // --- generic uniform functions --- #if 0 #if TRUST_NO_ONE #define GET_UNIFORM const Gwn_ShaderInput* uniform = GWN_shaderinterface_uniform(imm.shader_interface, name); assert(uniform); #else #define GET_UNIFORM const Gwn_ShaderInput* uniform = GWN_shaderinterface_uniform(imm.shader_interface, name); #endif #else // NOTE: It is possible to have uniform fully optimized out from the shader. // In this case we can't assert failure or allow NULL-pointer dereference. // TODO(sergey): How can we detect existing-but-optimized-out uniform but still // catch typos in uniform names passed to immUniform*() functions? #define GET_UNIFORM const Gwn_ShaderInput* uniform = GWN_shaderinterface_uniform(imm.shader_interface, name); if (uniform == NULL) return; #endif void immUniform1f(const char* name, float x) { GET_UNIFORM glUniform1f(uniform->location, x); } void immUniform2f(const char* name, float x, float y) { GET_UNIFORM glUniform2f(uniform->location, x, y); } void immUniform2fv(const char* name, const float data[2]) { GET_UNIFORM glUniform2fv(uniform->location, 1, data); } void immUniform3f(const char* name, float x, float y, float z) { GET_UNIFORM glUniform3f(uniform->location, x, y, z); } void immUniform3fv(const char* name, const float data[3]) { GET_UNIFORM glUniform3fv(uniform->location, 1, data); } // can increase this limit or move to another file #define MAX_UNIFORM_NAME_LEN 60 void immUniformArray3fv(const char* bare_name, const float *data, int count) { // look up "name[0]" when given "name" const size_t len = strlen(bare_name); #if TRUST_NO_ONE assert(len <= MAX_UNIFORM_NAME_LEN); #endif char name[MAX_UNIFORM_NAME_LEN]; strcpy(name, bare_name); name[len + 0] = '['; name[len + 1] = '0'; name[len + 2] = ']'; name[len + 3] = '\0'; GET_UNIFORM glUniform3fv(uniform->location, count, data); } void immUniform4f(const char* name, float x, float y, float z, float w) { GET_UNIFORM glUniform4f(uniform->location, x, y, z, w); } void immUniform4fv(const char* name, const float data[4]) { GET_UNIFORM glUniform4fv(uniform->location, 1, data); } void immUniformArray4fv(const char* bare_name, const float *data, int count) { // look up "name[0]" when given "name" const size_t len = strlen(bare_name); #if TRUST_NO_ONE assert(len <= MAX_UNIFORM_NAME_LEN); #endif char name[MAX_UNIFORM_NAME_LEN]; strcpy(name, bare_name); name[len + 0] = '['; name[len + 1] = '0'; name[len + 2] = ']'; name[len + 3] = '\0'; GET_UNIFORM glUniform4fv(uniform->location, count, data); } void immUniformMatrix4fv(const char* name, const float data[4][4]) { GET_UNIFORM glUniformMatrix4fv(uniform->location, 1, GL_FALSE, (float *)data); } void immUniform1i(const char* name, int x) { GET_UNIFORM glUniform1i(uniform->location, x); } void immUniform4iv(const char* name, const int data[4]) { GET_UNIFORM glUniform4iv(uniform->location, 1, data); } // --- convenience functions for setting "uniform vec4 color" --- void immUniformColor4f(float r, float g, float b, float a) { const Gwn_ShaderInput* uniform = GWN_shaderinterface_uniform_builtin(imm.shader_interface, GWN_UNIFORM_COLOR); #if TRUST_NO_ONE assert(uniform != NULL); #endif glUniform4f(uniform->location, r, g, b, a); } void immUniformColor4fv(const float rgba[4]) { immUniformColor4f(rgba[0], rgba[1], rgba[2], rgba[3]); } void immUniformColor3f(float r, float g, float b) { immUniformColor4f(r, g, b, 1.0f); } void immUniformColor3fv(const float rgb[3]) { immUniformColor4f(rgb[0], rgb[1], rgb[2], 1.0f); } void immUniformColor3fvAlpha(const float rgb[3], float a) { immUniformColor4f(rgb[0], rgb[1], rgb[2], a); } // TODO: v-- treat as sRGB? --v void immUniformColor3ub(unsigned char r, unsigned char g, unsigned char b) { const float scale = 1.0f / 255.0f; immUniformColor4f(scale * r, scale * g, scale * b, 1.0f); } void immUniformColor4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a) { const float scale = 1.0f / 255.0f; immUniformColor4f(scale * r, scale * g, scale * b, scale * a); } void immUniformColor3ubv(const unsigned char rgb[3]) { immUniformColor3ub(rgb[0], rgb[1], rgb[2]); } void immUniformColor3ubvAlpha(const unsigned char rgb[3], unsigned char alpha) { immUniformColor4ub(rgb[0], rgb[1], rgb[2], alpha); } void immUniformColor4ubv(const unsigned char rgba[4]) { immUniformColor4ub(rgba[0], rgba[1], rgba[2], rgba[3]); }