/* SPDX-License-Identifier: GPL-2.0-or-later */ /** \file * \ingroup intern_memutil */ #ifndef __MEM_CACHELIMITER_H__ #define __MEM_CACHELIMITER_H__ /** * \section MEM_CacheLimiter * This class defines a generic memory cache management system * to limit memory usage to a fixed global maximum. * * \note Please use the C-API in MEM_CacheLimiterC-Api.h for code written in C. * * Usage example: * * \code{.cpp} * class BigFatImage { * public: * ~BigFatImage() { tell_everyone_we_are_gone(this); } * }; * * void doit() * { * MEM_Cache BigFatImages; * * MEM_Cache_Handle* h = BigFatImages.insert(new BigFatImage); * * BigFatImages.enforce_limits(); * h->ref(); * * // work with image... * * h->unref(); * * // leave image in cache. * \endcode */ #include "MEM_Allocator.h" #include #include #include template class MEM_CacheLimiter; #ifndef __MEM_CACHELIMITERC_API_H__ extern "C" { void MEM_CacheLimiter_set_maximum(size_t m); size_t MEM_CacheLimiter_get_maximum(); void MEM_CacheLimiter_set_disabled(bool disabled); bool MEM_CacheLimiter_is_disabled(void); }; #endif template class MEM_CacheLimiterHandle { public: explicit MEM_CacheLimiterHandle(T *data_, MEM_CacheLimiter *parent_) : data(data_), refcount(0), parent(parent_) { } void ref() { refcount++; } void unref() { refcount--; } T *get() { return data; } const T *get() const { return data; } int get_refcount() const { return refcount; } bool can_destroy() const { return !data || !refcount; } bool destroy_if_possible() { if (can_destroy()) { delete data; data = NULL; unmanage(); return true; } return false; } void unmanage() { parent->unmanage(this); } void touch() { parent->touch(this); } private: friend class MEM_CacheLimiter; T *data; int refcount; int pos; MEM_CacheLimiter *parent; }; template class MEM_CacheLimiter { public: typedef size_t (*MEM_CacheLimiter_DataSize_Func)(void *data); typedef int (*MEM_CacheLimiter_ItemPriority_Func)(void *item, int default_priority); typedef bool (*MEM_CacheLimiter_ItemDestroyable_Func)(void *item); MEM_CacheLimiter(MEM_CacheLimiter_DataSize_Func data_size_func) : data_size_func(data_size_func) { } ~MEM_CacheLimiter() { int i; for (i = 0; i < queue.size(); i++) { delete queue[i]; } } MEM_CacheLimiterHandle *insert(T *elem) { queue.push_back(new MEM_CacheLimiterHandle(elem, this)); queue.back()->pos = queue.size() - 1; return queue.back(); } void unmanage(MEM_CacheLimiterHandle *handle) { int pos = handle->pos; queue[pos] = queue.back(); queue[pos]->pos = pos; queue.pop_back(); delete handle; } size_t get_memory_in_use() { size_t size = 0; if (data_size_func) { int i; for (i = 0; i < queue.size(); i++) { size += data_size_func(queue[i]->get()->get_data()); } } else { size = MEM_get_memory_in_use(); } return size; } void enforce_limits() { size_t max = MEM_CacheLimiter_get_maximum(); bool is_disabled = MEM_CacheLimiter_is_disabled(); size_t mem_in_use, cur_size; if (is_disabled) { return; } if (max == 0) { return; } mem_in_use = get_memory_in_use(); if (mem_in_use <= max) { return; } while (!queue.empty() && mem_in_use > max) { MEM_CacheElementPtr elem = get_least_priority_destroyable_element(); if (!elem) break; if (data_size_func) { cur_size = data_size_func(elem->get()->get_data()); } else { cur_size = mem_in_use; } if (elem->destroy_if_possible()) { if (data_size_func) { mem_in_use -= cur_size; } else { mem_in_use -= cur_size - MEM_get_memory_in_use(); } } } } void touch(MEM_CacheLimiterHandle *handle) { /* If we're using custom priority callback re-arranging the queue * doesn't make much sense because we'll iterate it all to get * least priority element anyway. */ if (item_priority_func == NULL) { queue[handle->pos] = queue.back(); queue[handle->pos]->pos = handle->pos; queue.pop_back(); queue.push_back(handle); handle->pos = queue.size() - 1; } } void set_item_priority_func(MEM_CacheLimiter_ItemPriority_Func item_priority_func) { this->item_priority_func = item_priority_func; } void set_item_destroyable_func(MEM_CacheLimiter_ItemDestroyable_Func item_destroyable_func) { this->item_destroyable_func = item_destroyable_func; } private: typedef MEM_CacheLimiterHandle *MEM_CacheElementPtr; typedef std::vector> MEM_CacheQueue; typedef typename MEM_CacheQueue::iterator iterator; /* Check whether element can be destroyed when enforcing cache limits */ bool can_destroy_element(MEM_CacheElementPtr &elem) { if (!elem->can_destroy()) { /* Element is referenced */ return false; } if (item_destroyable_func) { if (!item_destroyable_func(elem->get()->get_data())) return false; } return true; } MEM_CacheElementPtr get_least_priority_destroyable_element(void) { if (queue.empty()) return NULL; MEM_CacheElementPtr best_match_elem = NULL; if (!item_priority_func) { for (iterator it = queue.begin(); it != queue.end(); it++) { MEM_CacheElementPtr elem = *it; if (!can_destroy_element(elem)) continue; best_match_elem = elem; break; } } else { int best_match_priority = 0; int i; for (i = 0; i < queue.size(); i++) { MEM_CacheElementPtr elem = queue[i]; if (!can_destroy_element(elem)) continue; /* By default 0 means highest priority element. */ /* Casting a size type to int is questionable, * but unlikely to cause problems. */ int priority = -((int)(queue.size()) - i - 1); priority = item_priority_func(elem->get()->get_data(), priority); if (priority < best_match_priority || best_match_elem == NULL) { best_match_priority = priority; best_match_elem = elem; } } } return best_match_elem; } MEM_CacheQueue queue; MEM_CacheLimiter_DataSize_Func data_size_func; MEM_CacheLimiter_ItemPriority_Func item_priority_func; MEM_CacheLimiter_ItemDestroyable_Func item_destroyable_func; }; #endif // __MEM_CACHELIMITER_H__