/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Contributor(s): Peter Schlaile 2005 * * ***** END GPL LICENSE BLOCK ***** */ /** \file memutil/MEM_CacheLimiter.h * \ingroup memutil */ #ifndef __MEM_CACHELIMITER_H__ #define __MEM_CACHELIMITER_H__ /** * @section MEM_CacheLimiter * This class defines a generic memory cache management system * to limit memory usage to a fixed global maximum. * * Please use the C-API in MEM_CacheLimiterC-Api.h for code written in C. * * Usage example: * * class BigFatImage { * public: * ~BigFatImage() { tell_everyone_we_are_gone(this); } * }; * * void doit() { * MEM_Cache BigFatImages; * * MEM_Cache_Handle* h = BigFatImages.insert(new BigFatImage); * * BigFatImages.enforce_limits(); * h->ref(); * * work with image... * * h->unref(); * * leave image in cache. */ #include #include #include #include "MEM_Allocator.h" template class MEM_CacheLimiter; #ifndef __MEM_CACHELIMITERC_API_H__ extern "C" { void MEM_CacheLimiter_set_maximum(size_t m); size_t MEM_CacheLimiter_get_maximum(); }; #endif template class MEM_CacheLimiterHandle { public: explicit MEM_CacheLimiterHandle(T * data_,MEM_CacheLimiter *parent_) : data(data_), refcount(0), parent(parent_) { } void ref() { refcount++; } void unref() { refcount--; } T *get() { return data; } const T *get() const { return data; } int get_refcount() const { return refcount; } bool can_destroy() const { return !data || !refcount; } bool destroy_if_possible() { if (can_destroy()) { delete data; data = 0; unmanage(); return true; } return false; } void unmanage() { parent->unmanage(this); } void touch() { parent->touch(this); } void set_priority(int priority) { this->priority = priority; } int get_priority(void) { return this->priority; } private: friend class MEM_CacheLimiter; T * data; int refcount; int priority; typename std::list *, MEM_Allocator *> >::iterator me; MEM_CacheLimiter * parent; }; template class MEM_CacheLimiter { public: typedef size_t (*MEM_CacheLimiter_DataSize_Func) (void *data); typedef int (*MEM_CacheLimiter_ItemPriority_Func) (void *item, int default_priority); MEM_CacheLimiter(MEM_CacheLimiter_DataSize_Func getDataSize_) : getDataSize(getDataSize_) { } ~MEM_CacheLimiter() { for (iterator it = queue.begin(); it != queue.end(); it++) { delete *it; } } MEM_CacheLimiterHandle *insert(T * elem) { queue.push_back(new MEM_CacheLimiterHandle(elem, this)); iterator it = queue.end(); --it; queue.back()->me = it; return queue.back(); } void unmanage(MEM_CacheLimiterHandle *handle) { queue.erase(handle->me); delete handle; } void enforce_limits() { MEM_CachePriorityQueue priority_queue; size_t max = MEM_CacheLimiter_get_maximum(); size_t mem_in_use, cur_size; if (max == 0) { return; } if(getDataSize) { mem_in_use = total_size(); } else { mem_in_use = MEM_get_memory_in_use(); } if (mem_in_use <= max) { return; } priority_queue = get_priority_queue(); while (!priority_queue.empty() && mem_in_use > max) { MEM_CacheElementPtr elem = priority_queue.top(); priority_queue.pop(); if(getDataSize) { cur_size = getDataSize(elem->get()->get_data()); } else { cur_size = mem_in_use; } if (elem->destroy_if_possible()) { if (getDataSize) { mem_in_use -= cur_size; } else { mem_in_use -= cur_size - MEM_get_memory_in_use(); } } } } void touch(MEM_CacheLimiterHandle * handle) { queue.push_back(handle); queue.erase(handle->me); iterator it = queue.end(); --it; handle->me = it; } void set_item_priority_func(MEM_CacheLimiter_ItemPriority_Func item_priority_func) { getItemPriority = item_priority_func; } private: typedef MEM_CacheLimiterHandle *MEM_CacheElementPtr; typedef std::list > MEM_CacheQueue; typedef typename MEM_CacheQueue::iterator iterator; struct compare_element_priority : public std::binary_function { bool operator()(const MEM_CacheElementPtr left_elem, const MEM_CacheElementPtr right_elem) const { return left_elem->get_priority() > right_elem->get_priority(); } }; typedef std::priority_queue, compare_element_priority > MEM_CachePriorityQueue; size_t total_size() { size_t size = 0; for (iterator it = queue.begin(); it != queue.end(); it++) { size+= getDataSize((*it)->get()->get_data()); } return size; } MEM_CachePriorityQueue get_priority_queue(void) { MEM_CachePriorityQueue priority_queue; iterator it; int i; for (it = queue.begin(), i = 0; it != queue.end(); it++, i++) { MEM_CacheElementPtr elem = *it; int priority; /* by default 0 means higherst priority element */ priority = -(queue.size() - i - 1); if (getItemPriority) { priority = getItemPriority(elem->get()->get_data(), priority); } elem->set_priority(priority); priority_queue.push(elem); } return priority_queue; } MEM_CacheQueue queue; MEM_CacheLimiter_DataSize_Func getDataSize; MEM_CacheLimiter_ItemPriority_Func getItemPriority; }; #endif // __MEM_CACHELIMITER_H__