/* SPDX-License-Identifier: GPL-2.0-or-later * Copyright 2013 Blender Foundation. All rights reserved. */ /** \file * \ingroup intern_rigidbody * \brief Rigid Body API implementation for Bullet */ /* * Bullet Continuous Collision Detection and Physics Library * Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ * * This software is provided 'as-is', without any express or implied warranty. In no event will the * authors be held liable for any damages arising from the use of this software. Permission is * granted to anyone to use this software for any purpose, including commercial applications, and * to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you wrote the * original software. If you use this software in a product, an acknowledgment in the product * documentation would be appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be misrepresented as * being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file defines the "RigidBody interface" for the * Bullet Physics Engine. This API is designed to be used * from C-code in Blender as part of the Rigid Body simulation * system. * * It is based on the Bullet C-API, but is heavily modified to * give access to more data types and to offer a nicer interface. * * -- Joshua Leung, June 2010 */ #include #include #include "RBI_api.h" #include "btBulletDynamicsCommon.h" #include "LinearMath/btConvexHullComputer.h" #include "LinearMath/btMatrix3x3.h" #include "LinearMath/btScalar.h" #include "LinearMath/btTransform.h" #include "LinearMath/btVector3.h" #include "BulletCollision/CollisionShapes/btScaledBvhTriangleMeshShape.h" #include "BulletCollision/Gimpact/btGImpactCollisionAlgorithm.h" #include "BulletCollision/Gimpact/btGImpactShape.h" struct rbDynamicsWorld { btDiscreteDynamicsWorld *dynamicsWorld; btDefaultCollisionConfiguration *collisionConfiguration; btDispatcher *dispatcher; btBroadphaseInterface *pairCache; btConstraintSolver *constraintSolver; btOverlapFilterCallback *filterCallback; }; struct rbRigidBody { btRigidBody *body; int col_groups; }; struct rbVert { btScalar x, y, z; }; struct rbTri { int v0, v1, v2; }; struct rbMeshData { btTriangleIndexVertexArray *index_array; rbVert *vertices; rbTri *triangles; int num_vertices; int num_triangles; }; struct rbCollisionShape { btCollisionShape *cshape; rbMeshData *mesh; rbCollisionShape **compoundChildShapes; int compoundChilds; }; struct rbFilterCallback : public btOverlapFilterCallback { virtual bool needBroadphaseCollision(btBroadphaseProxy *proxy0, btBroadphaseProxy *proxy1) const { rbRigidBody *rb0 = (rbRigidBody *)((btRigidBody *)proxy0->m_clientObject)->getUserPointer(); rbRigidBody *rb1 = (rbRigidBody *)((btRigidBody *)proxy1->m_clientObject)->getUserPointer(); bool collides; collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0; collides = collides && (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask); collides = collides && (rb0->col_groups & rb1->col_groups); return collides; } }; static inline void copy_v3_btvec3(float vec[3], const btVector3 &btvec) { vec[0] = (float)btvec[0]; vec[1] = (float)btvec[1]; vec[2] = (float)btvec[2]; } static inline void copy_quat_btquat(float quat[4], const btQuaternion &btquat) { quat[0] = btquat.getW(); quat[1] = btquat.getX(); quat[2] = btquat.getY(); quat[3] = btquat.getZ(); } /* ********************************** */ /* Dynamics World Methods */ /* Setup ---------------------------- */ rbDynamicsWorld *RB_dworld_new(const float gravity[3]) { rbDynamicsWorld *world = new rbDynamicsWorld; /* collision detection/handling */ world->collisionConfiguration = new btDefaultCollisionConfiguration(); world->dispatcher = new btCollisionDispatcher(world->collisionConfiguration); btGImpactCollisionAlgorithm::registerAlgorithm((btCollisionDispatcher *)world->dispatcher); world->pairCache = new btDbvtBroadphase(); world->filterCallback = new rbFilterCallback(); world->pairCache->getOverlappingPairCache()->setOverlapFilterCallback(world->filterCallback); /* constraint solving */ world->constraintSolver = new btSequentialImpulseConstraintSolver(); /* world */ world->dynamicsWorld = new btDiscreteDynamicsWorld( world->dispatcher, world->pairCache, world->constraintSolver, world->collisionConfiguration); RB_dworld_set_gravity(world, gravity); return world; } void RB_dworld_delete(rbDynamicsWorld *world) { /* bullet doesn't like if we free these in a different order */ delete world->dynamicsWorld; delete world->constraintSolver; delete world->pairCache; delete world->dispatcher; delete world->collisionConfiguration; delete world->filterCallback; delete world; } /* Settings ------------------------- */ /* Gravity */ void RB_dworld_get_gravity(rbDynamicsWorld *world, float g_out[3]) { copy_v3_btvec3(g_out, world->dynamicsWorld->getGravity()); } void RB_dworld_set_gravity(rbDynamicsWorld *world, const float g_in[3]) { world->dynamicsWorld->setGravity(btVector3(g_in[0], g_in[1], g_in[2])); } /* Constraint Solver */ void RB_dworld_set_solver_iterations(rbDynamicsWorld *world, int num_solver_iterations) { btContactSolverInfo &info = world->dynamicsWorld->getSolverInfo(); info.m_numIterations = num_solver_iterations; } /* Split Impulse */ void RB_dworld_set_split_impulse(rbDynamicsWorld *world, int split_impulse) { btContactSolverInfo &info = world->dynamicsWorld->getSolverInfo(); info.m_splitImpulse = split_impulse; } /* Simulation ----------------------- */ void RB_dworld_step_simulation(rbDynamicsWorld *world, float timeStep, int maxSubSteps, float timeSubStep) { world->dynamicsWorld->stepSimulation(timeStep, maxSubSteps, timeSubStep); } /* Export -------------------------- */ /** * Exports entire dynamics world to Bullet's "*.bullet" binary format * which is similar to Blender's SDNA system. * * \param world: Dynamics world to write to file * \param filename: Assumed to be a valid filename, with .bullet extension */ void RB_dworld_export(rbDynamicsWorld *world, const char *filename) { // create a large enough buffer. There is no method to pre-calculate the buffer size yet. int maxSerializeBufferSize = 1024 * 1024 * 5; btDefaultSerializer *serializer = new btDefaultSerializer(maxSerializeBufferSize); world->dynamicsWorld->serialize(serializer); FILE *file = fopen(filename, "wb"); if (file) { fwrite(serializer->getBufferPointer(), serializer->getCurrentBufferSize(), 1, file); fclose(file); } else { fprintf(stderr, "RB_dworld_export: %s\n", strerror(errno)); } } /* ********************************** */ /* Rigid Body Methods */ /* Setup ---------------------------- */ void RB_dworld_add_body(rbDynamicsWorld *world, rbRigidBody *object, int col_groups) { btRigidBody *body = object->body; object->col_groups = col_groups; world->dynamicsWorld->addRigidBody(body); } void RB_dworld_remove_body(rbDynamicsWorld *world, rbRigidBody *object) { btRigidBody *body = object->body; world->dynamicsWorld->removeRigidBody(body); } /* Collision detection */ void RB_world_convex_sweep_test(rbDynamicsWorld *world, rbRigidBody *object, const float loc_start[3], const float loc_end[3], float v_location[3], float v_hitpoint[3], float v_normal[3], int *r_hit) { btRigidBody *body = object->body; btCollisionShape *collisionShape = body->getCollisionShape(); /* only convex shapes are supported, but user can specify a non convex shape */ if (collisionShape->isConvex()) { btCollisionWorld::ClosestConvexResultCallback result( btVector3(loc_start[0], loc_start[1], loc_start[2]), btVector3(loc_end[0], loc_end[1], loc_end[2])); btQuaternion obRot = body->getWorldTransform().getRotation(); btTransform rayFromTrans; rayFromTrans.setIdentity(); rayFromTrans.setRotation(obRot); rayFromTrans.setOrigin(btVector3(loc_start[0], loc_start[1], loc_start[2])); btTransform rayToTrans; rayToTrans.setIdentity(); rayToTrans.setRotation(obRot); rayToTrans.setOrigin(btVector3(loc_end[0], loc_end[1], loc_end[2])); world->dynamicsWorld->convexSweepTest( (btConvexShape *)collisionShape, rayFromTrans, rayToTrans, result, 0); if (result.hasHit()) { *r_hit = 1; v_location[0] = result.m_convexFromWorld[0] + (result.m_convexToWorld[0] - result.m_convexFromWorld[0]) * result.m_closestHitFraction; v_location[1] = result.m_convexFromWorld[1] + (result.m_convexToWorld[1] - result.m_convexFromWorld[1]) * result.m_closestHitFraction; v_location[2] = result.m_convexFromWorld[2] + (result.m_convexToWorld[2] - result.m_convexFromWorld[2]) * result.m_closestHitFraction; v_hitpoint[0] = result.m_hitPointWorld[0]; v_hitpoint[1] = result.m_hitPointWorld[1]; v_hitpoint[2] = result.m_hitPointWorld[2]; v_normal[0] = result.m_hitNormalWorld[0]; v_normal[1] = result.m_hitNormalWorld[1]; v_normal[2] = result.m_hitNormalWorld[2]; } else { *r_hit = 0; } } else { /* we need to return a value if user passes non convex body, to report */ *r_hit = -2; } } /* ............ */ rbRigidBody *RB_body_new(rbCollisionShape *shape, const float loc[3], const float rot[4]) { rbRigidBody *object = new rbRigidBody; /* current transform */ btTransform trans; trans.setIdentity(); trans.setOrigin(btVector3(loc[0], loc[1], loc[2])); trans.setRotation(btQuaternion(rot[1], rot[2], rot[3], rot[0])); /* create motionstate, which is necessary for interpolation (includes reverse playback) */ btDefaultMotionState *motionState = new btDefaultMotionState(trans); /* make rigidbody */ btRigidBody::btRigidBodyConstructionInfo rbInfo(1.0f, motionState, shape->cshape); object->body = new btRigidBody(rbInfo); object->body->setUserPointer(object); return object; } void RB_body_delete(rbRigidBody *object) { btRigidBody *body = object->body; /* motion state */ btMotionState *ms = body->getMotionState(); delete ms; /* collision shape is done elsewhere... */ /* body itself */ /* manually remove constraint refs of the rigid body, normally this happens when removing * constraints from the world * but since we delete everything when the world is rebult, we need to do it manually here */ for (int i = body->getNumConstraintRefs() - 1; i >= 0; i--) { btTypedConstraint *con = body->getConstraintRef(i); body->removeConstraintRef(con); } delete body; delete object; } /* Settings ------------------------- */ void RB_body_set_collision_shape(rbRigidBody *object, rbCollisionShape *shape) { btRigidBody *body = object->body; /* set new collision shape */ body->setCollisionShape(shape->cshape); /* recalculate inertia, since that depends on the collision shape... */ RB_body_set_mass(object, RB_body_get_mass(object)); } /* ............ */ float RB_body_get_mass(rbRigidBody *object) { btRigidBody *body = object->body; /* there isn't really a mass setting, but rather 'inverse mass' * which we convert back to mass by taking the reciprocal again */ float value = (float)body->getInvMass(); if (value) { value = 1.0f / value; } return value; } void RB_body_set_mass(rbRigidBody *object, float value) { btRigidBody *body = object->body; btVector3 localInertia(0, 0, 0); /* calculate new inertia if non-zero mass */ if (value) { btCollisionShape *shape = body->getCollisionShape(); shape->calculateLocalInertia(value, localInertia); } btVector3 minAabb, maxAabb; btTransform ident; ident.setIdentity(); body->getCollisionShape()->getAabb(ident, minAabb, maxAabb); body->setMassProps(value, localInertia); body->updateInertiaTensor(); } float RB_body_get_friction(rbRigidBody *object) { btRigidBody *body = object->body; return body->getFriction(); } void RB_body_set_friction(rbRigidBody *object, float value) { btRigidBody *body = object->body; body->setFriction(value); } float RB_body_get_restitution(rbRigidBody *object) { btRigidBody *body = object->body; return body->getRestitution(); } void RB_body_set_restitution(rbRigidBody *object, float value) { btRigidBody *body = object->body; body->setRestitution(value); } float RB_body_get_linear_damping(rbRigidBody *object) { btRigidBody *body = object->body; return body->getLinearDamping(); } void RB_body_set_linear_damping(rbRigidBody *object, float value) { RB_body_set_damping(object, value, RB_body_get_linear_damping(object)); } float RB_body_get_angular_damping(rbRigidBody *object) { btRigidBody *body = object->body; return body->getAngularDamping(); } void RB_body_set_angular_damping(rbRigidBody *object, float value) { RB_body_set_damping(object, RB_body_get_linear_damping(object), value); } void RB_body_set_damping(rbRigidBody *object, float linear, float angular) { btRigidBody *body = object->body; body->setDamping(linear, angular); } float RB_body_get_linear_sleep_thresh(rbRigidBody *object) { btRigidBody *body = object->body; return body->getLinearSleepingThreshold(); } void RB_body_set_linear_sleep_thresh(rbRigidBody *object, float value) { RB_body_set_sleep_thresh(object, value, RB_body_get_angular_sleep_thresh(object)); } float RB_body_get_angular_sleep_thresh(rbRigidBody *object) { btRigidBody *body = object->body; return body->getAngularSleepingThreshold(); } void RB_body_set_angular_sleep_thresh(rbRigidBody *object, float value) { RB_body_set_sleep_thresh(object, RB_body_get_linear_sleep_thresh(object), value); } void RB_body_set_sleep_thresh(rbRigidBody *object, float linear, float angular) { btRigidBody *body = object->body; body->setSleepingThresholds(linear, angular); } /* ............ */ void RB_body_get_linear_velocity(rbRigidBody *object, float v_out[3]) { btRigidBody *body = object->body; copy_v3_btvec3(v_out, body->getLinearVelocity()); } void RB_body_set_linear_velocity(rbRigidBody *object, const float v_in[3]) { btRigidBody *body = object->body; body->setLinearVelocity(btVector3(v_in[0], v_in[1], v_in[2])); } void RB_body_get_angular_velocity(rbRigidBody *object, float v_out[3]) { btRigidBody *body = object->body; copy_v3_btvec3(v_out, body->getAngularVelocity()); } void RB_body_set_angular_velocity(rbRigidBody *object, const float v_in[3]) { btRigidBody *body = object->body; body->setAngularVelocity(btVector3(v_in[0], v_in[1], v_in[2])); } void RB_body_set_linear_factor(rbRigidBody *object, float x, float y, float z) { btRigidBody *body = object->body; body->setLinearFactor(btVector3(x, y, z)); } void RB_body_set_angular_factor(rbRigidBody *object, float x, float y, float z) { btRigidBody *body = object->body; body->setAngularFactor(btVector3(x, y, z)); } /* ............ */ void RB_body_set_kinematic_state(rbRigidBody *object, int kinematic) { btRigidBody *body = object->body; if (kinematic) { body->setCollisionFlags(body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT); } else { body->setCollisionFlags(body->getCollisionFlags() & ~btCollisionObject::CF_KINEMATIC_OBJECT); } } /* ............ */ void RB_body_set_activation_state(rbRigidBody *object, int use_deactivation) { btRigidBody *body = object->body; if (use_deactivation) { body->forceActivationState(ACTIVE_TAG); } else { body->setActivationState(DISABLE_DEACTIVATION); } } void RB_body_activate(rbRigidBody *object) { btRigidBody *body = object->body; body->setActivationState(ACTIVE_TAG); } void RB_body_deactivate(rbRigidBody *object) { btRigidBody *body = object->body; body->setActivationState(ISLAND_SLEEPING); } /* ............ */ /* Simulation ----------------------- */ /* The transform matrices Blender uses are OpenGL-style matrices, * while Bullet uses the Right-Handed coordinate system style instead. */ void RB_body_get_transform_matrix(rbRigidBody *object, float m_out[4][4]) { btRigidBody *body = object->body; btMotionState *ms = body->getMotionState(); btTransform trans; ms->getWorldTransform(trans); trans.getOpenGLMatrix((btScalar *)m_out); } void RB_body_set_loc_rot(rbRigidBody *object, const float loc[3], const float rot[4]) { btRigidBody *body = object->body; btMotionState *ms = body->getMotionState(); /* set transform matrix */ btTransform trans; trans.setIdentity(); trans.setOrigin(btVector3(loc[0], loc[1], loc[2])); trans.setRotation(btQuaternion(rot[1], rot[2], rot[3], rot[0])); ms->setWorldTransform(trans); } void RB_body_set_scale(rbRigidBody *object, const float scale[3]) { btRigidBody *body = object->body; /* apply scaling factor from matrix above to the collision shape */ btCollisionShape *cshape = body->getCollisionShape(); if (cshape) { cshape->setLocalScaling(btVector3(scale[0], scale[1], scale[2])); /* GIimpact shapes have to be updated to take scaling into account */ if (cshape->getShapeType() == GIMPACT_SHAPE_PROXYTYPE) { ((btGImpactMeshShape *)cshape)->updateBound(); } } } /* ............ */ /* Read-only state info about status of simulation */ void RB_body_get_position(rbRigidBody *object, float v_out[3]) { btRigidBody *body = object->body; copy_v3_btvec3(v_out, body->getWorldTransform().getOrigin()); } void RB_body_get_orientation(rbRigidBody *object, float v_out[4]) { btRigidBody *body = object->body; copy_quat_btquat(v_out, body->getWorldTransform().getRotation()); } void RB_body_get_scale(rbRigidBody *object, float v_out[3]) { btRigidBody *body = object->body; btCollisionShape *cshape = body->getCollisionShape(); /* The body should have a collision shape when we try to set the scale. */ btAssert(cshape); copy_v3_btvec3(v_out, cshape->getLocalScaling()); } /* ............ */ /* Overrides for simulation */ void RB_body_apply_central_force(rbRigidBody *object, const float v_in[3]) { btRigidBody *body = object->body; body->applyCentralForce(btVector3(v_in[0], v_in[1], v_in[2])); } /* ********************************** */ /* Collision Shape Methods */ /* Setup (Standard Shapes) ----------- */ rbCollisionShape *RB_shape_new_box(float x, float y, float z) { rbCollisionShape *shape = new rbCollisionShape; shape->cshape = new btBoxShape(btVector3(x, y, z)); shape->mesh = NULL; shape->compoundChilds = 0; shape->compoundChildShapes = NULL; return shape; } rbCollisionShape *RB_shape_new_sphere(float radius) { rbCollisionShape *shape = new rbCollisionShape; shape->cshape = new btSphereShape(radius); shape->mesh = NULL; shape->compoundChilds = 0; shape->compoundChildShapes = NULL; return shape; } rbCollisionShape *RB_shape_new_capsule(float radius, float height) { rbCollisionShape *shape = new rbCollisionShape; shape->cshape = new btCapsuleShapeZ(radius, height); shape->mesh = NULL; shape->compoundChilds = 0; shape->compoundChildShapes = NULL; return shape; } rbCollisionShape *RB_shape_new_cone(float radius, float height) { rbCollisionShape *shape = new rbCollisionShape; shape->cshape = new btConeShapeZ(radius, height); shape->mesh = NULL; shape->compoundChilds = 0; shape->compoundChildShapes = NULL; return shape; } rbCollisionShape *RB_shape_new_cylinder(float radius, float height) { rbCollisionShape *shape = new rbCollisionShape; shape->cshape = new btCylinderShapeZ(btVector3(radius, radius, height)); shape->mesh = NULL; shape->compoundChilds = 0; shape->compoundChildShapes = NULL; return shape; } /* Setup (Convex Hull) ------------ */ rbCollisionShape *RB_shape_new_convex_hull( float *verts, int stride, int count, float margin, bool *can_embed) { btConvexHullComputer hull_computer = btConvexHullComputer(); // try to embed the margin, if that fails don't shrink the hull if (hull_computer.compute(verts, stride, count, margin, 0.0f) < 0.0f) { hull_computer.compute(verts, stride, count, 0.0f, 0.0f); *can_embed = false; } rbCollisionShape *shape = new rbCollisionShape; btConvexHullShape *hull_shape = new btConvexHullShape(&(hull_computer.vertices[0].getX()), hull_computer.vertices.size()); shape->cshape = hull_shape; shape->mesh = NULL; shape->compoundChilds = 0; shape->compoundChildShapes = NULL; return shape; } /* Setup (Triangle Mesh) ---------- */ /* Need to call RB_trimesh_finish() after creating triangle mesh and adding vertices and triangles */ rbMeshData *RB_trimesh_data_new(int num_tris, int num_verts) { rbMeshData *mesh = new rbMeshData; mesh->vertices = new rbVert[num_verts]; mesh->triangles = new rbTri[num_tris]; mesh->num_vertices = num_verts; mesh->num_triangles = num_tris; return mesh; } static void RB_trimesh_data_delete(rbMeshData *mesh) { delete mesh->index_array; delete[] mesh->vertices; delete[] mesh->triangles; delete mesh; } void RB_trimesh_add_vertices(rbMeshData *mesh, float *vertices, int num_verts, int vert_stride) { for (int i = 0; i < num_verts; i++) { float *vert = (float *)(((char *)vertices + i * vert_stride)); mesh->vertices[i].x = vert[0]; mesh->vertices[i].y = vert[1]; mesh->vertices[i].z = vert[2]; } } void RB_trimesh_add_triangle_indices(rbMeshData *mesh, int num, int index0, int index1, int index2) { mesh->triangles[num].v0 = index0; mesh->triangles[num].v1 = index1; mesh->triangles[num].v2 = index2; } void RB_trimesh_finish(rbMeshData *mesh) { mesh->index_array = new btTriangleIndexVertexArray(mesh->num_triangles, (int *)mesh->triangles, sizeof(rbTri), mesh->num_vertices, (btScalar *)mesh->vertices, sizeof(rbVert)); } rbCollisionShape *RB_shape_new_trimesh(rbMeshData *mesh) { rbCollisionShape *shape = new rbCollisionShape; /* triangle-mesh we create is a BVH wrapper for triangle mesh data (for faster lookups) */ // RB_TODO perhaps we need to allow saving out this for performance when rebuilding? btBvhTriangleMeshShape *unscaledShape = new btBvhTriangleMeshShape( mesh->index_array, true, true); shape->cshape = new btScaledBvhTriangleMeshShape(unscaledShape, btVector3(1.0f, 1.0f, 1.0f)); shape->mesh = mesh; shape->compoundChilds = 0; shape->compoundChildShapes = NULL; return shape; } void RB_shape_trimesh_update(rbCollisionShape *shape, float *vertices, int num_verts, int vert_stride, const float min[3], const float max[3]) { if (shape->mesh == NULL || num_verts != shape->mesh->num_vertices) { return; } for (int i = 0; i < num_verts; i++) { float *vert = (float *)(((char *)vertices + i * vert_stride)); shape->mesh->vertices[i].x = vert[0]; shape->mesh->vertices[i].y = vert[1]; shape->mesh->vertices[i].z = vert[2]; } if (shape->cshape->getShapeType() == SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE) { btScaledBvhTriangleMeshShape *scaled_shape = (btScaledBvhTriangleMeshShape *)shape->cshape; btBvhTriangleMeshShape *mesh_shape = scaled_shape->getChildShape(); mesh_shape->refitTree(btVector3(min[0], min[1], min[2]), btVector3(max[0], max[1], max[2])); } else if (shape->cshape->getShapeType() == GIMPACT_SHAPE_PROXYTYPE) { btGImpactMeshShape *mesh_shape = (btGImpactMeshShape *)shape->cshape; mesh_shape->updateBound(); } } rbCollisionShape *RB_shape_new_gimpact_mesh(rbMeshData *mesh) { rbCollisionShape *shape = new rbCollisionShape; btGImpactMeshShape *gimpactShape = new btGImpactMeshShape(mesh->index_array); gimpactShape->updateBound(); // TODO: add this to the update collision margin call? shape->cshape = gimpactShape; shape->mesh = mesh; shape->compoundChilds = 0; shape->compoundChildShapes = NULL; return shape; } /* Compound Shape ---------------- */ rbCollisionShape *RB_shape_new_compound() { rbCollisionShape *shape = new rbCollisionShape; btCompoundShape *compoundShape = new btCompoundShape(); shape->cshape = compoundShape; shape->mesh = NULL; shape->compoundChilds = 0; shape->compoundChildShapes = NULL; return shape; } void RB_compound_add_child_shape(rbCollisionShape *parentShape, rbCollisionShape *shape, const float loc[3], const float rot[4]) { /* set transform matrix */ btTransform trans; trans.setIdentity(); trans.setOrigin(btVector3(loc[0], loc[1], loc[2])); trans.setRotation(btQuaternion(rot[1], rot[2], rot[3], rot[0])); btCompoundShape *compoundShape = (btCompoundShape *)(parentShape->cshape); compoundShape->addChildShape(trans, shape->cshape); /* Store shapes for deletion later */ parentShape->compoundChildShapes = (rbCollisionShape **)(realloc( parentShape->compoundChildShapes, sizeof(rbCollisionShape *) * (++parentShape->compoundChilds))); parentShape->compoundChildShapes[parentShape->compoundChilds - 1] = shape; } /* Cleanup --------------------------- */ void RB_shape_delete(rbCollisionShape *shape) { if (shape->cshape->getShapeType() == SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE) { btBvhTriangleMeshShape *child_shape = ((btScaledBvhTriangleMeshShape *)shape->cshape)->getChildShape(); delete child_shape; } if (shape->mesh) { RB_trimesh_data_delete(shape->mesh); } delete shape->cshape; /* Delete compound child shapes if there are any */ for (int i = 0; i < shape->compoundChilds; i++) { RB_shape_delete(shape->compoundChildShapes[i]); } if (shape->compoundChildShapes != NULL) { free(shape->compoundChildShapes); } delete shape; } /* Settings --------------------------- */ float RB_shape_get_margin(rbCollisionShape *shape) { return shape->cshape->getMargin(); } void RB_shape_set_margin(rbCollisionShape *shape, float value) { shape->cshape->setMargin(value); } /* ********************************** */ /* Constraints */ /* Setup ----------------------------- */ void RB_dworld_add_constraint(rbDynamicsWorld *world, rbConstraint *con, int disable_collisions) { btTypedConstraint *constraint = reinterpret_cast(con); world->dynamicsWorld->addConstraint(constraint, disable_collisions); } void RB_dworld_remove_constraint(rbDynamicsWorld *world, rbConstraint *con) { btTypedConstraint *constraint = reinterpret_cast(con); world->dynamicsWorld->removeConstraint(constraint); } /* ............ */ static void make_constraint_transforms(btTransform &transform1, btTransform &transform2, btRigidBody *body1, btRigidBody *body2, float pivot[3], float orn[4]) { btTransform pivot_transform = btTransform(); pivot_transform.setIdentity(); pivot_transform.setOrigin(btVector3(pivot[0], pivot[1], pivot[2])); pivot_transform.setRotation(btQuaternion(orn[1], orn[2], orn[3], orn[0])); transform1 = body1->getWorldTransform().inverse() * pivot_transform; transform2 = body2->getWorldTransform().inverse() * pivot_transform; } rbConstraint *RB_constraint_new_point(float pivot[3], rbRigidBody *rb1, rbRigidBody *rb2) { btRigidBody *body1 = rb1->body; btRigidBody *body2 = rb2->body; btVector3 pivot1 = body1->getWorldTransform().inverse() * btVector3(pivot[0], pivot[1], pivot[2]); btVector3 pivot2 = body2->getWorldTransform().inverse() * btVector3(pivot[0], pivot[1], pivot[2]); btTypedConstraint *con = new btPoint2PointConstraint(*body1, *body2, pivot1, pivot2); return (rbConstraint *)con; } rbConstraint *RB_constraint_new_fixed(float pivot[3], float orn[4], rbRigidBody *rb1, rbRigidBody *rb2) { btRigidBody *body1 = rb1->body; btRigidBody *body2 = rb2->body; btTransform transform1; btTransform transform2; make_constraint_transforms(transform1, transform2, body1, body2, pivot, orn); btFixedConstraint *con = new btFixedConstraint(*body1, *body2, transform1, transform2); return (rbConstraint *)con; } rbConstraint *RB_constraint_new_hinge(float pivot[3], float orn[4], rbRigidBody *rb1, rbRigidBody *rb2) { btRigidBody *body1 = rb1->body; btRigidBody *body2 = rb2->body; btTransform transform1; btTransform transform2; make_constraint_transforms(transform1, transform2, body1, body2, pivot, orn); btHingeConstraint *con = new btHingeConstraint(*body1, *body2, transform1, transform2); return (rbConstraint *)con; } rbConstraint *RB_constraint_new_slider(float pivot[3], float orn[4], rbRigidBody *rb1, rbRigidBody *rb2) { btRigidBody *body1 = rb1->body; btRigidBody *body2 = rb2->body; btTransform transform1; btTransform transform2; make_constraint_transforms(transform1, transform2, body1, body2, pivot, orn); btSliderConstraint *con = new btSliderConstraint(*body1, *body2, transform1, transform2, true); return (rbConstraint *)con; } rbConstraint *RB_constraint_new_piston(float pivot[3], float orn[4], rbRigidBody *rb1, rbRigidBody *rb2) { btRigidBody *body1 = rb1->body; btRigidBody *body2 = rb2->body; btTransform transform1; btTransform transform2; make_constraint_transforms(transform1, transform2, body1, body2, pivot, orn); btSliderConstraint *con = new btSliderConstraint(*body1, *body2, transform1, transform2, true); con->setUpperAngLimit(-1.0f); // unlock rotation axis return (rbConstraint *)con; } rbConstraint *RB_constraint_new_6dof(float pivot[3], float orn[4], rbRigidBody *rb1, rbRigidBody *rb2) { btRigidBody *body1 = rb1->body; btRigidBody *body2 = rb2->body; btTransform transform1; btTransform transform2; make_constraint_transforms(transform1, transform2, body1, body2, pivot, orn); btTypedConstraint *con = new btGeneric6DofConstraint( *body1, *body2, transform1, transform2, true); return (rbConstraint *)con; } rbConstraint *RB_constraint_new_6dof_spring(float pivot[3], float orn[4], rbRigidBody *rb1, rbRigidBody *rb2) { btRigidBody *body1 = rb1->body; btRigidBody *body2 = rb2->body; btTransform transform1; btTransform transform2; make_constraint_transforms(transform1, transform2, body1, body2, pivot, orn); btTypedConstraint *con = new btGeneric6DofSpringConstraint( *body1, *body2, transform1, transform2, true); return (rbConstraint *)con; } rbConstraint *RB_constraint_new_6dof_spring2(float pivot[3], float orn[4], rbRigidBody *rb1, rbRigidBody *rb2) { btRigidBody *body1 = rb1->body; btRigidBody *body2 = rb2->body; btTransform transform1; btTransform transform2; make_constraint_transforms(transform1, transform2, body1, body2, pivot, orn); btTypedConstraint *con = new btGeneric6DofSpring2Constraint( *body1, *body2, transform1, transform2); return (rbConstraint *)con; } rbConstraint *RB_constraint_new_motor(float pivot[3], float orn[4], rbRigidBody *rb1, rbRigidBody *rb2) { btRigidBody *body1 = rb1->body; btRigidBody *body2 = rb2->body; btTransform transform1; btTransform transform2; make_constraint_transforms(transform1, transform2, body1, body2, pivot, orn); btGeneric6DofConstraint *con = new btGeneric6DofConstraint( *body1, *body2, transform1, transform2, true); /* unlock constraint axes */ for (int i = 0; i < 6; i++) { con->setLimit(i, 0.0f, -1.0f); } /* unlock motor axes */ con->getTranslationalLimitMotor()->m_upperLimit.setValue(-1.0f, -1.0f, -1.0f); return (rbConstraint *)con; } /* Cleanup ----------------------------- */ void RB_constraint_delete(rbConstraint *con) { btTypedConstraint *constraint = reinterpret_cast(con); delete constraint; } /* Settings ------------------------- */ void RB_constraint_set_enabled(rbConstraint *con, int enabled) { btTypedConstraint *constraint = reinterpret_cast(con); constraint->setEnabled(enabled); } void RB_constraint_set_limits_hinge(rbConstraint *con, float lower, float upper) { btHingeConstraint *constraint = reinterpret_cast(con); // RB_TODO expose these float softness = 0.9f; float bias_factor = 0.3f; float relaxation_factor = 1.0f; constraint->setLimit(lower, upper, softness, bias_factor, relaxation_factor); } void RB_constraint_set_limits_slider(rbConstraint *con, float lower, float upper) { btSliderConstraint *constraint = reinterpret_cast(con); constraint->setLowerLinLimit(lower); constraint->setUpperLinLimit(upper); } void RB_constraint_set_limits_piston( rbConstraint *con, float lin_lower, float lin_upper, float ang_lower, float ang_upper) { btSliderConstraint *constraint = reinterpret_cast(con); constraint->setLowerLinLimit(lin_lower); constraint->setUpperLinLimit(lin_upper); constraint->setLowerAngLimit(ang_lower); constraint->setUpperAngLimit(ang_upper); } void RB_constraint_set_limits_6dof(rbConstraint *con, int axis, float lower, float upper) { btGeneric6DofConstraint *constraint = reinterpret_cast(con); constraint->setLimit(axis, lower, upper); } void RB_constraint_set_limits_6dof_spring2(rbConstraint *con, int axis, float lower, float upper) { btGeneric6DofSpring2Constraint *constraint = reinterpret_cast( con); constraint->setLimit(axis, lower, upper); } void RB_constraint_set_stiffness_6dof_spring(rbConstraint *con, int axis, float stiffness) { btGeneric6DofSpringConstraint *constraint = reinterpret_cast( con); constraint->setStiffness(axis, stiffness); } void RB_constraint_set_damping_6dof_spring(rbConstraint *con, int axis, float damping) { btGeneric6DofSpringConstraint *constraint = reinterpret_cast( con); // invert damping range so that 0 = no damping damping = (damping > 1.0f) ? 0.0f : 1.0f - damping; constraint->setDamping(axis, damping); } void RB_constraint_set_spring_6dof_spring(rbConstraint *con, int axis, int enable) { btGeneric6DofSpringConstraint *constraint = reinterpret_cast( con); constraint->enableSpring(axis, enable); } void RB_constraint_set_equilibrium_6dof_spring(rbConstraint *con) { btGeneric6DofSpringConstraint *constraint = reinterpret_cast( con); constraint->setEquilibriumPoint(); } void RB_constraint_set_stiffness_6dof_spring2(rbConstraint *con, int axis, float stiffness) { btGeneric6DofSpring2Constraint *constraint = reinterpret_cast( con); constraint->setStiffness(axis, stiffness); } void RB_constraint_set_damping_6dof_spring2(rbConstraint *con, int axis, float damping) { btGeneric6DofSpring2Constraint *constraint = reinterpret_cast( con); constraint->setDamping(axis, damping); } void RB_constraint_set_spring_6dof_spring2(rbConstraint *con, int axis, int enable) { btGeneric6DofSpring2Constraint *constraint = reinterpret_cast( con); constraint->enableSpring(axis, enable); } void RB_constraint_set_equilibrium_6dof_spring2(rbConstraint *con) { btGeneric6DofSpring2Constraint *constraint = reinterpret_cast( con); constraint->setEquilibriumPoint(); } void RB_constraint_set_solver_iterations(rbConstraint *con, int num_solver_iterations) { btTypedConstraint *constraint = reinterpret_cast(con); constraint->setOverrideNumSolverIterations(num_solver_iterations); } void RB_constraint_set_breaking_threshold(rbConstraint *con, float threshold) { btTypedConstraint *constraint = reinterpret_cast(con); constraint->setBreakingImpulseThreshold(threshold); } void RB_constraint_set_enable_motor(rbConstraint *con, int enable_lin, int enable_ang) { btGeneric6DofConstraint *constraint = reinterpret_cast(con); constraint->getTranslationalLimitMotor()->m_enableMotor[0] = enable_lin; constraint->getRotationalLimitMotor(0)->m_enableMotor = enable_ang; } void RB_constraint_set_max_impulse_motor(rbConstraint *con, float max_impulse_lin, float max_impulse_ang) { btGeneric6DofConstraint *constraint = reinterpret_cast(con); constraint->getTranslationalLimitMotor()->m_maxMotorForce.setX(max_impulse_lin); constraint->getRotationalLimitMotor(0)->m_maxMotorForce = max_impulse_ang; } void RB_constraint_set_target_velocity_motor(rbConstraint *con, float velocity_lin, float velocity_ang) { btGeneric6DofConstraint *constraint = reinterpret_cast(con); constraint->getTranslationalLimitMotor()->m_targetVelocity.setX(velocity_lin); constraint->getRotationalLimitMotor(0)->m_targetVelocity = velocity_ang; } /* ********************************** */