/** \file smoke/intern/tnt/tnt_fortran_array1d_utils.h * \ingroup smoke */ /* * * Template Numerical Toolkit (TNT) * * Mathematical and Computational Sciences Division * National Institute of Technology, * Gaithersburg, MD USA * * * This software was developed at the National Institute of Standards and * Technology (NIST) by employees of the Federal Government in the course * of their official duties. Pursuant to title 17 Section 105 of the * United States Code, this software is not subject to copyright protection * and is in the public domain. NIST assumes no responsibility whatsoever for * its use by other parties, and makes no guarantees, expressed or implied, * about its quality, reliability, or any other characteristic. * */ #ifndef TNT_FORTRAN_ARRAY1D_UTILS_H #define TNT_FORTRAN_ARRAY1D_UTILS_H #include namespace TNT { /** Write an array to a character outstream. Output format is one that can be read back in via the in-stream operator: one integer denoting the array dimension (n), followed by n elements, one per line. */ template std::ostream& operator<<(std::ostream &s, const Fortran_Array1D &A) { int N=A.dim1(); s << N << "\n"; for (int j=1; j<=N; j++) { s << A(j) << "\n"; } s << "\n"; return s; } /** Read an array from a character stream. Input format is one integer, denoting the dimension (n), followed by n whitespace-separated elments. Newlines are ignored

Note: the array being read into references new memory storage. If the intent is to fill an existing conformant array, use cin >> B; A.inject(B) ); instead or read the elements in one-a-time by hand. @param s the charater to read from (typically std::in) @param A the array to read into. */ template std::istream& operator>>(std::istream &s, Fortran_Array1D &A) { int N; s >> N; Fortran_Array1D B(N); for (int i=1; i<=N; i++) s >> B(i); A = B; return s; } template Fortran_Array1D operator+(const Fortran_Array1D &A, const Fortran_Array1D &B) { int n = A.dim1(); if (B.dim1() != n ) return Fortran_Array1D(); else { Fortran_Array1D C(n); for (int i=1; i<=n; i++) { C(i) = A(i) + B(i); } return C; } } template Fortran_Array1D operator-(const Fortran_Array1D &A, const Fortran_Array1D &B) { int n = A.dim1(); if (B.dim1() != n ) return Fortran_Array1D(); else { Fortran_Array1D C(n); for (int i=1; i<=n; i++) { C(i) = A(i) - B(i); } return C; } } template Fortran_Array1D operator*(const Fortran_Array1D &A, const Fortran_Array1D &B) { int n = A.dim1(); if (B.dim1() != n ) return Fortran_Array1D(); else { Fortran_Array1D C(n); for (int i=1; i<=n; i++) { C(i) = A(i) * B(i); } return C; } } template Fortran_Array1D operator/(const Fortran_Array1D &A, const Fortran_Array1D &B) { int n = A.dim1(); if (B.dim1() != n ) return Fortran_Array1D(); else { Fortran_Array1D C(n); for (int i=1; i<=n; i++) { C(i) = A(i) / B(i); } return C; } } template Fortran_Array1D& operator+=(Fortran_Array1D &A, const Fortran_Array1D &B) { int n = A.dim1(); if (B.dim1() == n) { for (int i=1; i<=n; i++) { A(i) += B(i); } } return A; } template Fortran_Array1D& operator-=(Fortran_Array1D &A, const Fortran_Array1D &B) { int n = A.dim1(); if (B.dim1() == n) { for (int i=1; i<=n; i++) { A(i) -= B(i); } } return A; } template Fortran_Array1D& operator*=(Fortran_Array1D &A, const Fortran_Array1D &B) { int n = A.dim1(); if (B.dim1() == n) { for (int i=1; i<=n; i++) { A(i) *= B(i); } } return A; } template Fortran_Array1D& operator/=(Fortran_Array1D &A, const Fortran_Array1D &B) { int n = A.dim1(); if (B.dim1() == n) { for (int i=1; i<=n; i++) { A(i) /= B(i); } } return A; } } // namespace TNT #endif