# $Id$ # # -------------------------------------------------------------------------- # helper functions to be used by other scripts # -------------------------------------------------------------------------- # ***** BEGIN GPL LICENSE BLOCK ***** # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # # ***** END GPL LICENCE BLOCK ***** # -------------------------------------------------------------------------- import Blender from Blender.Mathutils import * # ------ Mersenne Twister - start # Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. # Any feedback is very welcome. For any question, comments, # see http://www.math.keio.ac.jp/matumoto/emt.html or email # matumoto@math.keio.ac.jp # The link above is dead, this is the new one: # http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt.html # And here the license info, from Mr. Matsumoto's site: # Until 2001/4/6, MT had been distributed under GNU Public License, # but after 2001/4/6, we decided to let MT be used for any purpose, including # commercial use. 2002-versions mt19937ar.c, mt19937ar-cok.c are considered # to be usable freely. # # So from the year above (1997), this code is under GPL. # Period parameters N = 624 M = 397 MATRIX_A = 0x9908b0dfL # constant vector a UPPER_MASK = 0x80000000L # most significant w-r bits LOWER_MASK = 0x7fffffffL # least significant r bits # Tempering parameters TEMPERING_MASK_B = 0x9d2c5680L TEMPERING_MASK_C = 0xefc60000L def TEMPERING_SHIFT_U(y): return (y >> 11) def TEMPERING_SHIFT_S(y): return (y << 7) def TEMPERING_SHIFT_T(y): return (y << 15) def TEMPERING_SHIFT_L(y): return (y >> 18) mt = [] # the array for the state vector mti = N+1 # mti==N+1 means mt[N] is not initialized # initializing the array with a NONZERO seed def sgenrand(seed): # setting initial seeds to mt[N] using # the generator Line 25 of Table 1 in # [KNUTH 1981, The Art of Computer Programming # Vol. 2 (2nd Ed.), pp102] global mt, mti mt = [] mt.append(seed & 0xffffffffL) for i in xrange(1, N + 1): mt.append((69069 * mt[i-1]) & 0xffffffffL) mti = i # end sgenrand def genrand(): global mt, mti mag01 = [0x0L, MATRIX_A] # mag01[x] = x * MATRIX_A for x=0,1 y = 0 if mti >= N: # generate N words at one time if mti == N+1: # if sgenrand() has not been called, sgenrand(4357) # a default initial seed is used for kk in xrange((N-M) + 1): y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK) mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1] for kk in xrange(kk, N): y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK) mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1] y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK) mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1] mti = 0 y = mt[mti] mti += 1 y ^= TEMPERING_SHIFT_U(y) y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C y ^= TEMPERING_SHIFT_L(y) return ( float(y) / 0xffffffffL ) # reals #------ Mersenne Twister -- end """ 2d convexhull Based from Dinu C. Gherman's work, modified for Blender/Mathutils by Campell Barton """ ###################################################################### # Public interface ###################################################################### from Blender.Mathutils import DotVecs def convexHull(point_list_2d): """Calculate the convex hull of a set of vectors The vectors can be 3 or 4d but only the Xand Y are used. returns a list of convex hull indicies to the given point list """ ###################################################################### # Helpers ###################################################################### def _myDet(p, q, r): """Calc. determinant of a special matrix with three 2D points. The sign, "-" or "+", determines the side, right or left, respectivly, on which the point r lies, when measured against a directed vector from p to q. """ return (q.x*r.y + p.x*q.y + r.x*p.y) - (q.x*p.y + r.x*q.y + p.x*r.y) def _isRightTurn((p, q, r)): "Do the vectors pq:qr form a right turn, or not?" #assert p[0] != q[0] and q[0] != r[0] and p[0] != r[0] if _myDet(p[0], q[0], r[0]) < 0: return 1 else: return 0 # Get a local list copy of the points and sort them lexically. points = [(p, i) for i, p in enumerate(point_list_2d)] points.sort(lambda a,b: cmp((a[0].x, a[0].y), (b[0].x, b[0].y))) # Build upper half of the hull. upper = [points[0], points[1]] # cant remove these. for i in xrange(len(points)-2): upper.append(points[i+2]) while len(upper) > 2 and not _isRightTurn(upper[-3:]): del upper[-2] # Build lower half of the hull. points.reverse() lower = [points.pop(0), points.pop(1)] for p in points: lower.append(p) while len(lower) > 2 and not _isRightTurn(lower[-3:]): del lower[-2] # Concatenate both halfs and return. return [p[1] for ls in (upper, lower) for p in ls] def lineIntersect2D(v1a, v1b, v2a, v2b): ''' Do 2 lines intersect, if so where. If there is an error, the retured X value will be None the y will be an error code- usefull when debugging. the first line is (v1a, v1b) the second is (v2a, v2b) by Campbell Barton This function accounts for all known cases of 2 lines ;) ''' x1,y1= v1a.x, v1a.y x2,y2= v1b.x, v1b.y _x1,_y1= v2a.x, v2a.y _x2,_y2= v2b.x, v2b.y # Bounding box intersection first. if min(x1, x2) > max(_x1, _x2) or \ max(x1, x2) < min(_x1, _x2) or \ min(y1, y2) > max(_y1, _y2) or \ max(y1, y2) < min(_y1, _y2): return None, 100 # Basic Bounds intersection TEST returns false. # are either of the segments points? Check Seg1 if abs(x1 - x2) + abs(y1 - y2) <= SMALL_NUM: return None, 101 # are either of the segments points? Check Seg2 if abs(_x1 - _x2) + abs(_y1 - _y2) <= SMALL_NUM: return None, 102 # Make sure the HOZ/Vert Line Comes first. if abs(_x1 - _x2) < SMALL_NUM or abs(_y1 - _y2) < SMALL_NUM: x1, x2, y1, y2, _x1, _x2, _y1, _y2 = _x1, _x2, _y1, _y2, x1, x2, y1, y2 if abs(x2-x1) < SMALL_NUM: # VERTICLE LINE if abs(_x2-_x1) < SMALL_NUM: # VERTICLE LINE SEG2 return None, 111 # 2 verticle lines dont intersect. elif abs(_y2-_y1) < SMALL_NUM: return x1, _y1 # X of vert, Y of hoz. no calculation. yi = ((_y1 / abs(_x1 - _x2)) * abs(_x2 - x1)) + ((_y2 / abs(_x1 - _x2)) * abs(_x1 - x1)) if yi > max(y1, y2): # New point above seg1's vert line return None, 112 elif yi < min(y1, y2): # New point below seg1's vert line return None, 113 return x1, yi # Intersecting. if abs(y2-y1) < SMALL_NUM: # HOZ LINE if abs(_y2-_y1) < SMALL_NUM: # HOZ LINE SEG2 return None, 121 # 2 hoz lines dont intersect. # Can skip vert line check for seg 2 since its covered above. xi = ((_x1 / abs(_y1 - _y2)) * abs(_y2 - y1)) + ((_x2 / abs(_y1 - _y2)) * abs(_y1 - y1)) if xi > max(x1, x2): # New point right of seg1's hoz line return None, 112 elif xi < min(x1, x2): # New point left of seg1's hoz line return None, 113 return xi, y1 # Intersecting. # Accounted for hoz/vert lines. Go on with both anglular. b1 = (y2-y1)/(x2-x1) b2 = (_y2-_y1)/(_x2-_x1) a1 = y1-b1*x1 a2 = _y1-b2*_x1 if b1 - b2 == 0.0: return None, 200 xi = - (a1-a2)/(b1-b2) yi = a1+b1*xi if (x1-xi)*(xi-x2) >= 0 and (_x1-xi)*(xi-_x2) >= 0 and (y1-yi)*(yi-y2) >= 0 and (_y1-yi)*(yi-_y2)>=0: return xi, yi else: return None, 300