# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### """ This module contains helper functions used for Freestyle style module writing. """ __all__ = ( "angle_x_normal", "bound", "bounding_box", "BoundingBox", "ContextFunctions", "curvature_from_stroke_vertex", "find_matching_vertex", "get_chain_length", "get_object_name", "get_strokes", "get_test_stroke", "getCurrentScene", "integrate", "is_poly_clockwise", "iter_distance_along_stroke", "iter_distance_from_camera", "iter_distance_from_object", "iter_material_value", "iter_t2d_along_stroke", "material_from_fedge", "normal_at_I0D", "pairwise", "phase_to_direction", "rgb_to_bw", "simplify", "stroke_curvature", "stroke_normal", "StrokeCollector", "tripplewise", ) # module members from _freestyle import ( ContextFunctions, getCurrentScene, integrate, ) # constructs for helper functions in Python from freestyle.types import ( Interface0DIterator, Stroke, StrokeShader, StrokeVertexIterator, ) from mathutils import Vector from functools import lru_cache, namedtuple from math import cos, sin, pi, atan2 from itertools import tee, compress # -- types -- # # A named tuple primitive used for storing data that has an upper and # lower bound (e.g., thickness, range and certain other values) class BoundedProperty(namedtuple("BoundedProperty", ["min", "max", "delta"])): def __new__(cls, minimum, maximum, delta=None): if delta is None: delta = abs(maximum - minimum) return super().__new__(cls, minimum, maximum, delta) def interpolate(self, val): result = (self.max - val) / self.delta return 1.0 - bound(0, result, 1) # -- real utility functions -- # def rgb_to_bw(r, g, b): """Method to convert rgb to a bw intensity value.""" return 0.35 * r + 0.45 * g + 0.2 * b def bound(lower, x, higher): """Returns x bounded by a maximum and minimum value. Equivalent to: return min(max(x, lower), higher) """ # this is about 50% quicker than min(max(x, lower), higher) return (lower if x <= lower else higher if x >= higher else x) def get_strokes(): """Get all strokes that are currently available""" return tuple(map(Operators().get_stroke_from_index, range(Operators().get_strokes_size()))) def is_poly_clockwise(stroke): """True if the stroke is orientated in a clockwise way, False otherwise""" v = sum((v2.point.x - v1.point.x) * (v1.point.y + v2.point.y) for v1, v2 in pairwise(stroke)) v1, v2 = stroke[0], stroke[-1] if (v1.point - v2.point).length > 1e-3: v += (v2.point.x - v1.point.x) * (v1.point.y + v2.point.y) return v > 0 def get_object_name(stroke): """Returns the name of the object that this stroke is drawn on.""" fedge = stroke[0].fedge if fedge is None: return None return fedge.viewedge.viewshape.name def material_from_fedge(fe): "get the diffuse rgba color from an FEdge" if fe is None: return None if fe.is_smooth: material = fe.material else: right, left = fe.material_right, fe.material_left material = right if (right.priority > left.priority) else left return material def bounding_box(stroke): """ Returns the maximum and minimum coordinates (the bounding box) of the stroke's vertices """ x, y = zip(*(svert.point for svert in stroke)) return (Vector((min(x), min(y))), Vector((max(x), max(y)))) def normal_at_I0D(it: Interface0DIterator) -> Vector: """Normal at an Interface0D object. In contrast to Normal2DF0D this function uses the actual data instead of underlying Fedge objects. """ if it.at_last and it.is_begin: # corner-case return Vector((0, 0)) elif it.at_last: it.decrement() a, b = it.object, next(it) elif it.is_begin: a, b = it.object, next(it) # give iterator back in original state it.decrement() elif it.is_end: # just fail hard: this shouldn not happen raise StopIteration() else: # this case sometimes has a small difference with Normal2DF0D (1e-3 -ish) it.decrement() a = it.object curr, b = next(it), next(it) # give iterator back in original state it.decrement() return (b.point - a.point).orthogonal().normalized() def angle_x_normal(it: Interface0DIterator): """unsigned angle between a Point's normal and the X axis, in radians""" normal = normal_at_I0D(it) return abs(atan2(normal[1], normal[0])) def curvature_from_stroke_vertex(svert): """The 3D curvature of an stroke vertex' underlying geometry The result is None or in the range [-inf, inf]""" c1 = svert.first_svertex.curvatures c2 = svert.second_svertex.curvatures if c1 is None and c2 is None: Kr = None elif c1 is None: Kr = c2[4] elif c2 is None: Kr = c1[4] else: Kr = c1[4] + svert.t2d * (c2[4] - c1[4]) return Kr # -- General helper functions -- # @lru_cache(maxsize=32) def phase_to_direction(length): """ Returns a list of tuples each containing: - the phase - a Vector with the values of the cosine and sine of 2pi * phase (the direction) """ results = list() for i in range(length): phase = i / (length - 1) results.append((phase, Vector((cos(2 * pi * phase), sin(2 * pi * phase))))) return results # -- simplification of a set of points; based on simplify.js by Vladimir Agafonkin -- # https://mourner.github.io/simplify-js/ def getSquareSegmentDistance(p, p1, p2): """ Square distance between point and a segment """ x, y = p1 dx, dy = (p2 - p1) if dx or dy: t = ((p.x - x) * dx + (p.y - y) * dy) / (dx * dx + dy * dy) if t > 1: x, y = p2 elif t > 0: x += dx * t y += dy * t dx, dy = p.x - x, p.y - y return dx * dx + dy * dy def simplifyDouglasPeucker(points, tolerance): length = len(points) markers = [0] * length first = 0 last = length - 1 first_stack = [] last_stack = [] new_points = [] markers[first] = 1 markers[last] = 1 while last: max_sqdist = 0 for i in range(first, last): sqdist = getSquareSegmentDistance(points[i], points[first], points[last]) if sqdist > max_sqdist: index = i max_sqdist = sqdist if max_sqdist > tolerance: markers[index] = 1 first_stack.append(first) last_stack.append(index) first_stack.append(index) last_stack.append(last) first = first_stack.pop() if first_stack else None last = last_stack.pop() if last_stack else None return tuple(compress(points, markers)) def simplify(points, tolerance): """Simplifies a set of points""" return simplifyDouglasPeucker(points, tolerance * tolerance) class BoundingBox: """Object representing a bounding box consisting out of 2 2D vectors""" __slots__ = ( "minimum", "maximum", "size", "corners", ) def __init__(self, minimum: Vector, maximum: Vector): self.minimum = minimum self.maximum = maximum if len(minimum) != len(maximum): raise TypeError("Expected two vectors of size 2, got", minimum, maximum) self.size = len(minimum) self.corners = (minimum, maximum) def __repr__(self): return "BoundingBox(%r, %r)" % (self.minimum, self.maximum) @classmethod def from_sequence(cls, sequence): """BoundingBox from sequence of 2D or 3D Vector objects""" x, y = zip(*sequence) mini = Vector((min(x), min(y))) maxi = Vector((max(x), max(y))) return cls(mini, maxi) def inside(self, other): """True if self inside other, False otherwise""" if self.size != other.size: raise TypeError("Expected two BoundingBox of the same size, got", self, other) return (self.minimum.x >= other.minimum.x and self.minimum.y >= other.minimum.y and self.maximum.x <= other.maximum.x and self.maximum.y <= other.maximum.y) class StrokeCollector(StrokeShader): "Collects and Stores stroke objects" def __init__(self): StrokeShader.__init__(self) self.strokes = [] def shade(self, stroke): self.strokes.append(stroke) # -- helper functions for chaining -- # def get_chain_length(ve, orientation): """Returns the 2d length of a given ViewEdge.""" from freestyle.chainingiterators import pyChainSilhouetteGenericIterator length = 0.0 # setup iterator _it = pyChainSilhouetteGenericIterator(False, False) _it.begin = ve _it.current_edge = ve _it.orientation = orientation _it.init() # run iterator till end of chain while not (_it.is_end): length += _it.object.length_2d if (_it.is_begin): # _it has looped back to the beginning; # break to prevent infinite loop break _it.increment() # reset iterator _it.begin = ve _it.current_edge = ve _it.orientation = orientation # run iterator till begin of chain if not _it.is_begin: _it.decrement() while not (_it.is_end or _it.is_begin): length += _it.object.length_2d _it.decrement() return length def find_matching_vertex(id, it): """Finds the matching vertex, or returns None.""" return next((ve for ve in it if ve.id == id), None) # -- helper functions for iterating -- # def pairwise(iterable, types={Stroke, StrokeVertexIterator}): """Yields a tuple containing the previous and current object """ # use .incremented() for types that support it if type(iterable) in types: it = iter(iterable) return zip(it, it.incremented()) else: a, b = tee(iterable) next(b, None) return zip(a, b) def tripplewise(iterable): """Yields a tuple containing the current object and its immediate neighbors """ a, b, c = tee(iterable) next(b, None) next(c, None) return zip(a, b, c) def iter_t2d_along_stroke(stroke): """Yields the progress along the stroke.""" total = stroke.length_2d distance = 0.0 # yield for the comparison from the first vertex to itself yield 0.0 for prev, svert in pairwise(stroke): distance += (prev.point - svert.point).length yield min(distance / total, 1.0) if total != 0.0 else 0.0 def iter_distance_from_camera(stroke, range_min, range_max, normfac): """ Yields the distance to the camera relative to the maximum possible distance for every stroke vertex, constrained by given minimum and maximum values. """ for svert in stroke: # length in the camera coordinate distance = svert.point_3d.length if range_min < distance < range_max: yield (svert, (distance - range_min) / normfac) else: yield (svert, 0.0) if range_min > distance else (svert, 1.0) def iter_distance_from_object(stroke, location, range_min, range_max, normfac): """ yields the distance to the given object relative to the maximum possible distance for every stroke vertex, constrained by given minimum and maximum values. """ for svert in stroke: distance = (svert.point_3d - location).length # in the camera coordinate if range_min < distance < range_max: yield (svert, (distance - range_min) / normfac) else: yield (svert, 0.0) if distance < range_min else (svert, 1.0) def iter_material_value(stroke, func, attribute): """Yields a specific material attribute from the vertex' underlying material.""" it = Interface0DIterator(stroke) for svert in it: material = func(it) # main if attribute == 'LINE': value = rgb_to_bw(*material.line[0:3]) elif attribute == 'DIFF': value = rgb_to_bw(*material.diffuse[0:3]) elif attribute == 'SPEC': value = rgb_to_bw(*material.specular[0:3]) # line separate elif attribute == 'LINE_R': value = material.line[0] elif attribute == 'LINE_G': value = material.line[1] elif attribute == 'LINE_B': value = material.line[2] elif attribute == 'LINE_A': value = material.line[3] # diffuse separate elif attribute == 'DIFF_R': value = material.diffuse[0] elif attribute == 'DIFF_G': value = material.diffuse[1] elif attribute == 'DIFF_B': value = material.diffuse[2] elif attribute == 'ALPHA': value = material.diffuse[3] # specular separate elif attribute == 'SPEC_R': value = material.specular[0] elif attribute == 'SPEC_G': value = material.specular[1] elif attribute == 'SPEC_B': value = material.specular[2] elif attribute == 'SPEC_HARDNESS': value = material.shininess else: raise ValueError("unexpected material attribute: " + attribute) yield (svert, value) def iter_distance_along_stroke(stroke): """Yields the absolute distance along the stroke up to the current vertex.""" distance = 0.0 # the positions need to be copied, because they are changed in the calling function points = tuple(svert.point.copy() for svert in stroke) yield distance for prev, curr in pairwise(points): distance += (prev - curr).length yield distance # -- mathematical operations -- # def stroke_curvature(it): """ Compute the 2D curvature at the stroke vertex pointed by the iterator 'it'. K = 1 / R where R is the radius of the circle going through the current vertex and its neighbors """ for _ in it: if (it.is_begin or it.is_end): yield 0.0 continue else: it.decrement() prev, current, succ = it.object.point.copy(), next(it).point.copy(), next(it).point.copy() # return the iterator in an unchanged state it.decrement() ab = (current - prev) bc = (succ - current) ac = (prev - succ) a, b, c = ab.length, bc.length, ac.length try: area = 0.5 * ab.cross(ac) K = (4 * area) / (a * b * c) except ZeroDivisionError: K = 0.0 yield abs(K) def stroke_normal(stroke): """ Compute the 2D normal at the stroke vertex pointed by the iterator 'it'. It is noted that Normal2DF0D computes normals based on underlying FEdges instead, which is inappropriate for strokes when they have already been modified by stroke geometry modifiers. The returned normals are dynamic: they update when the vertex position (and therefore the vertex normal) changes. for use in geometry modifiers it is advised to cast this generator function to a tuple or list """ it = iter(stroke) yield from (normal_at_I0D(it) for _ in it) def get_test_stroke(): """Returns a static stroke object for testing """ from freestyle.types import Stroke, Interface0DIterator, StrokeVertexIterator, SVertex, Id, StrokeVertex # points for our fake stroke points = (Vector((1.0, 5.0, 3.0)), Vector((1.0, 2.0, 9.0)), Vector((6.0, 2.0, 3.0)), Vector((7.0, 2.0, 3.0)), Vector((2.0, 6.0, 3.0)), Vector((2.0, 8.0, 3.0))) ids = (Id(0, 0), Id(1, 1), Id(2, 2), Id(3, 3), Id(4, 4), Id(5, 5)) stroke = Stroke() it = iter(stroke) for svert in map(SVertex, points, ids): stroke.insert_vertex(StrokeVertex(svert), it) it = iter(stroke) stroke.update_length() return stroke