# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # # ##### END GPL LICENSE BLOCK ##### # __author__ = ("Bart", "Campbell Barton") __email__ = ["Bart, bart:neeneenee*de"] __url__ = ["Author's (Bart) homepage, http://www.neeneenee.de/vrml"] __version__ = "2006/01/17" __bpydoc__ = """\ This script exports to X3D format. Usage: Run this script from "File->Export" menu. A pop-up will ask whether you want to export only selected or all relevant objects. Known issues:
Doesn't handle multiple materials (don't use material indices);
Doesn't handle multiple UV textures on a single mesh (create a mesh for each texture);
Can't get the texture array associated with material * not the UV ones; """ # $Id$ # #------------------------------------------------------------------------ # X3D exporter for blender 2.36 or above # # ***** BEGIN GPL LICENSE BLOCK ***** # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # # ***** END GPL LICENCE BLOCK ***** # #################################### # Library dependancies #################################### import math import os import bpy import Mathutils from export_3ds import create_derived_objects, free_derived_objects # import Blender # from Blender import Object, Lamp, Draw, Image, Text, sys, Mesh # from Blender.Scene import Render # import BPyObject # import BPyMesh # DEG2RAD=0.017453292519943295 MATWORLD= Mathutils.RotationMatrix(-90, 4, 'X') #################################### # Global Variables #################################### filename = "" # filename = Blender.Get('filename') _safeOverwrite = True extension = '' ########################################################## # Functions for writing output file ########################################################## class x3d_class: def __init__(self, filename): #--- public you can change these --- self.writingcolor = 0 self.writingtexture = 0 self.writingcoords = 0 self.proto = 1 self.matonly = 0 self.share = 0 self.billnode = 0 self.halonode = 0 self.collnode = 0 self.tilenode = 0 self.verbose=2 # level of verbosity in console 0-none, 1-some, 2-most self.cp=3 # decimals for material color values 0.000 - 1.000 self.vp=3 # decimals for vertex coordinate values 0.000 - n.000 self.tp=3 # decimals for texture coordinate values 0.000 - 1.000 self.it=3 #--- class private don't touch --- self.texNames={} # dictionary of textureNames self.matNames={} # dictionary of materiaNames self.meshNames={} # dictionary of meshNames self.indentLevel=0 # keeps track of current indenting self.filename=filename self.file = None if filename.lower().endswith('.x3dz'): try: import gzip self.file = gzip.open(filename, "w") except: print("failed to import compression modules, exporting uncompressed") self.filename = filename[:-1] # remove trailing z if self.file == None: self.file = open(self.filename, "w") self.bNav=0 self.nodeID=0 self.namesReserved=[ "Anchor","Appearance","Arc2D","ArcClose2D","AudioClip","Background","Billboard", "BooleanFilter","BooleanSequencer","BooleanToggle","BooleanTrigger","Box","Circle2D", "Collision","Color","ColorInterpolator","ColorRGBA","component","Cone","connect", "Contour2D","ContourPolyline2D","Coordinate","CoordinateDouble","CoordinateInterpolator", "CoordinateInterpolator2D","Cylinder","CylinderSensor","DirectionalLight","Disk2D", "ElevationGrid","EspduTransform","EXPORT","ExternProtoDeclare","Extrusion","field", "fieldValue","FillProperties","Fog","FontStyle","GeoCoordinate","GeoElevationGrid", "GeoLocationLocation","GeoLOD","GeoMetadata","GeoOrigin","GeoPositionInterpolator", "GeoTouchSensor","GeoViewpoint","Group","HAnimDisplacer","HAnimHumanoid","HAnimJoint", "HAnimSegment","HAnimSite","head","ImageTexture","IMPORT","IndexedFaceSet", "IndexedLineSet","IndexedTriangleFanSet","IndexedTriangleSet","IndexedTriangleStripSet", "Inline","IntegerSequencer","IntegerTrigger","IS","KeySensor","LineProperties","LineSet", "LoadSensor","LOD","Material","meta","MetadataDouble","MetadataFloat","MetadataInteger", "MetadataSet","MetadataString","MovieTexture","MultiTexture","MultiTextureCoordinate", "MultiTextureTransform","NavigationInfo","Normal","NormalInterpolator","NurbsCurve", "NurbsCurve2D","NurbsOrientationInterpolator","NurbsPatchSurface", "NurbsPositionInterpolator","NurbsSet","NurbsSurfaceInterpolator","NurbsSweptSurface", "NurbsSwungSurface","NurbsTextureCoordinate","NurbsTrimmedSurface","OrientationInterpolator", "PixelTexture","PlaneSensor","PointLight","PointSet","Polyline2D","Polypoint2D", "PositionInterpolator","PositionInterpolator2D","ProtoBody","ProtoDeclare","ProtoInstance", "ProtoInterface","ProximitySensor","ReceiverPdu","Rectangle2D","ROUTE","ScalarInterpolator", "Scene","Script","Shape","SignalPdu","Sound","Sphere","SphereSensor","SpotLight","StaticGroup", "StringSensor","Switch","Text","TextureBackground","TextureCoordinate","TextureCoordinateGenerator", "TextureTransform","TimeSensor","TimeTrigger","TouchSensor","Transform","TransmitterPdu", "TriangleFanSet","TriangleSet","TriangleSet2D","TriangleStripSet","Viewpoint","VisibilitySensor", "WorldInfo","X3D","XvlShell","VertexShader","FragmentShader","MultiShaderAppearance","ShaderAppearance" ] self.namesStandard=[ "Empty","Empty.000","Empty.001","Empty.002","Empty.003","Empty.004","Empty.005", "Empty.006","Empty.007","Empty.008","Empty.009","Empty.010","Empty.011","Empty.012", "Scene.001","Scene.002","Scene.003","Scene.004","Scene.005","Scene.06","Scene.013", "Scene.006","Scene.007","Scene.008","Scene.009","Scene.010","Scene.011","Scene.012", "World","World.000","World.001","World.002","World.003","World.004","World.005" ] self.namesFog=[ "","LINEAR","EXPONENTIAL","" ] ########################################################## # Writing nodes routines ########################################################## def writeHeader(self): #bfile = sys.expandpath( Blender.Get('filename') ).replace('<', '<').replace('>', '>') bfile = self.filename.replace('<', '<').replace('>', '>') # use outfile name self.file.write("\n") self.file.write("\n") self.file.write("\n") self.file.write("\n") self.file.write("\t\n" % os.path.basename(bfile)) # self.file.write("\t\n" % sys.basename(bfile)) self.file.write("\t\n" % '2.5') # self.file.write("\t\n" % Blender.Get('version')) self.file.write("\t\n") self.file.write("\n") self.file.write("\n") # This functionality is poorly defined, disabling for now - campbell ''' def writeInline(self): inlines = Blender.Scene.Get() allinlines = len(inlines) if scene != inlines[0]: return else: for i in xrange(allinlines): nameinline=inlines[i].name if (nameinline not in self.namesStandard) and (i > 0): self.file.write("" % nameinline) self.file.write("\n\n") def writeScript(self): textEditor = Blender.Text.Get() alltext = len(textEditor) for i in xrange(alltext): nametext = textEditor[i].name nlines = textEditor[i].getNLines() if (self.proto == 1): if (nametext == "proto" or nametext == "proto.js" or nametext == "proto.txt") and (nlines != None): nalllines = len(textEditor[i].asLines()) alllines = textEditor[i].asLines() for j in xrange(nalllines): self.writeIndented(alllines[j] + "\n") elif (self.proto == 0): if (nametext == "route" or nametext == "route.js" or nametext == "route.txt") and (nlines != None): nalllines = len(textEditor[i].asLines()) alllines = textEditor[i].asLines() for j in xrange(nalllines): self.writeIndented(alllines[j] + "\n") self.writeIndented("\n") ''' def writeViewpoint(self, ob, mat, scene): context = scene.render_data # context = scene.render ratio = float(context.resolution_x)/float(context.resolution_y) # ratio = float(context.imageSizeY())/float(context.imageSizeX()) lens = (360* (math.atan(ratio *16 / ob.data.lens) / math.pi))*(math.pi/180) # lens = (360* (math.atan(ratio *16 / ob.data.getLens()) / math.pi))*(math.pi/180) lens = min(lens, math.pi) # get the camera location, subtract 90 degress from X to orient like X3D does # mat = ob.matrixWorld - mat is now passed! loc = self.rotatePointForVRML(mat.translation_part()) rot = mat.to_euler() rot = (((rot[0]-90)), rot[1], rot[2]) # rot = (((rot[0]-90)*DEG2RAD), rot[1]*DEG2RAD, rot[2]*DEG2RAD) nRot = self.rotatePointForVRML( rot ) # convert to Quaternion and to Angle Axis Q = self.eulerToQuaternions(nRot[0], nRot[1], nRot[2]) Q1 = self.multiplyQuaternions(Q[0], Q[1]) Qf = self.multiplyQuaternions(Q1, Q[2]) angleAxis = self.quaternionToAngleAxis(Qf) self.file.write("\n\n" % (lens)) def writeFog(self, world): if world: mtype = world.mist.falloff # mtype = world.getMistype() mparam = world.mist # mparam = world.getMist() grd = world.horizon_color # grd = world.getHor() grd0, grd1, grd2 = grd[0], grd[1], grd[2] else: return if (mtype == 'LINEAR' or mtype == 'INVERSE_QUADRATIC'): mtype = 1 if mtype == 'LINEAR' else 2 # if (mtype == 1 or mtype == 2): self.file.write("\n\n" % round(mparam[2],self.cp)) else: return def writeNavigationInfo(self, scene): self.file.write('\n') def writeSpotLight(self, ob, mtx, lamp, world): safeName = self.cleanStr(ob.name) if world: ambi = world.ambient_color # ambi = world.amb ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5 else: ambi = 0 ambientIntensity = 0 # compute cutoff and beamwidth intensity=min(lamp.energy/1.75,1.0) beamWidth=lamp.spot_size * 0.37; # beamWidth=((lamp.spotSize*math.pi)/180.0)*.37; cutOffAngle=beamWidth*1.3 dx,dy,dz=self.computeDirection(mtx) # note -dx seems to equal om[3][0] # note -dz seems to equal om[3][1] # note dy seems to equal om[3][2] #location=(ob.matrixWorld*MATWORLD).translation_part() # now passed location=(mtx*MATWORLD).translation_part() radius = lamp.distance*math.cos(beamWidth) # radius = lamp.dist*math.cos(beamWidth) self.file.write("\n\n" % (round(location[0],3), round(location[1],3), round(location[2],3))) def writeDirectionalLight(self, ob, mtx, lamp, world): safeName = self.cleanStr(ob.name) if world: ambi = world.ambient_color # ambi = world.amb ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5 else: ambi = 0 ambientIntensity = 0 intensity=min(lamp.energy/1.75,1.0) (dx,dy,dz)=self.computeDirection(mtx) self.file.write("\n\n" % (round(dx,4),round(dy,4),round(dz,4))) def writePointLight(self, ob, mtx, lamp, world): safeName = self.cleanStr(ob.name) if world: ambi = world.ambient_color # ambi = world.amb ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5 else: ambi = 0 ambientIntensity = 0 # location=(ob.matrixWorld*MATWORLD).translation_part() # now passed location= (mtx*MATWORLD).translation_part() self.file.write("\n\n" % (round(location[0],3), round(location[1],3), round(location[2],3))) ''' def writeNode(self, ob, mtx): obname=str(ob.name) if obname in self.namesStandard: return else: dx,dy,dz = self.computeDirection(mtx) # location=(ob.matrixWorld*MATWORLD).translation_part() location=(mtx*MATWORLD).translation_part() self.writeIndented("<%s\n" % obname,1) self.writeIndented("direction=\"%s %s %s\"\n" % (round(dx,3),round(dy,3),round(dz,3))) self.writeIndented("location=\"%s %s %s\"\n" % (round(location[0],3), round(location[1],3), round(location[2],3))) self.writeIndented("/>\n",-1) self.writeIndented("\n") ''' def secureName(self, name): name = name + str(self.nodeID) self.nodeID=self.nodeID+1 if len(name) <= 3: newname = "_" + str(self.nodeID) return "%s" % (newname) else: for bad in ['"','#',"'",',','.','[','\\',']','{','}']: name=name.replace(bad,'_') if name in self.namesReserved: newname = name[0:3] + "_" + str(self.nodeID) return "%s" % (newname) elif name[0].isdigit(): newname = "_" + name + str(self.nodeID) return "%s" % (newname) else: newname = name return "%s" % (newname) def writeIndexedFaceSet(self, ob, mesh, mtx, world, EXPORT_TRI = False): imageMap={} # set of used images sided={} # 'one':cnt , 'two':cnt vColors={} # 'multi':1 meshName = self.cleanStr(ob.name) meshME = self.cleanStr(ob.data.name) # We dont care if its the mesh name or not # meshME = self.cleanStr(ob.getData(mesh=1).name) # We dont care if its the mesh name or not if len(mesh.faces) == 0: return mode = [] # mode = 0 if mesh.active_uv_texture: # if mesh.faceUV: for face in mesh.active_uv_texture.data: # for face in mesh.faces: if face.halo and 'HALO' not in mode: mode += ['HALO'] if face.billboard and 'BILLBOARD' not in mode: mode += ['BILLBOARD'] if face.object_color and 'OBJECT_COLOR' not in mode: mode += ['OBJECT_COLOR'] if face.collision and 'COLLISION' not in mode: mode += ['COLLISION'] # mode |= face.mode if 'HALO' in mode and self.halonode == 0: # if mode & Mesh.FaceModes.HALO and self.halonode == 0: self.writeIndented("\n",1) self.halonode = 1 elif 'BILLBOARD' in mode and self.billnode == 0: # elif mode & Mesh.FaceModes.BILLBOARD and self.billnode == 0: self.writeIndented("\n",1) self.billnode = 1 elif 'OBJECT_COLOR' in mode and self.matonly == 0: # elif mode & Mesh.FaceModes.OBCOL and self.matonly == 0: self.matonly = 1 # TF_TILES is marked as deprecated in DNA_meshdata_types.h # elif mode & Mesh.FaceModes.TILES and self.tilenode == 0: # self.tilenode = 1 elif 'COLLISION' not in mode and self.collnode == 0: # elif not mode & Mesh.FaceModes.DYNAMIC and self.collnode == 0: self.writeIndented("\n",1) self.collnode = 1 nIFSCnt=self.countIFSSetsNeeded(mesh, imageMap, sided, vColors) if nIFSCnt > 1: self.writeIndented("\n" % ("G_", meshName),1) if 'two' in sided and sided['two'] > 0: bTwoSided=1 else: bTwoSided=0 # mtx = ob.matrixWorld * MATWORLD # mtx is now passed mtx = mtx * MATWORLD loc= mtx.translation_part() sca= mtx.scale_part() quat = mtx.to_quat() rot= quat.axis self.writeIndented('\n' % \ (meshName, loc[0], loc[1], loc[2], sca[0], sca[1], sca[2], rot[0], rot[1], rot[2], quat.angle) ) # self.writeIndented('\n' % \ # (meshName, loc[0], loc[1], loc[2], sca[0], sca[1], sca[2], rot[0], rot[1], rot[2], quat.angle*DEG2RAD) ) self.writeIndented("\n",1) maters=mesh.materials hasImageTexture=0 issmooth=0 if len(maters) > 0 or mesh.active_uv_texture: # if len(maters) > 0 or mesh.faceUV: self.writeIndented("\n", 1) # right now this script can only handle a single material per mesh. if len(maters) >= 1: mat=maters[0] # matFlags = mat.getMode() if not mat.face_texture: # if not matFlags & Blender.Material.Modes['TEXFACE']: self.writeMaterial(mat, self.cleanStr(mat.name,''), world) # self.writeMaterial(mat, self.cleanStr(maters[0].name,''), world) if len(maters) > 1: print("Warning: mesh named %s has multiple materials" % meshName) print("Warning: only one material per object handled") #-- textures face = None if mesh.active_uv_texture: # if mesh.faceUV: for face in mesh.active_uv_texture.data: # for face in mesh.faces: if face.image: # if (hasImageTexture == 0) and (face.image): self.writeImageTexture(face.image) # hasImageTexture=1 # keep track of face texture break if self.tilenode == 1 and face and face.image: # if self.tilenode == 1: self.writeIndented("\n" % (face.image.xrep, face.image.yrep)) self.tilenode = 0 self.writeIndented("\n", -1) #-- IndexedFaceSet or IndexedLineSet # user selected BOUNDS=1, SOLID=3, SHARED=4, or TEXTURE=5 ifStyle="IndexedFaceSet" # look up mesh name, use it if available if meshME in self.meshNames: self.writeIndented("<%s USE=\"ME_%s\">" % (ifStyle, meshME), 1) self.meshNames[meshME]+=1 else: if int(mesh.users) > 1: self.writeIndented("<%s DEF=\"ME_%s\" " % (ifStyle, meshME), 1) self.meshNames[meshME]=1 else: self.writeIndented("<%s " % ifStyle, 1) if bTwoSided == 1: self.file.write("solid=\"false\" ") else: self.file.write("solid=\"true\" ") for face in mesh.faces: if face.smooth: issmooth=1 break if issmooth==1: creaseAngle=(mesh.autosmooth_angle)*(math.pi/180.0) # creaseAngle=(mesh.degr)*(math.pi/180.0) self.file.write("creaseAngle=\"%s\" " % (round(creaseAngle,self.cp))) #--- output textureCoordinates if UV texture used if mesh.active_uv_texture: # if mesh.faceUV: if self.matonly == 1 and self.share == 1: self.writeFaceColors(mesh) elif hasImageTexture == 1: self.writeTextureCoordinates(mesh) #--- output coordinates self.writeCoordinates(ob, mesh, meshName, EXPORT_TRI) self.writingcoords = 1 self.writingtexture = 1 self.writingcolor = 1 self.writeCoordinates(ob, mesh, meshName, EXPORT_TRI) #--- output textureCoordinates if UV texture used if mesh.active_uv_texture: # if mesh.faceUV: if hasImageTexture == 1: self.writeTextureCoordinates(mesh) elif self.matonly == 1 and self.share == 1: self.writeFaceColors(mesh) #--- output vertexColors self.matonly = 0 self.share = 0 self.writingcoords = 0 self.writingtexture = 0 self.writingcolor = 0 #--- output closing braces self.writeIndented("\n" % ifStyle, -1) self.writeIndented("\n", -1) self.writeIndented("\n", -1) if self.halonode == 1: self.writeIndented("\n", -1) self.halonode = 0 if self.billnode == 1: self.writeIndented("\n", -1) self.billnode = 0 if self.collnode == 1: self.writeIndented("\n", -1) self.collnode = 0 if nIFSCnt > 1: self.writeIndented("\n", -1) self.file.write("\n") def writeCoordinates(self, ob, mesh, meshName, EXPORT_TRI = False): # create vertex list and pre rotate -90 degrees X for VRML if self.writingcoords == 0: self.file.write('coordIndex="') for face in mesh.faces: fv = face.verts # fv = face.v if len(fv)==3: # if len(face)==3: self.file.write("%i %i %i -1, " % (fv[0], fv[1], fv[2])) # self.file.write("%i %i %i -1, " % (fv[0].index, fv[1].index, fv[2].index)) else: if EXPORT_TRI: self.file.write("%i %i %i -1, " % (fv[0], fv[1], fv[2])) # self.file.write("%i %i %i -1, " % (fv[0].index, fv[1].index, fv[2].index)) self.file.write("%i %i %i -1, " % (fv[0], fv[2], fv[3])) # self.file.write("%i %i %i -1, " % (fv[0].index, fv[2].index, fv[3].index)) else: self.file.write("%i %i %i %i -1, " % (fv[0], fv[1], fv[2], fv[3])) # self.file.write("%i %i %i %i -1, " % (fv[0].index, fv[1].index, fv[2].index, fv[3].index)) self.file.write("\">\n") else: #-- vertices # mesh.transform(ob.matrixWorld) self.writeIndented("") self.writeIndented("\n", -1) def writeTextureCoordinates(self, mesh): texCoordList=[] texIndexList=[] j=0 for face in mesh.active_uv_texture.data: # for face in mesh.faces: # workaround, since tface.uv iteration is wrong atm uvs = face.uv # uvs = [face.uv1, face.uv2, face.uv3, face.uv4] if face.verts[3] else [face.uv1, face.uv2, face.uv3] for uv in uvs: # for uv in face.uv: texIndexList.append(j) texCoordList.append(uv) j=j+1 texIndexList.append(-1) if self.writingtexture == 0: self.file.write("\n\t\t\ttexCoordIndex=\"") texIndxStr="" for i in range(len(texIndexList)): texIndxStr = texIndxStr + "%d, " % texIndexList[i] if texIndexList[i]==-1: self.file.write(texIndxStr) texIndxStr="" self.file.write("\"\n\t\t\t") else: self.writeIndented("") self.writeIndented("\n", -1) def writeFaceColors(self, mesh): if self.writingcolor == 0: self.file.write("colorPerVertex=\"false\" ") elif mesh.active_vertex_color: # else: self.writeIndented(" 2: print("Debug: face.col r=%d g=%d b=%d" % (c[0], c[1], c[2])) # print("Debug: face.col r=%d g=%d b=%d" % (c.r, c.g, c.b)) aColor = self.rgbToFS(c) self.file.write("%s, " % aColor) # for face in mesh.faces: # if face.col: # c=face.col[0] # if self.verbose > 2: # print("Debug: face.col r=%d g=%d b=%d" % (c.r, c.g, c.b)) # aColor = self.rgbToFS(c) # self.file.write("%s, " % aColor) self.file.write("\" />") self.writeIndented("\n",-1) def writeMaterial(self, mat, matName, world): # look up material name, use it if available if matName in self.matNames: self.writeIndented("\n" % matName) self.matNames[matName]+=1 return; self.matNames[matName]=1 ambient = mat.ambient/3 # ambient = mat.amb/3 diffuseR, diffuseG, diffuseB = tuple(mat.diffuse_color) # diffuseR, diffuseG, diffuseB = mat.rgbCol[0], mat.rgbCol[1],mat.rgbCol[2] if world: ambi = world.ambient_color # ambi = world.getAmb() ambi0, ambi1, ambi2 = (ambi[0]*mat.ambient)*2, (ambi[1]*mat.ambient)*2, (ambi[2]*mat.ambient)*2 # ambi0, ambi1, ambi2 = (ambi[0]*mat.amb)*2, (ambi[1]*mat.amb)*2, (ambi[2]*mat.amb)*2 else: ambi0, ambi1, ambi2 = 0, 0, 0 emisR, emisG, emisB = (diffuseR*mat.emit+ambi0)/2, (diffuseG*mat.emit+ambi1)/2, (diffuseB*mat.emit+ambi2)/2 shininess = mat.specular_hardness/512.0 # shininess = mat.hard/512.0 specR = (mat.specular_color[0]+0.001)/(1.25/(mat.specular_intensity+0.001)) # specR = (mat.specCol[0]+0.001)/(1.25/(mat.spec+0.001)) specG = (mat.specular_color[1]+0.001)/(1.25/(mat.specular_intensity+0.001)) # specG = (mat.specCol[1]+0.001)/(1.25/(mat.spec+0.001)) specB = (mat.specular_color[2]+0.001)/(1.25/(mat.specular_intensity+0.001)) # specB = (mat.specCol[2]+0.001)/(1.25/(mat.spec+0.001)) transp = 1-mat.alpha # matFlags = mat.getMode() if mat.shadeless: # if matFlags & Blender.Material.Modes['SHADELESS']: ambient = 1 shine = 1 specR = emitR = diffuseR specG = emitG = diffuseG specB = emitB = diffuseB self.writeIndented("" % (round(transp,self.cp))) self.writeIndented("\n",-1) def writeImageTexture(self, image): name = image.name filename = image.filename.split('/')[-1].split('\\')[-1] if name in self.texNames: self.writeIndented("\n" % self.cleanStr(name)) self.texNames[name] += 1 return else: self.writeIndented("" % name) self.writeIndented("\n",-1) self.texNames[name] = 1 def writeBackground(self, world, alltextures): if world: worldname = world.name else: return blending = (world.blend_sky, world.paper_sky, world.real_sky) # blending = world.getSkytype() grd = world.horizon_color # grd = world.getHor() grd0, grd1, grd2 = grd[0], grd[1], grd[2] sky = world.zenith_color # sky = world.getZen() sky0, sky1, sky2 = sky[0], sky[1], sky[2] mix0, mix1, mix2 = grd[0]+sky[0], grd[1]+sky[1], grd[2]+sky[2] mix0, mix1, mix2 = mix0/2, mix1/2, mix2/2 self.file.write("\n\n") ########################################################## # export routine ########################################################## def export(self, scene, world, alltextures,\ EXPORT_APPLY_MODIFIERS = False,\ EXPORT_TRI= False,\ ): print("Info: starting X3D export to " + self.filename + "...") self.writeHeader() # self.writeScript() self.writeNavigationInfo(scene) self.writeBackground(world, alltextures) self.writeFog(world) self.proto = 0 # # COPIED FROM OBJ EXPORTER # if EXPORT_APPLY_MODIFIERS: # temp_mesh_name = '~tmp-mesh' # # Get the container mesh. - used for applying modifiers and non mesh objects. # containerMesh = meshName = tempMesh = None # for meshName in Blender.NMesh.GetNames(): # if meshName.startswith(temp_mesh_name): # tempMesh = Mesh.Get(meshName) # if not tempMesh.users: # containerMesh = tempMesh # if not containerMesh: # containerMesh = Mesh.New(temp_mesh_name) # -------------------------- for ob_main in [o for o in scene.objects if o.is_visible()]: # for ob_main in scene.objects.context: free, derived = create_derived_objects(ob_main) if derived == None: continue for ob, ob_mat in derived: # for ob, ob_mat in BPyObject.getDerivedObjects(ob_main): objType=ob.type objName=ob.name self.matonly = 0 if objType == "CAMERA": # if objType == "Camera": self.writeViewpoint(ob, ob_mat, scene) elif objType in ("MESH", "CURVE", "SURF", "TEXT") : # elif objType in ("Mesh", "Curve", "Surf", "Text") : if EXPORT_APPLY_MODIFIERS or objType != 'MESH': # if EXPORT_APPLY_MODIFIERS or objType != 'Mesh': me = ob.create_mesh(EXPORT_APPLY_MODIFIERS, 'PREVIEW') # me= BPyMesh.getMeshFromObject(ob, containerMesh, EXPORT_APPLY_MODIFIERS, False, scene) else: me = ob.data # me = ob.getData(mesh=1) self.writeIndexedFaceSet(ob, me, ob_mat, world, EXPORT_TRI = EXPORT_TRI) # free mesh created with create_mesh() if me != ob.data: bpy.data.meshes.remove(me) elif objType == "LAMP": # elif objType == "Lamp": data= ob.data datatype=data.type if datatype == 'POINT': # if datatype == Lamp.Types.Lamp: self.writePointLight(ob, ob_mat, data, world) elif datatype == 'SPOT': # elif datatype == Lamp.Types.Spot: self.writeSpotLight(ob, ob_mat, data, world) elif datatype == 'SUN': # elif datatype == Lamp.Types.Sun: self.writeDirectionalLight(ob, ob_mat, data, world) else: self.writeDirectionalLight(ob, ob_mat, data, world) # do you think x3d could document what to do with dummy objects? #elif objType == "Empty" and objName != "Empty": # self.writeNode(ob, ob_mat) else: #print "Info: Ignoring [%s], object type [%s] not handle yet" % (object.name,object.getType) pass if free: free_derived_objects(ob_main) self.file.write("\n\n") # if EXPORT_APPLY_MODIFIERS: # if containerMesh: # containerMesh.verts = None self.cleanup() ########################################################## # Utility methods ########################################################## def cleanup(self): self.file.close() self.texNames={} self.matNames={} self.indentLevel=0 print("Info: finished X3D export to %s\n" % self.filename) def cleanStr(self, name, prefix='rsvd_'): """cleanStr(name,prefix) - try to create a valid VRML DEF name from object name""" newName=name[:] if len(newName) == 0: self.nNodeID+=1 return "%s%d" % (prefix, self.nNodeID) if newName in self.namesReserved: newName='%s%s' % (prefix,newName) if newName[0].isdigit(): newName='%s%s' % ('_',newName) for bad in [' ','"','#',"'",',','.','[','\\',']','{','}']: newName=newName.replace(bad,'_') return newName def countIFSSetsNeeded(self, mesh, imageMap, sided, vColors): """ countIFFSetsNeeded() - should look at a blender mesh to determine how many VRML IndexFaceSets or IndexLineSets are needed. A new mesh created under the following conditions: o - split by UV Textures / one per mesh o - split by face, one sided and two sided o - split by smooth and flat faces o - split when faces only have 2 vertices * needs to be an IndexLineSet """ imageNameMap={} faceMap={} nFaceIndx=0 if mesh.active_uv_texture: # if mesh.faceUV: for face in mesh.active_uv_texture.data: # for face in mesh.faces: sidename=''; if face.twoside: # if face.mode & Mesh.FaceModes.TWOSIDE: sidename='two' else: sidename='one' if sidename in sided: sided[sidename]+=1 else: sided[sidename]=1 image = face.image if image: faceName="%s_%s" % (face.image.name, sidename); try: imageMap[faceName].append(face) except: imageMap[faceName]=[face.image.name,sidename,face] if self.verbose > 2: for faceName in imageMap.keys(): ifs=imageMap[faceName] print("Debug: faceName=%s image=%s, solid=%s facecnt=%d" % \ (faceName, ifs[0], ifs[1], len(ifs)-2)) return len(imageMap) def faceToString(self,face): print("Debug: face.flag=0x%x (bitflags)" % face.flag) if face.sel: print("Debug: face.sel=true") print("Debug: face.mode=0x%x (bitflags)" % face.mode) if face.mode & Mesh.FaceModes.TWOSIDE: print("Debug: face.mode twosided") print("Debug: face.transp=0x%x (enum)" % face.transp) if face.transp == Mesh.FaceTranspModes.SOLID: print("Debug: face.transp.SOLID") if face.image: print("Debug: face.image=%s" % face.image.name) print("Debug: face.materialIndex=%d" % face.materialIndex) # XXX not used # def getVertexColorByIndx(self, mesh, indx): # c = None # for face in mesh.faces: # j=0 # for vertex in face.v: # if vertex.index == indx: # c=face.col[j] # break # j=j+1 # if c: break # return c def meshToString(self,mesh): # print("Debug: mesh.hasVertexUV=%d" % mesh.vertexColors) print("Debug: mesh.faceUV=%d" % (len(mesh.uv_textures) > 0)) # print("Debug: mesh.faceUV=%d" % mesh.faceUV) print("Debug: mesh.hasVertexColours=%d" % (len(mesh.vertex_colors) > 0)) # print("Debug: mesh.hasVertexColours=%d" % mesh.hasVertexColours()) print("Debug: mesh.verts=%d" % len(mesh.verts)) print("Debug: mesh.faces=%d" % len(mesh.faces)) print("Debug: mesh.materials=%d" % len(mesh.materials)) def rgbToFS(self, c): s="%s %s %s" % (round(c[0]/255.0,self.cp), round(c[1]/255.0,self.cp), round(c[2]/255.0,self.cp)) # s="%s %s %s" % ( # round(c.r/255.0,self.cp), # round(c.g/255.0,self.cp), # round(c.b/255.0,self.cp)) return s def computeDirection(self, mtx): x,y,z=(0,-1.0,0) # point down ax,ay,az = (mtx*MATWORLD).to_euler() # ax *= DEG2RAD # ay *= DEG2RAD # az *= DEG2RAD # rot X x1=x y1=y*math.cos(ax)-z*math.sin(ax) z1=y*math.sin(ax)+z*math.cos(ax) # rot Y x2=x1*math.cos(ay)+z1*math.sin(ay) y2=y1 z2=z1*math.cos(ay)-x1*math.sin(ay) # rot Z x3=x2*math.cos(az)-y2*math.sin(az) y3=x2*math.sin(az)+y2*math.cos(az) z3=z2 return [x3,y3,z3] # swap Y and Z to handle axis difference between Blender and VRML #------------------------------------------------------------------------ def rotatePointForVRML(self, v): x = v[0] y = v[2] z = -v[1] vrmlPoint=[x, y, z] return vrmlPoint # For writing well formed VRML code #------------------------------------------------------------------------ def writeIndented(self, s, inc=0): if inc < 1: self.indentLevel = self.indentLevel + inc spaces="" for x in range(self.indentLevel): spaces = spaces + "\t" self.file.write(spaces + s) if inc > 0: self.indentLevel = self.indentLevel + inc # Converts a Euler to three new Quaternions # Angles of Euler are passed in as radians #------------------------------------------------------------------------ def eulerToQuaternions(self, x, y, z): Qx = [math.cos(x/2), math.sin(x/2), 0, 0] Qy = [math.cos(y/2), 0, math.sin(y/2), 0] Qz = [math.cos(z/2), 0, 0, math.sin(z/2)] quaternionVec=[Qx,Qy,Qz] return quaternionVec # Multiply two Quaternions together to get a new Quaternion #------------------------------------------------------------------------ def multiplyQuaternions(self, Q1, Q2): result = [((Q1[0] * Q2[0]) - (Q1[1] * Q2[1]) - (Q1[2] * Q2[2]) - (Q1[3] * Q2[3])), ((Q1[0] * Q2[1]) + (Q1[1] * Q2[0]) + (Q1[2] * Q2[3]) - (Q1[3] * Q2[2])), ((Q1[0] * Q2[2]) + (Q1[2] * Q2[0]) + (Q1[3] * Q2[1]) - (Q1[1] * Q2[3])), ((Q1[0] * Q2[3]) + (Q1[3] * Q2[0]) + (Q1[1] * Q2[2]) - (Q1[2] * Q2[1]))] return result # Convert a Quaternion to an Angle Axis (ax, ay, az, angle) # angle is in radians #------------------------------------------------------------------------ def quaternionToAngleAxis(self, Qf): scale = math.pow(Qf[1],2) + math.pow(Qf[2],2) + math.pow(Qf[3],2) ax = Qf[1] ay = Qf[2] az = Qf[3] if scale > .0001: ax/=scale ay/=scale az/=scale angle = 2 * math.acos(Qf[0]) result = [ax, ay, az, angle] return result ########################################################## # Callbacks, needed before Main ########################################################## def x3d_export(filename, context, EXPORT_APPLY_MODIFIERS=False, EXPORT_TRI=False, EXPORT_GZIP=False): if EXPORT_GZIP: if not filename.lower().endswith('.x3dz'): filename = '.'.join(filename.split('.')[:-1]) + '.x3dz' else: if not filename.lower().endswith('.x3d'): filename = '.'.join(filename.split('.')[:-1]) + '.x3d' scene = context.scene # scene = Blender.Scene.GetCurrent() world = scene.world # XXX these are global textures while .Get() returned only scene's? alltextures = bpy.data.textures # alltextures = Blender.Texture.Get() wrlexport=x3d_class(filename) wrlexport.export(\ scene,\ world,\ alltextures,\ \ EXPORT_APPLY_MODIFIERS = EXPORT_APPLY_MODIFIERS,\ EXPORT_TRI = EXPORT_TRI,\ ) def x3d_export_ui(filename): if not filename.endswith(extension): filename += extension #if _safeOverwrite and sys.exists(filename): # result = Draw.PupMenu("File Already Exists, Overwrite?%t|Yes%x1|No%x0") #if(result != 1): # return # Get user options EXPORT_APPLY_MODIFIERS = Draw.Create(1) EXPORT_TRI = Draw.Create(0) EXPORT_GZIP = Draw.Create( filename.lower().endswith('.x3dz') ) # Get USER Options pup_block = [\ ('Apply Modifiers', EXPORT_APPLY_MODIFIERS, 'Use transformed mesh data from each object.'),\ ('Triangulate', EXPORT_TRI, 'Triangulate quads.'),\ ('Compress', EXPORT_GZIP, 'GZip the resulting file, requires a full python install'),\ ] if not Draw.PupBlock('Export...', pup_block): return Blender.Window.EditMode(0) Blender.Window.WaitCursor(1) x3d_export(filename,\ EXPORT_APPLY_MODIFIERS = EXPORT_APPLY_MODIFIERS.val,\ EXPORT_TRI = EXPORT_TRI.val,\ EXPORT_GZIP = EXPORT_GZIP.val\ ) Blender.Window.WaitCursor(0) ######################################################### # main routine ######################################################### # if __name__ == '__main__': # Blender.Window.FileSelector(x3d_export_ui,"Export X3D", Blender.Get('filename').replace('.blend', '.x3d')) from bpy.props import * class ExportX3D(bpy.types.Operator): '''Export selection to Extensible 3D file (.x3d)''' bl_idname = "export.x3d" bl_label = 'Export X3D' # List of operator properties, the attributes will be assigned # to the class instance from the operator settings before calling. path = StringProperty(name="File Path", description="File path used for exporting the X3D file", maxlen= 1024, default= "") check_existing = BoolProperty(name="Check Existing", description="Check and warn on overwriting existing files", default=True, options={'HIDDEN'}) apply_modifiers = BoolProperty(name="Apply Modifiers", description="Use transformed mesh data from each object.", default=True) triangulate = BoolProperty(name="Triangulate", description="Triangulate quads.", default=False) compress = BoolProperty(name="Compress", description="GZip the resulting file, requires a full python install.", default=False) def execute(self, context): x3d_export(self.properties.path, context, self.properties.apply_modifiers, self.properties.triangulate, self.properties.compress) return {'FINISHED'} def invoke(self, context, event): wm = context.manager wm.add_fileselect(self) return {'RUNNING_MODAL'} bpy.types.register(ExportX3D) def menu_func(self, context): default_path = bpy.data.filename.replace(".blend", ".x3d") self.layout.operator(ExportX3D.bl_idname, text="X3D Extensible 3D (.x3d)...").path = default_path bpy.types.INFO_MT_file_export.append(menu_func) # NOTES # - blender version is hardcoded