# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # from _bpy import types as bpy_types import _bpy from mathutils import Vector StructRNA = bpy_types.Struct.__bases__[0] StructMetaIDProp = _bpy.StructMetaIDProp # StructRNA = bpy_types.Struct class Context(StructRNA): __slots__ = () def copy(self): from types import BuiltinMethodType new_context = {} generic_attrs = list(StructRNA.__dict__.keys()) + ["bl_rna", "rna_type", "copy"] for attr in dir(self): if not (attr.startswith("_") or attr in generic_attrs): value = getattr(self, attr) if type(value) != BuiltinMethodType: new_context[attr] = value return new_context class Library(bpy_types.ID): __slots__ = () @property def users_id(self): """ID datablocks which use this library""" import bpy # See: readblenentry.c, IDTYPE_FLAGS_ISLINKABLE, we could make this an attribute in rna. attr_links = "actions", "armatures", "brushes", "cameras", \ "curves", "grease_pencil", "groups", "images", \ "lamps", "lattices", "materials", "metaballs", \ "meshes", "node_groups", "objects", "scenes", \ "sounds", "textures", "texts", "fonts", "worlds" return tuple(id_block for attr in attr_links for id_block in getattr(bpy.data, attr) if id_block.library == self) class Texture(bpy_types.ID): __slots__ = () @property def users_material(self): """Materials that use this texture""" import bpy return tuple(mat for mat in bpy.data.materials if self in [slot.texture for slot in mat.texture_slots if slot]) @property def users_object_modifier(self): """Object modifiers that use this texture""" import bpy return tuple(obj for obj in bpy.data.objects if self in [mod.texture for mod in obj.modifiers if mod.type == 'DISPLACE']) class Group(bpy_types.ID): __slots__ = () @property def users_dupli_group(self): """The dupli group this group is used in""" import bpy return tuple(obj for obj in bpy.data.objects if self == obj.dupli_group) class Object(bpy_types.ID): __slots__ = () @property def children(self): """All the children of this object""" import bpy return tuple(child for child in bpy.data.objects if child.parent == self) @property def users_group(self): """The groups this object is in""" import bpy return tuple(group for group in bpy.data.groups if self in group.objects[:]) @property def users_scene(self): """The scenes this object is in""" import bpy return tuple(scene for scene in bpy.data.scenes if self in scene.objects[:]) class _GenericBone: """ functions for bones, common between Armature/Pose/Edit bones. internal subclassing use only. """ __slots__ = () def translate(self, vec): """Utility function to add *vec* to the head and tail of this bone.""" self.head += vec self.tail += vec def parent_index(self, parent_test): """ The same as 'bone in other_bone.parent_recursive' but saved generating a list. """ # use the name so different types can be tested. name = parent_test.name parent = self.parent i = 1 while parent: if parent.name == name: return i parent = parent.parent i += 1 return 0 @property def x_axis(self): """ Vector pointing down the x-axis of the bone. """ return self.matrix.rotation_part() * Vector((1.0, 0.0, 0.0)) @property def y_axis(self): """ Vector pointing down the x-axis of the bone. """ return self.matrix.rotation_part() * Vector((0.0, 1.0, 0.0)) @property def z_axis(self): """ Vector pointing down the x-axis of the bone. """ return self.matrix.rotation_part() * Vector((0.0, 0.0, 1.0)) @property def basename(self): """The name of this bone before any '.' character""" #return self.name.rsplit(".", 1)[0] return self.name.split(".")[0] @property def parent_recursive(self): """A list of parents, starting with the immediate parent""" parent_list = [] parent = self.parent while parent: if parent: parent_list.append(parent) parent = parent.parent return parent_list @property def center(self): """The midpoint between the head and the tail.""" return (self.head + self.tail) * 0.5 @property def length(self): """The distance from head to tail, when set the head is moved to fit the length.""" return self.vector.length @length.setter def length(self, value): self.tail = self.head + ((self.tail - self.head).normalize() * value) @property def vector(self): """The direction this bone is pointing. Utility function for (tail - head)""" return (self.tail - self.head) @property def children(self): """A list of all the bones children.""" return [child for child in self._other_bones if child.parent == self] @property def children_recursive(self): """a list of all children from this bone.""" bones_children = [] for bone in self._other_bones: index = bone.parent_index(self) if index: bones_children.append((index, bone)) # sort by distance to parent bones_children.sort(key=lambda bone_pair: bone_pair[0]) return [bone for index, bone in bones_children] @property def children_recursive_basename(self): """ Returns a chain of children with the same base name as this bone Only direct chains are supported, forks caused by multiple children with matching basenames will terminate the function and not be returned. """ basename = self.basename chain = [] child = self while True: children = child.children children_basename = [] for child in children: if basename == child.basename: children_basename.append(child) if len(children_basename) == 1: child = children_basename[0] chain.append(child) else: if len(children_basename): print("multiple basenames found, this is probably not what you want!", bone.name, children_basename) break return chain @property def _other_bones(self): id_data = self.id_data id_data_type = type(id_data) if id_data_type == bpy_types.Object: bones = id_data.pose.bones elif id_data_type == bpy_types.Armature: bones = id_data.edit_bones if not bones: # not in editmode bones = id_data.bones return bones class PoseBone(StructRNA, _GenericBone, metaclass=StructMetaIDProp): __slots__ = () class Bone(StructRNA, _GenericBone, metaclass=StructMetaIDProp): __slots__ = () class EditBone(StructRNA, _GenericBone, metaclass=StructMetaIDProp): __slots__ = () def align_orientation(self, other): """ Align this bone to another by moving its tail and settings its roll the length of the other bone is not used. """ vec = other.vector.normalize() * self.length self.tail = self.head + vec self.roll = other.roll def transform(self, matrix): """ Transform the the bones head, tail, roll and envalope (when the matrix has a scale component). Expects a 4x4 or 3x3 matrix. """ from mathutils import Vector z_vec = self.matrix.rotation_part() * Vector((0.0, 0.0, 1.0)) self.tail = matrix * self.tail self.head = matrix * self.head scalar = matrix.median_scale self.head_radius *= scalar self.tail_radius *= scalar self.align_roll(matrix * z_vec) def ord_ind(i1, i2): if i1 < i2: return i1, i2 return i2, i1 class Mesh(bpy_types.ID): __slots__ = () def from_pydata(self, verts, edges, faces): """ Make a mesh from a list of verts/edges/faces Until we have a nicer way to make geometry, use this. """ self.vertices.add(len(verts)) self.edges.add(len(edges)) self.faces.add(len(faces)) verts_flat = [f for v in verts for f in v] self.vertices.foreach_set("co", verts_flat) del verts_flat edges_flat = [i for e in edges for i in e] self.edges.foreach_set("vertices", edges_flat) del edges_flat def treat_face(f): if len(f) == 3: if f[2] == 0: return f[2], f[0], f[1], 0 else: return f[0], f[1], f[2], 0 elif f[2] == 0 or f[3] == 0: return f[3], f[0], f[1], f[2] return f faces_flat = [v for f in faces for v in treat_face(f)] self.faces.foreach_set("vertices_raw", faces_flat) del faces_flat @property def edge_keys(self): return [edge_key for face in self.faces for edge_key in face.edge_keys] @property def edge_face_count_dict(self): face_edge_keys = [face.edge_keys for face in self.faces] face_edge_count = {} for face_keys in face_edge_keys: for key in face_keys: try: face_edge_count[key] += 1 except: face_edge_count[key] = 1 return face_edge_count @property def edge_face_count(self): edge_face_count_dict = self.edge_face_count_dict return [edge_face_count_dict.get(ed.key, 0) for ed in self.edges] def edge_loops_from_faces(self, faces=None, seams=()): """ Edge loops defined by faces Takes me.faces or a list of faces and returns the edge loops These edge loops are the edges that sit between quads, so they dont touch 1 quad, note: not connected will make 2 edge loops, both only containing 2 edges. return a list of edge key lists [ [(0,1), (4, 8), (3,8)], ...] return a list of edge vertex index lists """ OTHER_INDEX = 2, 3, 0, 1 # opposite face index if faces is None: faces = self.faces edges = {} for f in faces: # if len(f) == 4: if f.vertices_raw[3] != 0: edge_keys = f.edge_keys for i, edkey in enumerate(f.edge_keys): edges.setdefault(edkey, []).append(edge_keys[OTHER_INDEX[i]]) for edkey in seams: edges[edkey] = [] # Collect edge loops here edge_loops = [] for edkey, ed_adj in edges.items(): if 0 < len(ed_adj) < 3: # 1 or 2 # Seek the first edge context_loop = [edkey, ed_adj[0]] edge_loops.append(context_loop) if len(ed_adj) == 2: other_dir = ed_adj[1] else: other_dir = None ed_adj[:] = [] flipped = False while 1: # from knowing the last 2, look for th next. ed_adj = edges[context_loop[-1]] if len(ed_adj) != 2: if other_dir and flipped == False: # the original edge had 2 other edges flipped = True # only flip the list once context_loop.reverse() ed_adj[:] = [] context_loop.append(other_dir) # save 1 lookiup ed_adj = edges[context_loop[-1]] if len(ed_adj) != 2: ed_adj[:] = [] break else: ed_adj[:] = [] break i = ed_adj.index(context_loop[-2]) context_loop.append(ed_adj[not i]) # Dont look at this again ed_adj[:] = [] return edge_loops def edge_loops_from_edges(self, edges=None): """ Edge loops defined by edges Takes me.edges or a list of edges and returns the edge loops return a list of vertex indices. [ [1, 6, 7, 2], ...] closed loops have matching start and end values. """ line_polys = [] # Get edges not used by a face if edges is None: edges = self.edges if not hasattr(edges, "pop"): edges = edges[:] edge_dict = {ed.key: ed for ed in self.edges if ed.select} while edges: current_edge = edges.pop() vert_end, vert_start = current_edge.vertices[:] line_poly = [vert_start, vert_end] ok = True while ok: ok = False #for i, ed in enumerate(edges): i = len(edges) while i: i -= 1 ed = edges[i] v1, v2 = ed.vertices if v1 == vert_end: line_poly.append(v2) vert_end = line_poly[-1] ok = 1 del edges[i] # break elif v2 == vert_end: line_poly.append(v1) vert_end = line_poly[-1] ok = 1 del edges[i] #break elif v1 == vert_start: line_poly.insert(0, v2) vert_start = line_poly[0] ok = 1 del edges[i] # break elif v2 == vert_start: line_poly.insert(0, v1) vert_start = line_poly[0] ok = 1 del edges[i] #break line_polys.append(line_poly) return line_polys class MeshEdge(StructRNA): __slots__ = () @property def key(self): return ord_ind(*tuple(self.vertices)) class MeshFace(StructRNA): __slots__ = () @property def center(self): """The midpoint of the face.""" face_verts = self.vertices[:] mesh_verts = self.id_data.vertices if len(face_verts) == 3: return (mesh_verts[face_verts[0]].co + mesh_verts[face_verts[1]].co + mesh_verts[face_verts[2]].co) / 3.0 else: return (mesh_verts[face_verts[0]].co + mesh_verts[face_verts[1]].co + mesh_verts[face_verts[2]].co + mesh_verts[face_verts[3]].co) / 4.0 @property def edge_keys(self): verts = self.vertices[:] if len(verts) == 3: return ord_ind(verts[0], verts[1]), ord_ind(verts[1], verts[2]), ord_ind(verts[2], verts[0]) return ord_ind(verts[0], verts[1]), ord_ind(verts[1], verts[2]), ord_ind(verts[2], verts[3]), ord_ind(verts[3], verts[0]) class Text(bpy_types.ID): __slots__ = () def as_string(self): """Return the text as a string.""" return "\n".join(line.body for line in self.lines) def from_string(self, string): """Replace text with this string.""" self.clear() self.write(string) @property def users_logic(self): """Logic bricks that use this text""" import bpy return tuple(obj for obj in bpy.data.objects if self in [cont.text for cont in obj.game.controllers if cont.type == 'PYTHON']) import collections TypeMap = {} # Properties (IDPropertyGroup) are different from types because they need to be registered # before adding sub properties to them, so they are registered on definition # and unregistered on unload PropertiesMap = {} # Using our own loading function we set this to false # so when running a script directly in the text editor # registers moduals instantly. _register_immediate = True def _unregister_module(module, free=True): for t in TypeMap.get(module, ()): try: bpy_types.unregister(t) except: import traceback print("bpy.utils._unregister_module(): Module '%s' failed to unregister class '%s.%s'" % (module, t.__module__, t.__name__)) traceback.print_exc() if free == True and module in TypeMap: del TypeMap[module] for t in PropertiesMap.get(module, ()): try: bpy_types.unregister(t) except: import traceback print("bpy.utils._unload_module(): Module '%s' failed to unregister class '%s.%s'" % (module, t.__module__, t.__name__)) traceback.print_exc() if free == True and module in PropertiesMap: del PropertiesMap[module] def _register_module(module): for t in TypeMap.get(module, ()): try: bpy_types.register(t) except: import traceback import sys print("bpy.utils._register_module(): '%s' failed to register class '%s.%s'" % (sys.modules[module].__file__, t.__module__, t.__name__)) traceback.print_exc() class RNAMeta(type): @classmethod def _register_immediate(cls): return _register_immediate def __new__(cls, name, bases, classdict, **args): result = type.__new__(cls, name, bases, classdict) if bases and bases[0] != StructRNA: module = result.__module__ ClassMap = TypeMap # Register right away if needed if cls._register_immediate(): bpy_types.register(result) ClassMap = PropertiesMap # first part of packages only if "." in module: module = module[:module.index(".")] ClassMap.setdefault(module, []).append(result) return result class RNAMetaRegister(RNAMeta, StructMetaIDProp): @classmethod def _register_immediate(cls): return True class OrderedMeta(RNAMeta): def __init__(cls, name, bases, attributes): super(OrderedMeta, cls).__init__(name, bases, attributes) cls.order = list(attributes.keys()) def __prepare__(name, bases, **kwargs): return collections.OrderedDict() # Only defined so operators members can be used by accessing self.order # with doc generation 'self.properties.bl_rna.properties' can fail class Operator(StructRNA, metaclass=OrderedMeta): __slots__ = () def __getattribute__(self, attr): properties = StructRNA.path_resolve(self, "properties") bl_rna = getattr(properties, "bl_rna", None) if bl_rna and attr in bl_rna.properties: return getattr(properties, attr) return super().__getattribute__(attr) def __setattr__(self, attr, value): properties = StructRNA.path_resolve(self, "properties") bl_rna = getattr(properties, "bl_rna", None) if bl_rna and attr in bl_rna.properties: setattr(properties, attr, value) return super().__setattr__(attr, value) def __delattr__(self, attr): properties = StructRNA.path_resolve(self, "properties") bl_rna = getattr(properties, "bl_rna", None) if bl_rna and attr in bl_rna.properties: delattr(properties, attr) return super().__delattr__(attr) class Macro(StructRNA, metaclass=OrderedMeta): # bpy_types is imported before ops is defined # so we have to do a local import on each run __slots__ = () @classmethod def define(self, opname): from _bpy import ops return ops.macro_define(self, opname) class IDPropertyGroup(StructRNA, metaclass=RNAMetaRegister): __slots__ = () class RenderEngine(StructRNA, metaclass=RNAMeta): __slots__ = () class _GenericUI: __slots__ = () @classmethod def _dyn_ui_initialize(cls): draw_funcs = getattr(cls.draw, "_draw_funcs", None) if draw_funcs is None: def draw_ls(self, context): for func in draw_ls._draw_funcs: func(self, context) draw_funcs = draw_ls._draw_funcs = [cls.draw] cls.draw = draw_ls return draw_funcs @classmethod def append(cls, draw_func): """Prepend an draw function to this menu, takes the same arguments as the menus draw function.""" draw_funcs = cls._dyn_ui_initialize() draw_funcs.append(draw_func) @classmethod def prepend(cls, draw_func): """Prepend a draw function to this menu, takes the same arguments as the menus draw function.""" draw_funcs = cls._dyn_ui_initialize() draw_funcs.insert(0, draw_func) @classmethod def remove(cls, draw_func): """Remove a draw function that has been added to this menu""" draw_funcs = cls._dyn_ui_initialize() try: draw_funcs.remove(draw_func) except: pass class Panel(StructRNA, _GenericUI, metaclass=RNAMeta): __slots__ = () class Header(StructRNA, _GenericUI, metaclass=RNAMeta): __slots__ = () class Menu(StructRNA, _GenericUI, metaclass=RNAMeta): __slots__ = () def path_menu(self, searchpaths, operator, props_default={}): layout = self.layout # hard coded to set the operators 'filepath' to the filename. import os import bpy.utils layout = self.layout if not searchpaths: layout.label("* Missing Paths *") # collect paths files = [] for directory in searchpaths: files.extend([(f, os.path.join(directory, f)) for f in os.listdir(directory)]) files.sort() for f, filepath in files: if f.startswith("."): continue preset_name = bpy.path.display_name(f) props = layout.operator(operator, text=preset_name) for attr, value in props_default.items(): setattr(props, attr, value) props.filepath = filepath if operator == "script.execute_preset": props.menu_idname = self.bl_idname def draw_preset(self, context): """Define these on the subclass - preset_operator - preset_subdir """ import bpy self.path_menu(bpy.utils.preset_paths(self.preset_subdir), self.preset_operator)