/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2016 Kévin Dietrich. * All rights reserved. * * ***** END GPL LICENSE BLOCK ***** * */ #include "abc_customdata.h" #include #include #include extern "C" { #include "DNA_customdata_types.h" #include "DNA_meshdata_types.h" #include "BLI_math_base.h" #include "BKE_customdata.h" } /* NOTE: for now only UVs and Vertex Colors are supported for streaming. * Although Alembic only allows for a single UV layer per {I|O}Schema, and does * not have a vertex color concept, there is a convention between DCCs to write * such data in a way that lets other DCC know what they are for. See comments * in the write code for the conventions. */ using Alembic::AbcGeom::kVertexScope; using Alembic::AbcGeom::kFacevaryingScope; using Alembic::Abc::C4fArraySample; using Alembic::Abc::UInt32ArraySample; using Alembic::Abc::V2fArraySample; using Alembic::AbcGeom::OV2fGeomParam; using Alembic::AbcGeom::OC4fGeomParam; typedef std::unordered_map uv_index_map; static inline uint64_t uv_to_hash_key(Imath::V2f v) { /* Convert -0.0f to 0.0f, so bitwise comparison works. */ if (v.x == 0.0f) { v.x = 0.0f; } if (v.y == 0.0f) { v.y = 0.0f; } /* Pack floats in 64bit. */ union { float xy[2]; uint64_t key; } tmp; tmp.xy[0] = v.x; tmp.xy[1] = v.y; return tmp.key; } static void get_uvs(const CDStreamConfig &config, std::vector &uvs, std::vector &uvidx, void *cd_data) { MLoopUV *mloopuv_array = static_cast(cd_data); if (!mloopuv_array) { return; } const int num_poly = config.totpoly; MPoly *polygons = config.mpoly; if (!config.pack_uvs) { int cnt = 0; uvidx.resize(config.totloop); uvs.resize(config.totloop); for (int i = 0; i < num_poly; ++i) { MPoly ¤t_poly = polygons[i]; MLoopUV *loopuvpoly = mloopuv_array + current_poly.loopstart + current_poly.totloop; for (int j = 0; j < current_poly.totloop; ++j, ++cnt) { --loopuvpoly; uvidx[cnt] = cnt; uvs[cnt][0] = loopuvpoly->uv[0]; uvs[cnt][1] = loopuvpoly->uv[1]; } } } else { uv_index_map idx_map; int idx_count = 0; for (int i = 0; i < num_poly; ++i) { MPoly ¤t_poly = polygons[i]; MLoopUV *loopuvpoly = mloopuv_array + current_poly.loopstart + current_poly.totloop; for (int j = 0; j < current_poly.totloop; ++j) { loopuvpoly--; Imath::V2f uv(loopuvpoly->uv[0], loopuvpoly->uv[1]); uint64_t k = uv_to_hash_key(uv); uv_index_map::iterator it = idx_map.find(k); if (it == idx_map.end()) { idx_map[k] = idx_count; uvs.push_back(uv); uvidx.push_back(idx_count++); } else { uvidx.push_back(it->second); } } } } } const char *get_uv_sample(UVSample &sample, const CDStreamConfig &config, CustomData *data) { const int active_uvlayer = CustomData_get_active_layer(data, CD_MLOOPUV); if (active_uvlayer < 0) { return ""; } void *cd_data = CustomData_get_layer_n(data, CD_MLOOPUV, active_uvlayer); get_uvs(config, sample.uvs, sample.indices, cd_data); return CustomData_get_layer_name(data, CD_MLOOPUV, active_uvlayer); } /* Convention to write UVs: * - V2fGeomParam on the arbGeomParam * - set scope as face varying * - (optional due to its behaviour) tag as UV using Alembic::AbcGeom::SetIsUV */ static void write_uv(const OCompoundProperty &prop, const CDStreamConfig &config, void *data, const char *name) { std::vector indices; std::vector uvs; get_uvs(config, uvs, indices, data); if (indices.empty() || uvs.empty()) { return; } OV2fGeomParam param(prop, name, true, kFacevaryingScope, 1); OV2fGeomParam::Sample sample( V2fArraySample(&uvs.front(), uvs.size()), UInt32ArraySample(&indices.front(), indices.size()), kFacevaryingScope); param.set(sample); } /* Convention to write Vertex Colors: * - C3fGeomParam/C4fGeomParam on the arbGeomParam * - set scope as vertex varying */ static void write_mcol(const OCompoundProperty &prop, const CDStreamConfig &config, void *data, const char *name) { const float cscale = 1.0f / 255.0f; MPoly *polys = config.mpoly; MLoop *mloops = config.mloop; MCol *cfaces = static_cast(data); std::vector buffer(config.totvert); Imath::C4f col; for (int i = 0; i < config.totpoly; ++i) { MPoly *p = &polys[i]; MCol *cface = &cfaces[p->loopstart + p->totloop]; MLoop *mloop = &mloops[p->loopstart + p->totloop]; for (int j = 0; j < p->totloop; ++j) { cface--; mloop--; col[0] = cface->a * cscale; col[1] = cface->r * cscale; col[2] = cface->g * cscale; col[3] = cface->b * cscale; buffer[mloop->v] = col; } } OC4fGeomParam param(prop, name, true, kFacevaryingScope, 1); OC4fGeomParam::Sample sample( C4fArraySample(&buffer.front(), buffer.size()), kVertexScope); param.set(sample); } void write_custom_data(const OCompoundProperty &prop, const CDStreamConfig &config, CustomData *data, int data_type) { CustomDataType cd_data_type = static_cast(data_type); if (!CustomData_has_layer(data, cd_data_type)) { return; } const int active_layer = CustomData_get_active_layer(data, cd_data_type); const int tot_layers = CustomData_number_of_layers(data, cd_data_type); for (int i = 0; i < tot_layers; ++i) { void *cd_data = CustomData_get_layer_n(data, cd_data_type, i); const char *name = CustomData_get_layer_name(data, cd_data_type, i); if (cd_data_type == CD_MLOOPUV) { /* Already exported. */ if (i == active_layer) { continue; } write_uv(prop, config, cd_data, name); } else if (cd_data_type == CD_MLOOPCOL) { write_mcol(prop, config, cd_data, name); } } } /* ************************************************************************** */ using Alembic::Abc::C3fArraySamplePtr; using Alembic::Abc::C4fArraySamplePtr; using Alembic::Abc::PropertyHeader; using Alembic::AbcGeom::IC3fGeomParam; using Alembic::AbcGeom::IC4fGeomParam; using Alembic::AbcGeom::IV2fGeomParam; static void read_uvs(const CDStreamConfig &config, void *data, const Alembic::AbcGeom::V2fArraySamplePtr &uvs, const Alembic::AbcGeom::UInt32ArraySamplePtr &indices) { MPoly *mpolys = config.mpoly; MLoopUV *mloopuvs = static_cast(data); unsigned int uv_index, loop_index, rev_loop_index; for (int i = 0; i < config.totpoly; ++i) { MPoly &poly = mpolys[i]; unsigned int rev_loop_offset = poly.loopstart + poly.totloop - 1; for (int f = 0; f < poly.totloop; ++f) { loop_index = poly.loopstart + f; rev_loop_index = rev_loop_offset - f; uv_index = (*indices)[loop_index]; const Imath::V2f &uv = (*uvs)[uv_index]; MLoopUV &loopuv = mloopuvs[rev_loop_index]; loopuv.uv[0] = uv[0]; loopuv.uv[1] = uv[1]; } } } static size_t mcols_out_of_bounds_check( const size_t color_index, const size_t array_size, const std::string & iobject_full_name, const PropertyHeader &prop_header, bool &r_bounds_warning_given) { if (color_index < array_size) { return color_index; } if (!r_bounds_warning_given) { std::cerr << "Alembic: color index out of bounds " "reading face colors for object " << iobject_full_name << ", property " << prop_header.getName() << std::endl; r_bounds_warning_given = true; } return 0; } static void read_custom_data_mcols(const std::string & iobject_full_name, const ICompoundProperty &arbGeomParams, const PropertyHeader &prop_header, const CDStreamConfig &config, const Alembic::Abc::ISampleSelector &iss) { C3fArraySamplePtr c3f_ptr = C3fArraySamplePtr(); C4fArraySamplePtr c4f_ptr = C4fArraySamplePtr(); Alembic::Abc::UInt32ArraySamplePtr indices; bool use_c3f_ptr; bool is_facevarying; /* Find the correct interpretation of the data */ if (IC3fGeomParam::matches(prop_header)) { IC3fGeomParam color_param(arbGeomParams, prop_header.getName()); IC3fGeomParam::Sample sample; BLI_assert(!strcmp("rgb", color_param.getInterpretation())); color_param.getIndexed(sample, iss); is_facevarying = sample.getScope() == kFacevaryingScope && config.totloop == sample.getIndices()->size(); c3f_ptr = sample.getVals(); indices = sample.getIndices(); use_c3f_ptr = true; } else if (IC4fGeomParam::matches(prop_header)) { IC4fGeomParam color_param(arbGeomParams, prop_header.getName()); IC4fGeomParam::Sample sample; BLI_assert(!strcmp("rgba", color_param.getInterpretation())); color_param.getIndexed(sample, iss); is_facevarying = sample.getScope() == kFacevaryingScope && config.totloop == sample.getIndices()->size(); c4f_ptr = sample.getVals(); indices = sample.getIndices(); use_c3f_ptr = false; } else { /* this won't happen due to the checks in read_custom_data() */ return; } BLI_assert(c3f_ptr || c4f_ptr); /* Read the vertex colors */ void *cd_data = config.add_customdata_cb(config.user_data, prop_header.getName().c_str(), CD_MLOOPCOL); MCol *cfaces = static_cast(cd_data); MPoly *mpolys = config.mpoly; MLoop *mloops = config.mloop; size_t face_index = 0; size_t color_index; bool bounds_warning_given = false; /* The colors can go through two layers of indexing. Often the 'indices' * array doesn't do anything (i.e. indices[n] = n), but when it does, it's * important. Blender 2.79 writes indices incorrectly (see T53745), which * is why we have to check for indices->size() > 0 */ bool use_dual_indexing = is_facevarying && indices->size() > 0; for (int i = 0; i < config.totpoly; ++i) { MPoly *poly = &mpolys[i]; MCol *cface = &cfaces[poly->loopstart + poly->totloop]; MLoop *mloop = &mloops[poly->loopstart + poly->totloop]; for (int j = 0; j < poly->totloop; ++j, ++face_index) { --cface; --mloop; color_index = is_facevarying ? face_index : mloop->v; if (use_dual_indexing) { color_index = (*indices)[color_index]; } if (use_c3f_ptr) { color_index = mcols_out_of_bounds_check( color_index, c3f_ptr->size(), iobject_full_name, prop_header, bounds_warning_given); const Imath::C3f &color = (*c3f_ptr)[color_index]; cface->a = unit_float_to_uchar_clamp(color[0]); cface->r = unit_float_to_uchar_clamp(color[1]); cface->g = unit_float_to_uchar_clamp(color[2]); cface->b = 255; } else { color_index = mcols_out_of_bounds_check( color_index, c4f_ptr->size(), iobject_full_name, prop_header, bounds_warning_given); const Imath::C4f &color = (*c4f_ptr)[color_index]; cface->a = unit_float_to_uchar_clamp(color[0]); cface->r = unit_float_to_uchar_clamp(color[1]); cface->g = unit_float_to_uchar_clamp(color[2]); cface->b = unit_float_to_uchar_clamp(color[3]); } } } } static void read_custom_data_uvs(const ICompoundProperty &prop, const PropertyHeader &prop_header, const CDStreamConfig &config, const Alembic::Abc::ISampleSelector &iss) { IV2fGeomParam uv_param(prop, prop_header.getName()); if (!uv_param.isIndexed()) { return; } IV2fGeomParam::Sample sample; uv_param.getIndexed(sample, iss); if (uv_param.getScope() != kFacevaryingScope) { return; } void *cd_data = config.add_customdata_cb(config.user_data, prop_header.getName().c_str(), CD_MLOOPUV); read_uvs(config, cd_data, sample.getVals(), sample.getIndices()); } void read_custom_data(const std::string & iobject_full_name, const ICompoundProperty &prop, const CDStreamConfig &config, const Alembic::Abc::ISampleSelector &iss) { if (!prop.valid()) { return; } int num_uvs = 0; int num_colors = 0; const size_t num_props = prop.getNumProperties(); for (size_t i = 0; i < num_props; ++i) { const Alembic::Abc::PropertyHeader &prop_header = prop.getPropertyHeader(i); /* Read UVs according to convention. */ if (IV2fGeomParam::matches(prop_header) && Alembic::AbcGeom::isUV(prop_header)) { if (++num_uvs > MAX_MTFACE) { continue; } read_custom_data_uvs(prop, prop_header, config, iss); continue; } /* Read vertex colors according to convention. */ if (IC3fGeomParam::matches(prop_header) || IC4fGeomParam::matches(prop_header)) { if (++num_colors > MAX_MCOL) { continue; } read_custom_data_mcols(iobject_full_name, prop, prop_header, config, iss); continue; } } }