/** anim.c * * * $Id$ * * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include #include #include "MEM_guardedalloc.h" #include "BLI_blenlib.h" #include "BLI_arithb.h" #include "DNA_listBase.h" #include "DNA_curve_types.h" #include "DNA_effect_types.h" #include "DNA_group_types.h" #include "DNA_key_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "DNA_view3d_types.h" #include "DNA_vfont_types.h" #include "BKE_anim.h" #include "BKE_DerivedMesh.h" #include "BKE_displist.h" #include "BKE_effect.h" #include "BKE_font.h" #include "BKE_group.h" #include "BKE_global.h" #include "BKE_ipo.h" #include "BKE_key.h" #include "BKE_main.h" #include "BKE_object.h" #include "BKE_utildefines.h" #include "BKE_bad_level_calls.h" #ifdef HAVE_CONFIG_H #include #endif void free_path(Path *path) { if(path->data) MEM_freeN(path->data); MEM_freeN(path); } void calc_curvepath(Object *ob) { BevList *bl; BevPoint *bevp, *bevpn, *bevpfirst, *bevplast, *tempbevp; Curve *cu; Nurb *nu; Path *path; float *fp, *dist, *maxdist, x, y, z; float fac, d=0, fac1, fac2; int a, tot, cycl=0; float *ft; /* in a path vertices are with equal differences: path->len = number of verts */ /* NOW WITH BEVELCURVE!!! */ if(ob==NULL || ob->type != OB_CURVE) return; cu= ob->data; if(ob==G.obedit) nu= editNurb.first; else nu= cu->nurb.first; if(cu->path) free_path(cu->path); cu->path= NULL; bl= cu->bev.first; if(bl==NULL) return; cu->path=path= MEM_callocN(sizeof(Path), "path"); /* if POLY: last vertice != first vertice */ cycl= (bl->poly!= -1); if(cycl) tot= bl->nr; else tot= bl->nr-1; path->len= tot+1; /* exception: vector handle paths and polygon paths should be subdivided at least a factor resolu */ if(path->lenresolu*nu->pntsu) path->len= nu->resolu*nu->pntsu; dist= (float *)MEM_mallocN((tot+1)*4, "calcpathdist"); /* all lengths in *dist */ bevp= bevpfirst= (BevPoint *)(bl+1); fp= dist; *fp= 0; for(a=0; ax - bevp->x; y= bevpfirst->y - bevp->y; z= bevpfirst->z - bevp->z; } else { tempbevp = bevp+1; x= (tempbevp)->x - bevp->x; y= (tempbevp)->y - bevp->y; z= (tempbevp)->z - bevp->z; } *fp= *(fp-1)+ (float)sqrt(x*x+y*y+z*z); bevp++; } path->totdist= *fp; /* the path verts in path->data */ /* now also with TILT value */ ft= path->data = (float *)MEM_callocN(16*path->len, "pathdata"); bevp= bevpfirst; bevpn= bevp+1; bevplast= bevpfirst + (bl->nr-1); fp= dist+1; maxdist= dist+tot; fac= 1.0f/((float)path->len-1.0f); fac = fac * path->totdist; for(a=0; alen; a++) { d= ((float)a)*fac; /* we're looking for location (distance) 'd' in the array */ while((d>= *fp) && fpbevplast) { if(cycl) bevpn= bevpfirst; else bevpn= bevplast; } } fac1= *(fp)- *(fp-1); fac2= *(fp)-d; fac1= fac2/fac1; fac2= 1.0f-fac1; ft[0]= fac1*bevp->x+ fac2*(bevpn)->x; ft[1]= fac1*bevp->y+ fac2*(bevpn)->y; ft[2]= fac1*bevp->z+ fac2*(bevpn)->z; ft[3]= fac1*bevp->alfa+ fac2*(bevpn)->alfa; ft+= 4; } MEM_freeN(dist); } int interval_test(int min, int max, int p1, int cycl) { if(cycl) { if( p1 < min) p1= ((p1 -min) % (max-min+1)) + max+1; else if(p1 > max) p1= ((p1 -min) % (max-min+1)) + min; } else { if(p1 < min) p1= min; else if(p1 > max) p1= max; } return p1; } /* warning, *vec needs FOUR items! */ /* ctime is normalized range <0-1> */ int where_on_path(Object *ob, float ctime, float *vec, float *dir) /* returns OK */ { Curve *cu; Nurb *nu; BevList *bl; Path *path; float *fp, *p0, *p1, *p2, *p3, fac; float data[4]; int cycl=0, s0, s1, s2, s3; if(ob==NULL || ob->type != OB_CURVE) return 0; cu= ob->data; if(cu->path==NULL || cu->path->data==NULL) { printf("no path!\n"); } path= cu->path; fp= path->data; /* test for cyclic */ bl= cu->bev.first; if(bl && bl->poly> -1) cycl= 1; ctime *= (path->len-1); s1= (int)floor(ctime); fac= (float)(s1+1)-ctime; /* path->len is corected for cyclic */ s0= interval_test(0, path->len-1-cycl, s1-1, cycl); s1= interval_test(0, path->len-1-cycl, s1, cycl); s2= interval_test(0, path->len-1-cycl, s1+1, cycl); s3= interval_test(0, path->len-1-cycl, s1+2, cycl); p0= fp + 4*s0; p1= fp + 4*s1; p2= fp + 4*s2; p3= fp + 4*s3; /* note, commented out for follow constraint */ //if(cu->flag & CU_FOLLOW) { set_afgeleide_four_ipo(1.0f-fac, data, KEY_BSPLINE); dir[0]= data[0]*p0[0] + data[1]*p1[0] + data[2]*p2[0] + data[3]*p3[0] ; dir[1]= data[0]*p0[1] + data[1]*p1[1] + data[2]*p2[1] + data[3]*p3[1] ; dir[2]= data[0]*p0[2] + data[1]*p1[2] + data[2]*p2[2] + data[3]*p3[2] ; /* make compatible with vectoquat */ dir[0]= -dir[0]; dir[1]= -dir[1]; dir[2]= -dir[2]; //} nu= cu->nurb.first; /* make sure that first and last frame are included in the vectors here */ if((nu->type & 7)==CU_POLY) set_four_ipo(1.0f-fac, data, KEY_LINEAR); else if((nu->type & 7)==CU_BEZIER) set_four_ipo(1.0f-fac, data, KEY_LINEAR); else if(s0==s1 || p2==p3) set_four_ipo(1.0f-fac, data, KEY_CARDINAL); else set_four_ipo(1.0f-fac, data, KEY_BSPLINE); vec[0]= data[0]*p0[0] + data[1]*p1[0] + data[2]*p2[0] + data[3]*p3[0] ; vec[1]= data[0]*p0[1] + data[1]*p1[1] + data[2]*p2[1] + data[3]*p3[1] ; vec[2]= data[0]*p0[2] + data[1]*p1[2] + data[2]*p2[2] + data[3]*p3[2] ; vec[3]= data[0]*p0[3] + data[1]*p1[3] + data[2]*p2[3] + data[3]*p3[3] ; return 1; } /* ****************** DUPLICATOR ************** */ static DupliObject *new_dupli_object(ListBase *lb, Object *ob, float mat[][4], int lay, int index) { DupliObject *dob= MEM_callocN(sizeof(DupliObject), "dupliobject"); BLI_addtail(lb, dob); dob->ob= ob; Mat4CpyMat4(dob->mat, mat); Mat4CpyMat4(dob->omat, ob->obmat); dob->origlay= ob->lay; dob->index= index; ob->lay= lay; /* allowing duplicators for particle systems... a bit silly still */ { PartEff *paf= give_parteff(ob); if(paf) { Mat4Invert(ob->imat, ob->obmat); Mat4CpyMat4(paf->imat, ob->imat); } } return dob; } static void group_duplilist(ListBase *lb, Object *ob, int level) { DupliObject *dob; Group *group; GroupObject *go; float mat[4][4]; if(ob->dup_group==NULL) return; group= ob->dup_group; /* simple preventing of too deep nested groups */ if(level>4) return; /* handles animated groups, and */ /* we need to check update for objects that are not in scene... */ group_handle_recalc_and_update(ob, group); for(go= group->gobject.first; go; go= go->next) { /* note, if you check on layer here, render goes wrong... it still deforms verts and uses parent imat */ if(go->ob!=ob) { Mat4MulMat4(mat, go->ob->obmat, ob->obmat); dob= new_dupli_object(lb, go->ob, mat, ob->lay, 0); dob->no_draw= (dob->origlay & group->layer)==0; if(go->ob->dup_group && (go->ob->transflag & OB_DUPLIGROUP)) { Mat4CpyMat4(dob->ob->obmat, dob->mat); group_duplilist(lb, go->ob, level+1); Mat4CpyMat4(dob->ob->obmat, dob->omat); } } } } static void frames_duplilist(ListBase *lb, Object *ob) { extern int enable_cu_speed; /* object.c */ Object copyob; int cfrao, ok; cfrao= G.scene->r.cfra; if(ob->parent==NULL && ob->track==NULL && ob->ipo==NULL && ob->constraints.first==NULL) return; if(ob->transflag & OB_DUPLINOSPEED) enable_cu_speed= 0; copyob= *ob; /* store transform info */ for(G.scene->r.cfra= ob->dupsta; G.scene->r.cfra<=ob->dupend; G.scene->r.cfra++) { ok= 1; if(ob->dupoff) { ok= G.scene->r.cfra - ob->dupsta; ok= ok % (ob->dupon+ob->dupoff); if(ok < ob->dupon) ok= 1; else ok= 0; } if(ok) { do_ob_ipo(ob); where_is_object_time(ob, (float)G.scene->r.cfra); new_dupli_object(lb, ob, ob->obmat, ob->lay, G.scene->r.cfra); } } *ob= copyob; /* restore transform info */ G.scene->r.cfra= cfrao; enable_cu_speed= 1; } struct vertexDupliData { ListBase *lb; float pmat[4][4]; Object *ob, *par; }; static void vertex_dupli__mapFunc(void *userData, int index, float *co, float *no_f, short *no_s) { struct vertexDupliData *vdd= userData; float vec[3], *q2, mat[3][3], tmat[4][4], obmat[4][4]; VECCOPY(vec, co); Mat4MulVecfl(vdd->pmat, vec); VecSubf(vec, vec, vdd->pmat[3]); VecAddf(vec, vec, vdd->ob->obmat[3]); Mat4CpyMat4(obmat, vdd->ob->obmat); VECCOPY(obmat[3], vec); if(vdd->par->transflag & OB_DUPLIROT) { if(no_f) { vec[0]= -no_f[0]; vec[1]= -no_f[1]; vec[2]= -no_f[2]; } else if(no_s) { vec[0]= -no_s[0]; vec[1]= -no_s[1]; vec[2]= -no_s[2]; } q2= vectoquat(vec, vdd->ob->trackflag, vdd->ob->upflag); QuatToMat3(q2, mat); Mat4CpyMat4(tmat, obmat); Mat4MulMat43(obmat, tmat, mat); } new_dupli_object(vdd->lb, vdd->ob, obmat, vdd->par->lay, index); } static void vertex_duplilist(ListBase *lb, Scene *sce, Object *par) { Object *ob; Base *base; float vec[3], no[3], pmat[4][4]; int lay, totvert, a; DerivedMesh *dm; Mat4CpyMat4(pmat, par->obmat); lay= G.scene->lay; if(par==G.obedit) dm= editmesh_get_derived_cage(CD_MASK_BAREMESH); else dm = mesh_get_derived_deform(par, CD_MASK_BAREMESH); totvert = dm->getNumVerts(dm); base= sce->base.first; while(base) { if(base->object->type>0 && (lay & base->lay) && G.obedit!=base->object) { ob= base->object->parent; while(ob) { if(ob==par) { struct vertexDupliData vdd; ob= base->object; vdd.lb= lb; vdd.ob= ob; vdd.par= par; Mat4CpyMat4(vdd.pmat, pmat); /* mballs have a different dupli handling */ if(ob->type!=OB_MBALL) ob->flag |= OB_DONE; /* doesnt render */ if(par==G.obedit) { dm->foreachMappedVert(dm, vertex_dupli__mapFunc, (void*) &vdd); } else { for(a=0; agetVertCo(dm, a, vec); dm->getVertNo(dm, a, no); vertex_dupli__mapFunc(&vdd, a, vec, no, NULL); } } break; } ob= ob->parent; } } base= base->next; } dm->release(dm); } static void face_duplilist(ListBase *lb, Scene *sce, Object *par) { Object *ob; Base *base; DerivedMesh *dm; MFace *mface; MVert *mvert; float pmat[4][4], imat[3][3]; int lay, totface, a; Mat4CpyMat4(pmat, par->obmat); lay= G.scene->lay; if(par==G.obedit) { int totvert; dm= editmesh_get_derived_cage(CD_MASK_BAREMESH); totface= dm->getNumFaces(dm); mface= MEM_mallocN(sizeof(MFace)*totface, "mface temp"); dm->copyFaceArray(dm, mface); totvert= dm->getNumVerts(dm); mvert= MEM_mallocN(sizeof(MVert)*totvert, "mvert temp"); dm->copyVertArray(dm, mvert); } else { dm = mesh_get_derived_deform(par, CD_MASK_BAREMESH); totface= dm->getNumFaces(dm); mface= dm->getFaceArray(dm); mvert= dm->getVertArray(dm); } for(base= sce->base.first; base; base= base->next) { if(base->object->type>0 && (lay & base->lay) && G.obedit!=base->object) { ob= base->object->parent; while(ob) { if(ob==par) { ob= base->object; Mat3CpyMat4(imat, ob->parentinv); /* mballs have a different dupli handling */ if(ob->type!=OB_MBALL) ob->flag |= OB_DONE; /* doesnt render */ for(a=0; aobmat[3]); Mat4CpyMat4(obmat, ob->obmat); VECCOPY(obmat[3], cent); /* rotation */ triatoquat(v1, v2, v3, quat); QuatToMat3(quat, mat); /* scale */ if(par->transflag & OB_DUPLIFACES_SCALE) { float size= v4?AreaQ3Dfl(v1, v2, v3, v4):AreaT3Dfl(v1, v2, v3); size= sqrt(size); Mat3MulFloat(mat[0], size); } Mat3CpyMat3(mat3, mat); Mat3MulMat3(mat, imat, mat3); Mat4CpyMat4(tmat, obmat); Mat4MulMat43(obmat, tmat, mat); new_dupli_object(lb, ob, obmat, lay, a); } break; } ob= ob->parent; } } } if(par==G.obedit) { MEM_freeN(mface); MEM_freeN(mvert); } dm->release(dm); } static void particle_duplilist(ListBase *lb, Scene *sce, Object *par, PartEff *paf) { Object *ob, copyob; Base *base; Particle *pa; float ctime, vec1[3]; float vec[3], tmat[4][4], mat[3][3]; float *q2; int lay, a, counter; /* counter is used to find in render the indexed object */ pa= paf->keys; if(pa==NULL || (G.rendering && paf->disp!=100)) { build_particle_system(par); pa= paf->keys; if(pa==NULL) return; } ctime= bsystem_time(par, (float)G.scene->r.cfra, 0.0); lay= G.scene->lay; for(base= sce->base.first; base; base= base->next) { if(base->object->type>0 && (base->lay & lay) && G.obedit!=base->object) { ob= base->object->parent; while(ob) { if(ob==par) { ob= base->object; /* temp copy, to have ipos etc to work OK */ copyob= *ob; /* don't want parent animation to apply on past object positions */ if(!(paf->flag & PAF_STATIC)) ob->parent= NULL; for(a=0, pa= paf->keys, counter=0; atotpart; a++, pa+=paf->totkey, counter++) { if(paf->flag & PAF_STATIC) { float mtime; where_is_particle(paf, pa, pa->time, vec1); mtime= pa->time+pa->lifetime; for(ctime= pa->time; ctimestaticstep, counter++) { /* make sure hair grows until the end.. */ if(ctime>pa->time+pa->lifetime) ctime= pa->time+pa->lifetime; /* to give ipos in object correct offset */ where_is_object_time(ob, ctime-pa->time); where_is_particle(paf, pa, ctime, vec); // makes sure there's always a vec Mat4MulVecfl(par->obmat, vec); if(paf->stype==PAF_VECT) { where_is_particle(paf, pa, ctime+1.0, vec1); // makes sure there's always a vec Mat4MulVecfl(par->obmat, vec1); VecSubf(vec1, vec1, vec); q2= vectoquat(vec1, ob->trackflag, ob->upflag); QuatToMat3(q2, mat); Mat4CpyMat4(tmat, ob->obmat); Mat4MulMat43(ob->obmat, tmat, mat); } VECCOPY(ob->obmat[3], vec); /* put object back in original state, so it cam be restored OK */ Mat4CpyMat4(tmat, ob->obmat); Mat4CpyMat4(ob->obmat, copyob.obmat); new_dupli_object(lb, ob, tmat, par->lay, counter); } } else { // non static particles if((paf->flag & PAF_UNBORN)==0 && ctime < pa->time) continue; if((paf->flag & PAF_DIED)==0 && ctime > pa->time+pa->lifetime) continue; //if(ctime < pa->time+pa->lifetime) { /* to give ipos in object correct offset, ob->parent is NULLed */ where_is_object_time(ob, ctime-pa->time); where_is_particle(paf, pa, ctime, vec); if(paf->stype==PAF_VECT) { /* if particle died, we use previous position */ if(ctime > pa->time+pa->lifetime) { where_is_particle(paf, pa, pa->time+pa->lifetime-1.0f, vec1); VecSubf(vec1, vec, vec1); } else { where_is_particle(paf, pa, ctime+1.0f, vec1); VecSubf(vec1, vec1, vec); } q2= vectoquat(vec1, ob->trackflag, ob->upflag); QuatToMat3(q2, mat); Mat4CpyMat4(tmat, ob->obmat); Mat4MulMat43(ob->obmat, tmat, mat); } VECCOPY(ob->obmat[3], vec); /* put object back in original state, so it can be restored OK */ Mat4CpyMat4(tmat, ob->obmat); Mat4CpyMat4(ob->obmat, copyob.obmat); new_dupli_object(lb, ob, tmat, par->lay, counter); } } /* temp copy, to have ipos etc to work OK */ *ob= copyob; break; } ob= ob->parent; } } } if(G.rendering && paf->disp!=100) { MEM_freeN(paf->keys); paf->keys= NULL; } } static Object *find_family_object(Object **obar, char *family, char ch) { Object *ob; int flen; if( obar[ch] ) return obar[ch]; flen= strlen(family); ob= G.main->object.first; while(ob) { if( ob->id.name[flen+2]==ch ) { if( strncmp(ob->id.name+2, family, flen)==0 ) break; } ob= ob->id.next; } obar[ch]= ob; return ob; } static void font_duplilist(ListBase *lb, Object *par) { Object *ob, *obar[256]; Curve *cu; struct chartrans *ct, *chartransdata; float vec[3], obmat[4][4], pmat[4][4], fsize, xof, yof; int slen, a; Mat4CpyMat4(pmat, par->obmat); /* in par the family name is stored, use this to find the other objects */ chartransdata= text_to_curve(par, FO_DUPLI); if(chartransdata==0) return; memset(obar, 0, 256*sizeof(void *)); cu= par->data; slen= strlen(cu->str); fsize= cu->fsize; xof= cu->xof; yof= cu->yof; ct= chartransdata; for(a=0; afamily, cu->str[a]); if(ob) { vec[0]= fsize*(ct->xof - xof); vec[1]= fsize*(ct->yof - yof); vec[2]= 0.0; Mat4MulVecfl(pmat, vec); Mat4CpyMat4(obmat, par->obmat); VECCOPY(obmat[3], vec); new_dupli_object(lb, ob, obmat, par->lay, a); } } MEM_freeN(chartransdata); } /* ***************************** */ /* note; group dupli's already set transform matrix. see note in group_duplilist() */ ListBase *object_duplilist(Scene *sce, Object *ob) { ListBase *duplilist= MEM_mallocN(sizeof(ListBase), "duplilist"); duplilist->first= duplilist->last= NULL; if(ob->transflag & OB_DUPLI) { if(ob->transflag & OB_DUPLIVERTS) { if(ob->type==OB_MESH) { PartEff *paf; if( (paf=give_parteff(ob)) ) particle_duplilist(duplilist, sce, ob, paf); else vertex_duplilist(duplilist, sce, ob); } else if(ob->type==OB_FONT) { font_duplilist(duplilist, ob); } } else if(ob->transflag & OB_DUPLIFACES) { if(ob->type==OB_MESH) face_duplilist(duplilist, sce, ob); } else if(ob->transflag & OB_DUPLIFRAMES) frames_duplilist(duplilist, ob); else if(ob->transflag & OB_DUPLIGROUP) { DupliObject *dob; group_duplilist(duplilist, ob, 0); /* now recursive */ /* make copy already, because in group dupli's deform displists can be makde, requiring parent matrices */ for(dob= duplilist->first; dob; dob= dob->next) Mat4CpyMat4(dob->ob->obmat, dob->mat); } } return duplilist; } void free_object_duplilist(ListBase *lb) { DupliObject *dob; for(dob= lb->first; dob; dob= dob->next) { dob->ob->lay= dob->origlay; Mat4CpyMat4(dob->ob->obmat, dob->omat); } BLI_freelistN(lb); MEM_freeN(lb); } int count_duplilist(Object *ob) { if(ob->transflag & OB_DUPLI) { if(ob->transflag & OB_DUPLIVERTS) { if(ob->type==OB_MESH) { if(ob->transflag & OB_DUPLIVERTS) { PartEff *paf; if( (paf=give_parteff(ob)) ) { return paf->totpart; } else { Mesh *me= ob->data; return me->totvert; } } } } else if(ob->transflag & OB_DUPLIFRAMES) { int tot= ob->dupend - ob->dupsta; tot/= (ob->dupon+ob->dupoff); return tot*ob->dupon; } } return 1; }