/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. */ /** \file * \ingroup bke */ #include "MEM_guardedalloc.h" #include #include "DNA_curve_types.h" #include "DNA_key_types.h" #include "DNA_object_types.h" #include "BLI_math_vector.h" #include "BKE_anim_path.h" #include "BKE_curve.h" #include "BKE_key.h" #include "CLG_log.h" static CLG_LogRef LOG = {"bke.anim"}; /* ******************************************************************** */ /* Curve Paths - for curve deforms and/or curve following */ /** * Free curve path data * * \note Frees the path itself! * \note This is increasingly inaccurate with non-uniform #BevPoint subdivisions T24633. */ void free_path(Path *path) { if (path->data) { MEM_freeN(path->data); } MEM_freeN(path); } /** * Calculate a curve-deform path for a curve * - Only called from displist.c -> #do_makeDispListCurveTypes */ void calc_curvepath(Object *ob, ListBase *nurbs) { BevList *bl; BevPoint *bevp, *bevpn, *bevpfirst, *bevplast; PathPoint *pp; Nurb *nu; Path *path; float *fp, *dist, *maxdist, xyz[3]; float fac, d = 0, fac1, fac2; int a, tot, cycl = 0; /* in a path vertices are with equal differences: path->len = number of verts */ /* NOW WITH BEVELCURVE!!! */ if (ob == NULL || ob->type != OB_CURVE) { return; } if (ob->runtime.curve_cache->path) { free_path(ob->runtime.curve_cache->path); } ob->runtime.curve_cache->path = NULL; /* weak! can only use first curve */ bl = ob->runtime.curve_cache->bev.first; if (bl == NULL || !bl->nr) { return; } nu = nurbs->first; ob->runtime.curve_cache->path = path = MEM_callocN(sizeof(Path), "calc_curvepath"); /* if POLY: last vertice != first vertice */ cycl = (bl->poly != -1); tot = cycl ? bl->nr : bl->nr - 1; path->len = tot + 1; /* Exception: vector handle paths and polygon paths should be subdivided * at least a factor resolution. */ if (path->len < nu->resolu * SEGMENTSU(nu)) { path->len = nu->resolu * SEGMENTSU(nu); } dist = (float *)MEM_mallocN(sizeof(float) * (tot + 1), "calcpathdist"); /* all lengths in *dist */ bevp = bevpfirst = bl->bevpoints; fp = dist; *fp = 0.0f; for (a = 0; a < tot; a++) { fp++; if (cycl && a == tot - 1) { sub_v3_v3v3(xyz, bevpfirst->vec, bevp->vec); } else { sub_v3_v3v3(xyz, (bevp + 1)->vec, bevp->vec); } *fp = *(fp - 1) + len_v3(xyz); bevp++; } path->totdist = *fp; /* the path verts in path->data */ /* now also with TILT value */ pp = path->data = (PathPoint *)MEM_callocN(sizeof(PathPoint) * path->len, "pathdata"); bevp = bevpfirst; bevpn = bevp + 1; bevplast = bevpfirst + (bl->nr - 1); if (UNLIKELY(bevpn > bevplast)) { bevpn = cycl ? bevpfirst : bevplast; } fp = dist + 1; maxdist = dist + tot; fac = 1.0f / ((float)path->len - 1.0f); fac = fac * path->totdist; for (a = 0; a < path->len; a++) { d = ((float)a) * fac; /* we're looking for location (distance) 'd' in the array */ if (LIKELY(tot > 0)) { while ((fp < maxdist) && (d >= *fp)) { fp++; if (bevp < bevplast) { bevp++; } bevpn = bevp + 1; if (UNLIKELY(bevpn > bevplast)) { bevpn = cycl ? bevpfirst : bevplast; } } fac1 = (*(fp)-d) / (*(fp) - *(fp - 1)); fac2 = 1.0f - fac1; } else { fac1 = 1.0f; fac2 = 0.0f; } interp_v3_v3v3(pp->vec, bevp->vec, bevpn->vec, fac2); pp->vec[3] = fac1 * bevp->tilt + fac2 * bevpn->tilt; pp->radius = fac1 * bevp->radius + fac2 * bevpn->radius; pp->weight = fac1 * bevp->weight + fac2 * bevpn->weight; interp_qt_qtqt(pp->quat, bevp->quat, bevpn->quat, fac2); normalize_qt(pp->quat); pp++; } MEM_freeN(dist); } static int interval_test(const int min, const int max, int p1, const int cycl) { if (cycl) { p1 = mod_i(p1 - min, (max - min + 1)) + min; } else { if (p1 < min) { p1 = min; } else if (p1 > max) { p1 = max; } } return p1; } /** * Calculate the deformation implied by the curve path at a given parametric position, * and returns whether this operation succeeded. * * \param ctime: Time is normalized range <0-1>. * * \return success. */ bool where_on_path(const Object *ob, float ctime, float r_vec[4], float r_dir[3], float r_quat[4], float *r_radius, float *r_weight) { Curve *cu; const Nurb *nu; const BevList *bl; const Path *path; const PathPoint *pp, *p0, *p1, *p2, *p3; float fac; float data[4]; int cycl = 0, s0, s1, s2, s3; const ListBase *nurbs; if (ob == NULL || ob->type != OB_CURVE) { return false; } cu = ob->data; if (ob->runtime.curve_cache == NULL || ob->runtime.curve_cache->path == NULL || ob->runtime.curve_cache->path->data == NULL) { CLOG_WARN(&LOG, "no path!"); return false; } path = ob->runtime.curve_cache->path; pp = path->data; /* test for cyclic */ bl = ob->runtime.curve_cache->bev.first; if (!bl) { return false; } if (!bl->nr) { return false; } if (bl->poly > -1) { cycl = 1; } /* values below zero for non-cyclic curves give strange results */ BLI_assert(cycl || ctime >= 0.0f); ctime *= (path->len - 1); s1 = (int)floor(ctime); fac = (float)(s1 + 1) - ctime; /* path->len is corrected for cyclic */ s0 = interval_test(0, path->len - 1 - cycl, s1 - 1, cycl); s1 = interval_test(0, path->len - 1 - cycl, s1, cycl); s2 = interval_test(0, path->len - 1 - cycl, s1 + 1, cycl); s3 = interval_test(0, path->len - 1 - cycl, s1 + 2, cycl); p0 = pp + s0; p1 = pp + s1; p2 = pp + s2; p3 = pp + s3; /* NOTE: commented out for follow constraint * * If it's ever be uncommented watch out for BKE_curve_deform_coords() * which used to temporary set CU_FOLLOW flag for the curve and no * longer does it (because of threading issues of such a thing. */ // if (cu->flag & CU_FOLLOW) { key_curve_tangent_weights(1.0f - fac, data, KEY_BSPLINE); interp_v3_v3v3v3v3(r_dir, p0->vec, p1->vec, p2->vec, p3->vec, data); /* Make compatible with #vec_to_quat. */ negate_v3(r_dir); //} nurbs = BKE_curve_editNurbs_get(cu); if (!nurbs) { nurbs = &cu->nurb; } nu = nurbs->first; /* make sure that first and last frame are included in the vectors here */ if (nu->type == CU_POLY) { key_curve_position_weights(1.0f - fac, data, KEY_LINEAR); } else if (nu->type == CU_BEZIER) { key_curve_position_weights(1.0f - fac, data, KEY_LINEAR); } else if (s0 == s1 || p2 == p3) { key_curve_position_weights(1.0f - fac, data, KEY_CARDINAL); } else { key_curve_position_weights(1.0f - fac, data, KEY_BSPLINE); } r_vec[0] = /* X */ data[0] * p0->vec[0] + data[1] * p1->vec[0] + data[2] * p2->vec[0] + data[3] * p3->vec[0]; r_vec[1] = /* Y */ data[0] * p0->vec[1] + data[1] * p1->vec[1] + data[2] * p2->vec[1] + data[3] * p3->vec[1]; r_vec[2] = /* Z */ data[0] * p0->vec[2] + data[1] * p1->vec[2] + data[2] * p2->vec[2] + data[3] * p3->vec[2]; r_vec[3] = /* Tilt, should not be needed since we have quat still used */ data[0] * p0->vec[3] + data[1] * p1->vec[3] + data[2] * p2->vec[3] + data[3] * p3->vec[3]; if (r_quat) { float totfac, q1[4], q2[4]; totfac = data[0] + data[3]; if (totfac > FLT_EPSILON) { interp_qt_qtqt(q1, p0->quat, p3->quat, data[3] / totfac); } else { copy_qt_qt(q1, p1->quat); } totfac = data[1] + data[2]; if (totfac > FLT_EPSILON) { interp_qt_qtqt(q2, p1->quat, p2->quat, data[2] / totfac); } else { copy_qt_qt(q2, p3->quat); } totfac = data[0] + data[1] + data[2] + data[3]; if (totfac > FLT_EPSILON) { interp_qt_qtqt(r_quat, q1, q2, (data[1] + data[2]) / totfac); } else { copy_qt_qt(r_quat, q2); } } if (r_radius) { *r_radius = data[0] * p0->radius + data[1] * p1->radius + data[2] * p2->radius + data[3] * p3->radius; } if (r_weight) { *r_weight = data[0] * p0->weight + data[1] * p1->weight + data[2] * p2->weight + data[3] * p3->weight; } return true; }