/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. */ /** \file * \ingroup bke */ #include #include #include #include #include #include #include "MEM_guardedalloc.h" #include "BLI_alloca.h" #include "BLI_ghash.h" #include "BLI_listbase.h" #include "BLI_math.h" #include "BLI_string.h" #include "BLI_utildefines.h" #include "BLT_translation.h" #include "DNA_defaults.h" #include "DNA_armature_types.h" #include "DNA_constraint_types.h" #include "DNA_listBase.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "BKE_action.h" #include "BKE_anim_data.h" #include "BKE_anim_visualization.h" #include "BKE_armature.h" #include "BKE_constraint.h" #include "BKE_curve.h" #include "BKE_idprop.h" #include "BKE_idtype.h" #include "BKE_lib_id.h" #include "BKE_lib_query.h" #include "BKE_main.h" #include "BKE_object.h" #include "BKE_scene.h" #include "DEG_depsgraph_build.h" #include "DEG_depsgraph_query.h" #include "BIK_api.h" #include "BLO_read_write.h" #include "CLG_log.h" static CLG_LogRef LOG = {"bke.armature"}; /* -------------------------------------------------------------------- */ /** \name Prototypes * \{ */ static void copy_bonechildren(Bone *bone_dst, const Bone *bone_src, const Bone *bone_src_act, Bone **r_bone_dst_act, const int flag); static void copy_bonechildren_custom_handles(Bone *bone_dst, bArmature *arm_dst); /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature Data-block * \{ */ static void armature_init_data(ID *id) { bArmature *armature = (bArmature *)id; BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(armature, id)); MEMCPY_STRUCT_AFTER(armature, DNA_struct_default_get(bArmature), id); } /** * Only copy internal data of Armature ID from source * to already allocated/initialized destination. * You probably never want to use that directly, * use #BKE_id_copy or #BKE_id_copy_ex for typical needs. * * WARNING! This function will not handle ID user count! * * \param flag: Copying options (see BKE_lib_id.h's LIB_ID_COPY_... flags for more). */ static void armature_copy_data(Main *UNUSED(bmain), ID *id_dst, const ID *id_src, const int flag) { bArmature *armature_dst = (bArmature *)id_dst; const bArmature *armature_src = (const bArmature *)id_src; Bone *bone_src, *bone_dst; Bone *bone_dst_act = NULL; /* We never handle usercount here for own data. */ const int flag_subdata = flag | LIB_ID_CREATE_NO_USER_REFCOUNT; armature_dst->bonehash = NULL; BLI_duplicatelist(&armature_dst->bonebase, &armature_src->bonebase); /* Duplicate the childrens' lists */ bone_dst = armature_dst->bonebase.first; for (bone_src = armature_src->bonebase.first; bone_src; bone_src = bone_src->next) { bone_dst->parent = NULL; copy_bonechildren(bone_dst, bone_src, armature_src->act_bone, &bone_dst_act, flag_subdata); bone_dst = bone_dst->next; } armature_dst->act_bone = bone_dst_act; BKE_armature_bone_hash_make(armature_dst); /* Fix custom handle references. */ for (bone_dst = armature_dst->bonebase.first; bone_dst; bone_dst = bone_dst->next) { copy_bonechildren_custom_handles(bone_dst, armature_dst); } armature_dst->edbo = NULL; armature_dst->act_edbone = NULL; } /** Free (or release) any data used by this armature (does not free the armature itself). */ static void armature_free_data(struct ID *id) { bArmature *armature = (bArmature *)id; BKE_armature_bone_hash_free(armature); BKE_armature_bonelist_free(&armature->bonebase, false); /* free editmode data */ if (armature->edbo) { BKE_armature_editbonelist_free(armature->edbo, false); MEM_freeN(armature->edbo); armature->edbo = NULL; } } static void armature_foreach_id_bone(Bone *bone, LibraryForeachIDData *data) { IDP_foreach_property( bone->prop, IDP_TYPE_FILTER_ID, BKE_lib_query_idpropertiesForeachIDLink_callback, data); LISTBASE_FOREACH (Bone *, curbone, &bone->childbase) { armature_foreach_id_bone(curbone, data); } } static void armature_foreach_id_editbone(EditBone *edit_bone, LibraryForeachIDData *data) { IDP_foreach_property( edit_bone->prop, IDP_TYPE_FILTER_ID, BKE_lib_query_idpropertiesForeachIDLink_callback, data); } static void armature_foreach_id(ID *id, LibraryForeachIDData *data) { bArmature *arm = (bArmature *)id; LISTBASE_FOREACH (Bone *, bone, &arm->bonebase) { armature_foreach_id_bone(bone, data); } if (arm->edbo != NULL) { LISTBASE_FOREACH (EditBone *, edit_bone, arm->edbo) { armature_foreach_id_editbone(edit_bone, data); } } } static void write_bone(BlendWriter *writer, Bone *bone) { /* PATCH for upward compatibility after 2.37+ armature recode */ bone->size[0] = bone->size[1] = bone->size[2] = 1.0f; /* Write this bone */ BLO_write_struct(writer, Bone, bone); /* Write ID Properties -- and copy this comment EXACTLY for easy finding * of library blocks that implement this. */ if (bone->prop) { IDP_BlendWrite(writer, bone->prop); } /* Write Children */ LISTBASE_FOREACH (Bone *, cbone, &bone->childbase) { write_bone(writer, cbone); } } static void armature_blend_write(BlendWriter *writer, ID *id, const void *id_address) { bArmature *arm = (bArmature *)id; if (arm->id.us > 0 || BLO_write_is_undo(writer)) { /* Clean up, important in undo case to reduce false detection of changed datablocks. */ arm->bonehash = NULL; arm->edbo = NULL; /* Must always be cleared (armatures don't have their own edit-data). */ arm->needs_flush_to_id = 0; arm->act_edbone = NULL; BLO_write_id_struct(writer, bArmature, id_address, &arm->id); BKE_id_blend_write(writer, &arm->id); if (arm->adt) { BKE_animdata_blend_write(writer, arm->adt); } /* Direct data */ LISTBASE_FOREACH (Bone *, bone, &arm->bonebase) { write_bone(writer, bone); } } } static void direct_link_bones(BlendDataReader *reader, Bone *bone) { BLO_read_data_address(reader, &bone->parent); BLO_read_data_address(reader, &bone->prop); IDP_BlendDataRead(reader, &bone->prop); BLO_read_data_address(reader, &bone->bbone_next); BLO_read_data_address(reader, &bone->bbone_prev); bone->flag &= ~(BONE_DRAW_ACTIVE | BONE_DRAW_LOCKED_WEIGHT); BLO_read_list(reader, &bone->childbase); LISTBASE_FOREACH (Bone *, child, &bone->childbase) { direct_link_bones(reader, child); } } static void armature_blend_read_data(BlendDataReader *reader, ID *id) { bArmature *arm = (bArmature *)id; BLO_read_list(reader, &arm->bonebase); arm->bonehash = NULL; arm->edbo = NULL; /* Must always be cleared (armatures don't have their own edit-data). */ arm->needs_flush_to_id = 0; BLO_read_data_address(reader, &arm->adt); BKE_animdata_blend_read_data(reader, arm->adt); LISTBASE_FOREACH (Bone *, bone, &arm->bonebase) { direct_link_bones(reader, bone); } BLO_read_data_address(reader, &arm->act_bone); arm->act_edbone = NULL; BKE_armature_bone_hash_make(arm); } static void lib_link_bones(BlendLibReader *reader, Bone *bone) { IDP_BlendReadLib(reader, bone->prop); LISTBASE_FOREACH (Bone *, curbone, &bone->childbase) { lib_link_bones(reader, curbone); } } static void armature_blend_read_lib(BlendLibReader *reader, ID *id) { bArmature *arm = (bArmature *)id; LISTBASE_FOREACH (Bone *, curbone, &arm->bonebase) { lib_link_bones(reader, curbone); } } static void expand_bones(BlendExpander *expander, Bone *bone) { IDP_BlendReadExpand(expander, bone->prop); LISTBASE_FOREACH (Bone *, curBone, &bone->childbase) { expand_bones(expander, curBone); } } static void armature_blend_read_expand(BlendExpander *expander, ID *id) { bArmature *arm = (bArmature *)id; LISTBASE_FOREACH (Bone *, curBone, &arm->bonebase) { expand_bones(expander, curBone); } } IDTypeInfo IDType_ID_AR = { .id_code = ID_AR, .id_filter = FILTER_ID_AR, .main_listbase_index = INDEX_ID_AR, .struct_size = sizeof(bArmature), .name = "Armature", .name_plural = "armatures", .translation_context = BLT_I18NCONTEXT_ID_ARMATURE, .flags = 0, .init_data = armature_init_data, .copy_data = armature_copy_data, .free_data = armature_free_data, .make_local = NULL, .foreach_id = armature_foreach_id, .foreach_cache = NULL, .owner_get = NULL, .blend_write = armature_blend_write, .blend_read_data = armature_blend_read_data, .blend_read_lib = armature_blend_read_lib, .blend_read_expand = armature_blend_read_expand, .blend_read_undo_preserve = NULL, .lib_override_apply_post = NULL, }; /** \} */ /* -------------------------------------------------------------------- */ /** \name Generic Data-Level Functions * \{ */ bArmature *BKE_armature_add(Main *bmain, const char *name) { bArmature *arm; arm = BKE_id_new(bmain, ID_AR, name); return arm; } bArmature *BKE_armature_from_object(Object *ob) { if (ob->type == OB_ARMATURE) { return (bArmature *)ob->data; } return NULL; } int BKE_armature_bonelist_count(const ListBase *lb) { int i = 0; LISTBASE_FOREACH (Bone *, bone, lb) { i += 1 + BKE_armature_bonelist_count(&bone->childbase); } return i; } void BKE_armature_bonelist_free(ListBase *lb, const bool do_id_user) { Bone *bone; for (bone = lb->first; bone; bone = bone->next) { if (bone->prop) { IDP_FreeProperty_ex(bone->prop, do_id_user); } BKE_armature_bonelist_free(&bone->childbase, do_id_user); } BLI_freelistN(lb); } void BKE_armature_editbonelist_free(ListBase *lb, const bool do_id_user) { LISTBASE_FOREACH_MUTABLE (EditBone *, edit_bone, lb) { if (edit_bone->prop) { IDP_FreeProperty_ex(edit_bone->prop, do_id_user); } BLI_remlink_safe(lb, edit_bone); MEM_freeN(edit_bone); } } static void copy_bonechildren(Bone *bone_dst, const Bone *bone_src, const Bone *bone_src_act, Bone **r_bone_dst_act, const int flag) { Bone *bone_src_child, *bone_dst_child; if (bone_src == bone_src_act) { *r_bone_dst_act = bone_dst; } if (bone_src->prop) { bone_dst->prop = IDP_CopyProperty_ex(bone_src->prop, flag); } /* Copy this bone's list */ BLI_duplicatelist(&bone_dst->childbase, &bone_src->childbase); /* For each child in the list, update its children */ for (bone_src_child = bone_src->childbase.first, bone_dst_child = bone_dst->childbase.first; bone_src_child; bone_src_child = bone_src_child->next, bone_dst_child = bone_dst_child->next) { bone_dst_child->parent = bone_dst; copy_bonechildren(bone_dst_child, bone_src_child, bone_src_act, r_bone_dst_act, flag); } } static void copy_bonechildren_custom_handles(Bone *bone_dst, bArmature *arm_dst) { Bone *bone_dst_child; if (bone_dst->bbone_prev) { bone_dst->bbone_prev = BKE_armature_find_bone_name(arm_dst, bone_dst->bbone_prev->name); } if (bone_dst->bbone_next) { bone_dst->bbone_next = BKE_armature_find_bone_name(arm_dst, bone_dst->bbone_next->name); } for (bone_dst_child = bone_dst->childbase.first; bone_dst_child; bone_dst_child = bone_dst_child->next) { copy_bonechildren_custom_handles(bone_dst_child, arm_dst); } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature Transform Copy * \{ */ static void copy_bone_transform(Bone *bone_dst, const Bone *bone_src) { bone_dst->roll = bone_src->roll; copy_v3_v3(bone_dst->head, bone_src->head); copy_v3_v3(bone_dst->tail, bone_src->tail); copy_m3_m3(bone_dst->bone_mat, bone_src->bone_mat); copy_v3_v3(bone_dst->arm_head, bone_src->arm_head); copy_v3_v3(bone_dst->arm_tail, bone_src->arm_tail); copy_m4_m4(bone_dst->arm_mat, bone_src->arm_mat); bone_dst->arm_roll = bone_src->arm_roll; } void BKE_armature_copy_bone_transforms(bArmature *armature_dst, const bArmature *armature_src) { Bone *bone_dst = armature_dst->bonebase.first; const Bone *bone_src = armature_src->bonebase.first; while (bone_dst != NULL) { BLI_assert(bone_src != NULL); copy_bone_transform(bone_dst, bone_src); bone_dst = bone_dst->next; bone_src = bone_src->next; } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature Transform by 4x4 Matrix * * \see #ED_armature_edit_transform for the edit-mode version of this function. * \{ */ /** Helper for #ED_armature_transform */ static void armature_transform_recurse(ListBase *bonebase, const float mat[4][4], const bool do_props, /* Cached from 'mat'. */ const float mat3[3][3], const float scale, /* Child bones. */ const Bone *bone_parent, const float arm_mat_parent_inv[4][4]) { LISTBASE_FOREACH (Bone *, bone, bonebase) { /* Store the initial bone roll in a matrix, this is needed even for child bones * so any change in head/tail doesn't cause the roll to change. * * Logic here is different to edit-mode because * this is calculated in relative to the parent. */ float roll_mat3_pre[3][3]; { float delta[3]; sub_v3_v3v3(delta, bone->tail, bone->head); vec_roll_to_mat3(delta, bone->roll, roll_mat3_pre); if (bone->parent == NULL) { mul_m3_m3m3(roll_mat3_pre, mat3, roll_mat3_pre); } } /* Optional, use this for predictable results since the roll is re-calculated below anyway. */ bone->roll = 0.0f; mul_m4_v3(mat, bone->arm_head); mul_m4_v3(mat, bone->arm_tail); /* Get the new head and tail */ if (bone_parent) { sub_v3_v3v3(bone->head, bone->arm_head, bone_parent->arm_tail); sub_v3_v3v3(bone->tail, bone->arm_tail, bone_parent->arm_tail); mul_mat3_m4_v3(arm_mat_parent_inv, bone->head); mul_mat3_m4_v3(arm_mat_parent_inv, bone->tail); } else { copy_v3_v3(bone->head, bone->arm_head); copy_v3_v3(bone->tail, bone->arm_tail); } /* Now the head/tail have been updated, set the roll back, matching 'roll_mat3_pre'. */ { float roll_mat3_post[3][3], delta_mat3[3][3]; float delta[3]; sub_v3_v3v3(delta, bone->tail, bone->head); vec_roll_to_mat3(delta, 0.0f, roll_mat3_post); invert_m3(roll_mat3_post); mul_m3_m3m3(delta_mat3, roll_mat3_post, roll_mat3_pre); bone->roll = atan2f(delta_mat3[2][0], delta_mat3[2][2]); } BKE_armature_where_is_bone(bone, bone_parent, false); { float arm_mat3[3][3]; copy_m3_m4(arm_mat3, bone->arm_mat); mat3_to_vec_roll(arm_mat3, NULL, &bone->arm_roll); } if (do_props) { bone->rad_head *= scale; bone->rad_tail *= scale; bone->dist *= scale; /* we could be smarter and scale by the matrix along the x & z axis */ bone->xwidth *= scale; bone->zwidth *= scale; } if (!BLI_listbase_is_empty(&bone->childbase)) { float arm_mat_inv[4][4]; invert_m4_m4(arm_mat_inv, bone->arm_mat); armature_transform_recurse(&bone->childbase, mat, do_props, mat3, scale, bone, arm_mat_inv); } } } void BKE_armature_transform(bArmature *arm, const float mat[4][4], const bool do_props) { /* Store the scale of the matrix here to use on envelopes. */ float scale = mat4_to_scale(mat); float mat3[3][3]; copy_m3_m4(mat3, mat); normalize_m3(mat3); armature_transform_recurse(&arm->bonebase, mat, do_props, mat3, scale, NULL, NULL); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature Bone Find by Name * * Using fast #GHash lookups when available. * \{ */ static Bone *get_named_bone_bonechildren(ListBase *lb, const char *name) { Bone *curBone, *rbone; for (curBone = lb->first; curBone; curBone = curBone->next) { if (STREQ(curBone->name, name)) { return curBone; } rbone = get_named_bone_bonechildren(&curBone->childbase, name); if (rbone) { return rbone; } } return NULL; } /** * Walk the list until the bone is found (slow!), * use #BKE_armature_bone_from_name_map for multiple lookups. */ Bone *BKE_armature_find_bone_name(bArmature *arm, const char *name) { if (!arm) { return NULL; } if (arm->bonehash) { return BLI_ghash_lookup(arm->bonehash, name); } return get_named_bone_bonechildren(&arm->bonebase, name); } static void armature_bone_from_name_insert_recursive(GHash *bone_hash, ListBase *lb) { LISTBASE_FOREACH (Bone *, bone, lb) { BLI_ghash_insert(bone_hash, bone->name, bone); armature_bone_from_name_insert_recursive(bone_hash, &bone->childbase); } } /** * Create a (name -> bone) map. * * \note typically #bPose.chanhash us used via #BKE_pose_channel_find_name * this is for the cases we can't use pose channels. */ static GHash *armature_bone_from_name_map(bArmature *arm) { const int bones_count = BKE_armature_bonelist_count(&arm->bonebase); GHash *bone_hash = BLI_ghash_str_new_ex(__func__, bones_count); armature_bone_from_name_insert_recursive(bone_hash, &arm->bonebase); return bone_hash; } void BKE_armature_bone_hash_make(bArmature *arm) { if (!arm->bonehash) { arm->bonehash = armature_bone_from_name_map(arm); } } void BKE_armature_bone_hash_free(bArmature *arm) { if (arm->bonehash) { BLI_ghash_free(arm->bonehash, NULL, NULL); arm->bonehash = NULL; } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature Bone Flags * \{ */ bool BKE_armature_bone_flag_test_recursive(const Bone *bone, int flag) { if (bone->flag & flag) { return true; } if (bone->parent) { return BKE_armature_bone_flag_test_recursive(bone->parent, flag); } return false; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature Layer Refresh Used * \{ */ static void armature_refresh_layer_used_recursive(bArmature *arm, ListBase *bones) { LISTBASE_FOREACH (Bone *, bone, bones) { arm->layer_used |= bone->layer; armature_refresh_layer_used_recursive(arm, &bone->childbase); } } void BKE_armature_refresh_layer_used(struct Depsgraph *depsgraph, struct bArmature *arm) { if (arm->edbo != NULL) { /* Don't perform this update when the armature is in edit mode. In that case it should be * handled by ED_armature_edit_refresh_layer_used(). */ return; } arm->layer_used = 0; armature_refresh_layer_used_recursive(arm, &arm->bonebase); if (depsgraph == NULL || DEG_is_active(depsgraph)) { bArmature *arm_orig = (bArmature *)DEG_get_original_id(&arm->id); arm_orig->layer_used = arm->layer_used; } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature Layer Refresh Used * \{ */ /* Finds the best possible extension to the name on a particular axis. (For renaming, check for * unique names afterwards) strip_number: removes number extensions (TODO: not used) * axis: the axis to name on * head/tail: the head/tail co-ordinate of the bone on the specified axis */ bool bone_autoside_name( char name[MAXBONENAME], int UNUSED(strip_number), short axis, float head, float tail) { unsigned int len; char basename[MAXBONENAME] = ""; char extension[5] = ""; len = strlen(name); if (len == 0) { return false; } BLI_strncpy(basename, name, sizeof(basename)); /* Figure out extension to append: * - The extension to append is based upon the axis that we are working on. * - If head happens to be on 0, then we must consider the tail position as well to decide * which side the bone is on * -> If tail is 0, then its bone is considered to be on axis, so no extension should be added * -> Otherwise, extension is added from perspective of object based on which side tail goes to * - If head is non-zero, extension is added from perspective of object based on side head is on */ if (axis == 2) { /* z-axis - vertical (top/bottom) */ if (IS_EQF(head, 0.0f)) { if (tail < 0) { strcpy(extension, "Bot"); } else if (tail > 0) { strcpy(extension, "Top"); } } else { if (head < 0) { strcpy(extension, "Bot"); } else { strcpy(extension, "Top"); } } } else if (axis == 1) { /* y-axis - depth (front/back) */ if (IS_EQF(head, 0.0f)) { if (tail < 0) { strcpy(extension, "Fr"); } else if (tail > 0) { strcpy(extension, "Bk"); } } else { if (head < 0) { strcpy(extension, "Fr"); } else { strcpy(extension, "Bk"); } } } else { /* x-axis - horizontal (left/right) */ if (IS_EQF(head, 0.0f)) { if (tail < 0) { strcpy(extension, "R"); } else if (tail > 0) { strcpy(extension, "L"); } } else { if (head < 0) { strcpy(extension, "R"); /* XXX Shouldn't this be simple else, as for z and y axes? */ } else if (head > 0) { strcpy(extension, "L"); } } } /* Simple name truncation * - truncate if there is an extension and it wouldn't be able to fit * - otherwise, just append to end */ if (extension[0]) { bool changed = true; while (changed) { /* remove extensions */ changed = false; if (len > 2 && basename[len - 2] == '.') { if (ELEM(basename[len - 1], 'L', 'R')) { /* L R */ basename[len - 2] = '\0'; len -= 2; changed = true; } } else if (len > 3 && basename[len - 3] == '.') { if ((basename[len - 2] == 'F' && basename[len - 1] == 'r') || /* Fr */ (basename[len - 2] == 'B' && basename[len - 1] == 'k')) /* Bk */ { basename[len - 3] = '\0'; len -= 3; changed = true; } } else if (len > 4 && basename[len - 4] == '.') { if ((basename[len - 3] == 'T' && basename[len - 2] == 'o' && basename[len - 1] == 'p') || /* Top */ (basename[len - 3] == 'B' && basename[len - 2] == 'o' && basename[len - 1] == 't')) /* Bot */ { basename[len - 4] = '\0'; len -= 4; changed = true; } } } if ((MAXBONENAME - len) < strlen(extension) + 1) { /* add 1 for the '.' */ strncpy(name, basename, len - strlen(extension)); } BLI_snprintf(name, MAXBONENAME, "%s.%s", basename, extension); return true; } return false; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature B-Bone Support * \{ */ /* Compute a set of bezier parameter values that produce approximately equally spaced points. */ static void equalize_cubic_bezier(const float control[4][3], int temp_segments, int final_segments, const float *segment_scales, float *r_t_points) { float(*coords)[3] = BLI_array_alloca(coords, temp_segments + 1); float *pdist = BLI_array_alloca(pdist, temp_segments + 1); /* Compute the first pass of bezier point coordinates. */ for (int i = 0; i < 3; i++) { BKE_curve_forward_diff_bezier(control[0][i], control[1][i], control[2][i], control[3][i], &coords[0][i], temp_segments, sizeof(*coords)); } /* Calculate the length of the polyline at each point. */ pdist[0] = 0.0f; for (int i = 0; i < temp_segments; i++) { pdist[i + 1] = pdist[i] + len_v3v3(coords[i], coords[i + 1]); } /* Go over distances and calculate new parameter values. */ float dist_step = pdist[temp_segments]; float dist = 0, sum = 0; for (int i = 0; i < final_segments; i++) { sum += segment_scales[i]; } dist_step /= sum; r_t_points[0] = 0.0f; for (int i = 1, nr = 1; i <= final_segments; i++) { dist += segment_scales[i - 1] * dist_step; /* We're looking for location (distance) 'dist' in the array. */ while ((nr < temp_segments) && (dist >= pdist[nr])) { nr++; } float fac = (pdist[nr] - dist) / (pdist[nr] - pdist[nr - 1]); r_t_points[i] = (nr - fac) / temp_segments; } r_t_points[final_segments] = 1.0f; } /* Evaluate bezier position and tangent at a specific parameter value * using the De Casteljau algorithm. */ static void evaluate_cubic_bezier(const float control[4][3], float t, float r_pos[3], float r_tangent[3]) { float layer1[3][3]; interp_v3_v3v3(layer1[0], control[0], control[1], t); interp_v3_v3v3(layer1[1], control[1], control[2], t); interp_v3_v3v3(layer1[2], control[2], control[3], t); float layer2[2][3]; interp_v3_v3v3(layer2[0], layer1[0], layer1[1], t); interp_v3_v3v3(layer2[1], layer1[1], layer1[2], t); sub_v3_v3v3(r_tangent, layer2[1], layer2[0]); madd_v3_v3v3fl(r_pos, layer2[0], r_tangent, t); } /* Get "next" and "prev" bones - these are used for handle calculations. */ void BKE_pchan_bbone_handles_get(bPoseChannel *pchan, bPoseChannel **r_prev, bPoseChannel **r_next) { if (pchan->bone->bbone_prev_type == BBONE_HANDLE_AUTO) { /* Use connected parent. */ if (pchan->bone->flag & BONE_CONNECTED) { *r_prev = pchan->parent; } else { *r_prev = NULL; } } else { /* Use the provided bone as prev - leave blank to eliminate this effect altogether. */ *r_prev = pchan->bbone_prev; } if (pchan->bone->bbone_next_type == BBONE_HANDLE_AUTO) { /* Use connected child. */ *r_next = pchan->child; } else { /* Use the provided bone as next - leave blank to eliminate this effect altogether. */ *r_next = pchan->bbone_next; } } /* Compute B-Bone spline parameters for the given channel. */ void BKE_pchan_bbone_spline_params_get(struct bPoseChannel *pchan, const bool rest, struct BBoneSplineParameters *param) { bPoseChannel *next, *prev; Bone *bone = pchan->bone; float imat[4][4], posemat[4][4], tmpmat[4][4]; float delta[3]; memset(param, 0, sizeof(*param)); param->segments = bone->segments; param->length = bone->length; if (!rest) { float scale[3]; /* Check if we need to take non-uniform bone scaling into account. */ mat4_to_size(scale, pchan->pose_mat); if (fabsf(scale[0] - scale[1]) > 1e-6f || fabsf(scale[1] - scale[2]) > 1e-6f) { param->do_scale = true; copy_v3_v3(param->scale, scale); } } BKE_pchan_bbone_handles_get(pchan, &prev, &next); /* Find the handle points, since this is inside bone space, the * first point = (0, 0, 0) * last point = (0, length, 0) */ if (rest) { invert_m4_m4(imat, pchan->bone->arm_mat); } else if (param->do_scale) { copy_m4_m4(posemat, pchan->pose_mat); normalize_m4(posemat); invert_m4_m4(imat, posemat); } else { invert_m4_m4(imat, pchan->pose_mat); } float prev_scale[3], next_scale[3]; copy_v3_fl(prev_scale, 1.0f); copy_v3_fl(next_scale, 1.0f); if (prev) { float h1[3]; bool done = false; param->use_prev = true; /* Transform previous point inside this bone space. */ if (bone->bbone_prev_type == BBONE_HANDLE_RELATIVE) { /* Use delta movement (from restpose), and apply this relative to the current bone's head. */ if (rest) { /* In restpose, arm_head == pose_head */ zero_v3(param->prev_h); done = true; } else { sub_v3_v3v3(delta, prev->pose_head, prev->bone->arm_head); sub_v3_v3v3(h1, pchan->pose_head, delta); } } else if (bone->bbone_prev_type == BBONE_HANDLE_TANGENT) { /* Use bone direction by offsetting so that its tail meets current bone's head */ if (rest) { sub_v3_v3v3(delta, prev->bone->arm_tail, prev->bone->arm_head); sub_v3_v3v3(h1, bone->arm_head, delta); } else { sub_v3_v3v3(delta, prev->pose_tail, prev->pose_head); sub_v3_v3v3(h1, pchan->pose_head, delta); } } else { /* Apply special handling for smoothly joining B-Bone chains */ param->prev_bbone = (prev->bone->segments > 1); /* Use bone head as absolute position. */ copy_v3_v3(h1, rest ? prev->bone->arm_head : prev->pose_head); } if (!done) { mul_v3_m4v3(param->prev_h, imat, h1); } if (!param->prev_bbone) { /* Find the previous roll to interpolate. */ mul_m4_m4m4(param->prev_mat, imat, rest ? prev->bone->arm_mat : prev->pose_mat); /* Retrieve the local scale of the bone if necessary. */ if ((bone->bbone_prev_flag & BBONE_HANDLE_SCALE_ANY) && !rest) { BKE_armature_mat_pose_to_bone(prev, prev->pose_mat, tmpmat); mat4_to_size(prev_scale, tmpmat); } } } if (next) { float h2[3]; bool done = false; param->use_next = true; /* Transform next point inside this bone space. */ if (bone->bbone_next_type == BBONE_HANDLE_RELATIVE) { /* Use delta movement (from restpose), and apply this relative to the current bone's tail. */ if (rest) { /* In restpose, arm_head == pose_head */ copy_v3_fl3(param->next_h, 0.0f, param->length, 0.0); done = true; } else { sub_v3_v3v3(delta, next->pose_head, next->bone->arm_head); add_v3_v3v3(h2, pchan->pose_tail, delta); } } else if (bone->bbone_next_type == BBONE_HANDLE_TANGENT) { /* Use bone direction by offsetting so that its head meets current bone's tail */ if (rest) { sub_v3_v3v3(delta, next->bone->arm_tail, next->bone->arm_head); add_v3_v3v3(h2, bone->arm_tail, delta); } else { sub_v3_v3v3(delta, next->pose_tail, next->pose_head); add_v3_v3v3(h2, pchan->pose_tail, delta); } } else { /* Apply special handling for smoothly joining B-Bone chains */ param->next_bbone = (next->bone->segments > 1); /* Use bone tail as absolute position. */ copy_v3_v3(h2, rest ? next->bone->arm_tail : next->pose_tail); } if (!done) { mul_v3_m4v3(param->next_h, imat, h2); } /* Find the next roll to interpolate as well. */ mul_m4_m4m4(param->next_mat, imat, rest ? next->bone->arm_mat : next->pose_mat); /* Retrieve the local scale of the bone if necessary. */ if ((bone->bbone_next_flag & BBONE_HANDLE_SCALE_ANY) && !rest) { BKE_armature_mat_pose_to_bone(next, next->pose_mat, tmpmat); mat4_to_size(next_scale, tmpmat); } } /* Add effects from bbone properties over the top * - These properties allow users to hand-animate the * bone curve/shape, without having to resort to using * extra bones * - The "bone" level offsets are for defining the restpose * shape of the bone (e.g. for curved eyebrows for example). * -> In the viewport, it's needed to define what the rest pose * looks like * -> For "rest == 0", we also still need to have it present * so that we can "cancel out" this restpose when it comes * time to deform some geometry, it won't cause double transforms. * - The "pchan" level offsets are the ones that animators actually * end up animating */ { param->ease1 = bone->ease1 + (!rest ? pchan->ease1 : 0.0f); param->ease2 = bone->ease2 + (!rest ? pchan->ease2 : 0.0f); param->roll1 = bone->roll1 + (!rest ? pchan->roll1 : 0.0f); param->roll2 = bone->roll2 + (!rest ? pchan->roll2 : 0.0f); if (bone->bbone_flag & BBONE_ADD_PARENT_END_ROLL) { if (prev) { if (prev->bone) { param->roll1 += prev->bone->roll2; } if (!rest) { param->roll1 += prev->roll2; } } } copy_v3_v3(param->scale_in, bone->scale_in); copy_v3_v3(param->scale_out, bone->scale_out); if (!rest) { mul_v3_v3(param->scale_in, pchan->scale_in); mul_v3_v3(param->scale_out, pchan->scale_out); } /* Extra curve x / z */ param->curve_in_x = bone->curve_in_x + (!rest ? pchan->curve_in_x : 0.0f); param->curve_in_z = bone->curve_in_z + (!rest ? pchan->curve_in_z : 0.0f); param->curve_out_x = bone->curve_out_x + (!rest ? pchan->curve_out_x : 0.0f); param->curve_out_z = bone->curve_out_z + (!rest ? pchan->curve_out_z : 0.0f); if (bone->bbone_flag & BBONE_SCALE_EASING) { param->ease1 *= param->scale_in[1]; param->curve_in_x *= param->scale_in[1]; param->curve_in_z *= param->scale_in[1]; param->ease2 *= param->scale_out[1]; param->curve_out_x *= param->scale_out[1]; param->curve_out_z *= param->scale_out[1]; } /* Custom handle scale. */ if (bone->bbone_prev_flag & BBONE_HANDLE_SCALE_X) { param->scale_in[0] *= prev_scale[0]; } if (bone->bbone_prev_flag & BBONE_HANDLE_SCALE_Y) { param->scale_in[1] *= prev_scale[1]; } if (bone->bbone_prev_flag & BBONE_HANDLE_SCALE_Z) { param->scale_in[2] *= prev_scale[2]; } if (bone->bbone_prev_flag & BBONE_HANDLE_SCALE_EASE) { param->ease1 *= prev_scale[1]; param->curve_in_x *= prev_scale[1]; param->curve_in_z *= prev_scale[1]; } if (bone->bbone_next_flag & BBONE_HANDLE_SCALE_X) { param->scale_out[0] *= next_scale[0]; } if (bone->bbone_next_flag & BBONE_HANDLE_SCALE_Y) { param->scale_out[1] *= next_scale[1]; } if (bone->bbone_next_flag & BBONE_HANDLE_SCALE_Z) { param->scale_out[2] *= next_scale[2]; } if (bone->bbone_next_flag & BBONE_HANDLE_SCALE_EASE) { param->ease2 *= next_scale[1]; param->curve_out_x *= next_scale[1]; param->curve_out_z *= next_scale[1]; } } } /* Fills the array with the desired amount of bone->segments elements. * This calculation is done within unit bone space. */ void BKE_pchan_bbone_spline_setup(bPoseChannel *pchan, const bool rest, const bool for_deform, Mat4 *result_array) { BBoneSplineParameters param; BKE_pchan_bbone_spline_params_get(pchan, rest, ¶m); pchan->bone->segments = BKE_pchan_bbone_spline_compute(¶m, for_deform, result_array); } /* Computes the bezier handle vectors and rolls coming from custom handles. */ void BKE_pchan_bbone_handles_compute(const BBoneSplineParameters *param, float h1[3], float *r_roll1, float h2[3], float *r_roll2, bool ease, bool offsets) { float mat3[3][3]; float length = param->length; float epsilon = 1e-5 * length; if (param->do_scale) { length *= param->scale[1]; } *r_roll1 = *r_roll2 = 0.0f; if (param->use_prev) { copy_v3_v3(h1, param->prev_h); if (param->prev_bbone) { /* If previous bone is B-bone too, use average handle direction. */ h1[1] -= length; } if (normalize_v3(h1) < epsilon) { copy_v3_fl3(h1, 0.0f, -1.0f, 0.0f); } negate_v3(h1); if (!param->prev_bbone) { /* Find the previous roll to interpolate. */ copy_m3_m4(mat3, param->prev_mat); mat3_vec_to_roll(mat3, h1, r_roll1); } } else { h1[0] = 0.0f; h1[1] = 1.0; h1[2] = 0.0f; } if (param->use_next) { copy_v3_v3(h2, param->next_h); /* If next bone is B-bone too, use average handle direction. */ if (param->next_bbone) { /* pass */ } else { h2[1] -= length; } if (normalize_v3(h2) < epsilon) { copy_v3_fl3(h2, 0.0f, 1.0f, 0.0f); } /* Find the next roll to interpolate as well. */ copy_m3_m4(mat3, param->next_mat); mat3_vec_to_roll(mat3, h2, r_roll2); } else { h2[0] = 0.0f; h2[1] = 1.0f; h2[2] = 0.0f; } if (ease) { const float circle_factor = length * (cubic_tangent_factor_circle_v3(h1, h2) / 0.75f); const float hlength1 = param->ease1 * circle_factor; const float hlength2 = param->ease2 * circle_factor; /* and only now negate h2 */ mul_v3_fl(h1, hlength1); mul_v3_fl(h2, -hlength2); } /* Add effects from bbone properties over the top * - These properties allow users to hand-animate the * bone curve/shape, without having to resort to using * extra bones * - The "bone" level offsets are for defining the rest-pose * shape of the bone (e.g. for curved eyebrows for example). * -> In the viewport, it's needed to define what the rest pose * looks like * -> For "rest == 0", we also still need to have it present * so that we can "cancel out" this rest-pose when it comes * time to deform some geometry, it won't cause double transforms. * - The "pchan" level offsets are the ones that animators actually * end up animating */ if (offsets) { /* Add extra rolls. */ *r_roll1 += param->roll1; *r_roll2 += param->roll2; /* Extra curve x / y */ /* NOTE: * Scale correction factors here are to compensate for some random floating-point glitches * when scaling up the bone or its parent by a factor of approximately 8.15/6, which results * in the bone length getting scaled up too (from 1 to 8), causing the curve to flatten out. */ const float xscale_correction = (param->do_scale) ? param->scale[0] : 1.0f; const float zscale_correction = (param->do_scale) ? param->scale[2] : 1.0f; h1[0] += param->curve_in_x * xscale_correction; h1[2] += param->curve_in_z * zscale_correction; h2[0] += param->curve_out_x * xscale_correction; h2[2] += param->curve_out_z * zscale_correction; } } static void make_bbone_spline_matrix(BBoneSplineParameters *param, const float scalemats[2][4][4], const float pos[3], const float axis[3], float roll, float scalex, float scalez, float result[4][4]) { float mat3[3][3]; vec_roll_to_mat3(axis, roll, mat3); copy_m4_m3(result, mat3); copy_v3_v3(result[3], pos); if (param->do_scale) { /* Correct for scaling when this matrix is used in scaled space. */ mul_m4_series(result, scalemats[0], result, scalemats[1]); } /* BBone scale... */ mul_v3_fl(result[0], scalex); mul_v3_fl(result[2], scalez); } /* Fade from first to second derivative when the handle is very short. */ static void ease_handle_axis(const float deriv1[3], const float deriv2[3], float r_axis[3]) { const float gap = 0.1f; copy_v3_v3(r_axis, deriv1); float len1 = len_squared_v3(deriv1), len2 = len_squared_v3(deriv2); float ratio = len1 / len2; if (ratio < gap * gap) { madd_v3_v3fl(r_axis, deriv2, gap - sqrtf(ratio)); } } /* Fills the array with the desired amount of bone->segments elements. * This calculation is done within unit bone space. */ int BKE_pchan_bbone_spline_compute(BBoneSplineParameters *param, const bool for_deform, Mat4 *result_array) { float scalemats[2][4][4]; float bezt_controls[4][3]; float h1[3], roll1, h2[3], roll2, prev[3], cur[3], axis[3]; float length = param->length; if (param->do_scale) { size_to_mat4(scalemats[1], param->scale); invert_m4_m4(scalemats[0], scalemats[1]); length *= param->scale[1]; } BKE_pchan_bbone_handles_compute(param, h1, &roll1, h2, &roll2, true, true); /* Make curve. */ CLAMP_MAX(param->segments, MAX_BBONE_SUBDIV); copy_v3_fl3(bezt_controls[3], 0.0f, length, 0.0f); add_v3_v3v3(bezt_controls[2], bezt_controls[3], h2); copy_v3_v3(bezt_controls[1], h1); zero_v3(bezt_controls[0]); /* Compute lengthwise segment scale. */ float segment_scales[MAX_BBONE_SUBDIV]; CLAMP_MIN(param->scale_in[1], 0.0001f); CLAMP_MIN(param->scale_out[1], 0.0001f); const float log_scale_in_len = logf(param->scale_in[1]); const float log_scale_out_len = logf(param->scale_out[1]); for (int i = 0; i < param->segments; i++) { const float fac = ((float)i) / (param->segments - 1); segment_scales[i] = expf(interpf(log_scale_out_len, log_scale_in_len, fac)); } /* Compute segment vertex offsets along the curve length. */ float bezt_points[MAX_BBONE_SUBDIV + 1]; equalize_cubic_bezier( bezt_controls, MAX_BBONE_SUBDIV, param->segments, segment_scales, bezt_points); /* Deformation uses N+1 matrices computed at points between the segments. */ if (for_deform) { /* Bezier derivatives. */ float bezt_deriv1[3][3], bezt_deriv2[2][3]; for (int i = 0; i < 3; i++) { sub_v3_v3v3(bezt_deriv1[i], bezt_controls[i + 1], bezt_controls[i]); } for (int i = 0; i < 2; i++) { sub_v3_v3v3(bezt_deriv2[i], bezt_deriv1[i + 1], bezt_deriv1[i]); } /* End points require special handling to fix zero length handles. */ ease_handle_axis(bezt_deriv1[0], bezt_deriv2[0], axis); make_bbone_spline_matrix(param, scalemats, bezt_controls[0], axis, roll1, param->scale_in[0], param->scale_in[2], result_array[0].mat); for (int a = 1; a < param->segments; a++) { evaluate_cubic_bezier(bezt_controls, bezt_points[a], cur, axis); float fac = ((float)a) / param->segments; float roll = interpf(roll2, roll1, fac); float scalex = interpf(param->scale_out[0], param->scale_in[0], fac); float scalez = interpf(param->scale_out[2], param->scale_in[2], fac); make_bbone_spline_matrix( param, scalemats, cur, axis, roll, scalex, scalez, result_array[a].mat); } negate_v3(bezt_deriv2[1]); ease_handle_axis(bezt_deriv1[2], bezt_deriv2[1], axis); make_bbone_spline_matrix(param, scalemats, bezt_controls[3], axis, roll2, param->scale_out[0], param->scale_out[2], result_array[param->segments].mat); } /* Other code (e.g. display) uses matrices for the segments themselves. */ else { zero_v3(prev); for (int a = 0; a < param->segments; a++) { evaluate_cubic_bezier(bezt_controls, bezt_points[a + 1], cur, axis); sub_v3_v3v3(axis, cur, prev); float fac = (a + 0.5f) / param->segments; float roll = interpf(roll2, roll1, fac); float scalex = interpf(param->scale_out[0], param->scale_in[0], fac); float scalez = interpf(param->scale_out[2], param->scale_in[2], fac); make_bbone_spline_matrix( param, scalemats, prev, axis, roll, scalex, scalez, result_array[a].mat); copy_v3_v3(prev, cur); } } return param->segments; } static void allocate_bbone_cache(bPoseChannel *pchan, int segments) { bPoseChannel_Runtime *runtime = &pchan->runtime; if (runtime->bbone_segments != segments) { BKE_pose_channel_free_bbone_cache(runtime); runtime->bbone_segments = segments; runtime->bbone_rest_mats = MEM_malloc_arrayN( sizeof(Mat4), 1 + (uint)segments, "bPoseChannel_Runtime::bbone_rest_mats"); runtime->bbone_pose_mats = MEM_malloc_arrayN( sizeof(Mat4), 1 + (uint)segments, "bPoseChannel_Runtime::bbone_pose_mats"); runtime->bbone_deform_mats = MEM_malloc_arrayN( sizeof(Mat4), 2 + (uint)segments, "bPoseChannel_Runtime::bbone_deform_mats"); runtime->bbone_dual_quats = MEM_malloc_arrayN( sizeof(DualQuat), 1 + (uint)segments, "bPoseChannel_Runtime::bbone_dual_quats"); } } /** Compute and cache the B-Bone shape in the channel runtime struct. */ void BKE_pchan_bbone_segments_cache_compute(bPoseChannel *pchan) { bPoseChannel_Runtime *runtime = &pchan->runtime; Bone *bone = pchan->bone; int segments = bone->segments; BLI_assert(segments > 1); /* Allocate the cache if needed. */ allocate_bbone_cache(pchan, segments); /* Compute the shape. */ Mat4 *b_bone = runtime->bbone_pose_mats; Mat4 *b_bone_rest = runtime->bbone_rest_mats; Mat4 *b_bone_mats = runtime->bbone_deform_mats; DualQuat *b_bone_dual_quats = runtime->bbone_dual_quats; int a; BKE_pchan_bbone_spline_setup(pchan, false, true, b_bone); BKE_pchan_bbone_spline_setup(pchan, true, true, b_bone_rest); /* Compute deform matrices. */ /* first matrix is the inverse arm_mat, to bring points in local bone space * for finding out which segment it belongs to */ invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat); /* then we make the b_bone_mats: * - first transform to local bone space * - translate over the curve to the bbone mat space * - transform with b_bone matrix * - transform back into global space */ for (a = 0; a <= bone->segments; a++) { float tmat[4][4]; invert_m4_m4(tmat, b_bone_rest[a].mat); mul_m4_series(b_bone_mats[a + 1].mat, pchan->chan_mat, bone->arm_mat, b_bone[a].mat, tmat, b_bone_mats[0].mat); /* Compute the orthonormal object space rest matrix of the segment. */ mul_m4_m4m4(tmat, bone->arm_mat, b_bone_rest[a].mat); normalize_m4(tmat); mat4_to_dquat(&b_bone_dual_quats[a], tmat, b_bone_mats[a + 1].mat); } } /** Copy cached B-Bone segments from one channel to another */ void BKE_pchan_bbone_segments_cache_copy(bPoseChannel *pchan, bPoseChannel *pchan_from) { bPoseChannel_Runtime *runtime = &pchan->runtime; bPoseChannel_Runtime *runtime_from = &pchan_from->runtime; int segments = runtime_from->bbone_segments; if (segments <= 1) { BKE_pose_channel_free_bbone_cache(&pchan->runtime); } else { allocate_bbone_cache(pchan, segments); memcpy(runtime->bbone_rest_mats, runtime_from->bbone_rest_mats, sizeof(Mat4) * (1 + segments)); memcpy(runtime->bbone_pose_mats, runtime_from->bbone_pose_mats, sizeof(Mat4) * (1 + segments)); memcpy(runtime->bbone_deform_mats, runtime_from->bbone_deform_mats, sizeof(Mat4) * (2 + segments)); memcpy(runtime->bbone_dual_quats, runtime_from->bbone_dual_quats, sizeof(DualQuat) * (1 + segments)); } } /** * Calculate index and blend factor for the two B-Bone segment nodes * affecting the point at 0 <= pos <= 1. */ void BKE_pchan_bbone_deform_segment_index(const bPoseChannel *pchan, float pos, int *r_index, float *r_blend_next) { int segments = pchan->bone->segments; CLAMP(pos, 0.0f, 1.0f); /* Calculate the indices of the 2 affecting b_bone segments. * Integer part is the first segment's index. * Integer part plus 1 is the second segment's index. * Fractional part is the blend factor. */ float pre_blend = pos * (float)segments; int index = (int)floorf(pre_blend); CLAMP(index, 0, segments - 1); float blend = pre_blend - index; CLAMP(blend, 0.0f, 1.0f); *r_index = index; *r_blend_next = blend; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Bone Space to Space Conversion API * \{ */ /* Convert World-Space Matrix to Pose-Space Matrix */ void BKE_armature_mat_world_to_pose(Object *ob, const float inmat[4][4], float outmat[4][4]) { float obmat[4][4]; /* prevent crashes */ if (ob == NULL) { return; } /* Get inverse of (armature) object's matrix. */ invert_m4_m4(obmat, ob->obmat); /* multiply given matrix by object's-inverse to find pose-space matrix */ mul_m4_m4m4(outmat, inmat, obmat); } /* Convert World-Space Location to Pose-Space Location * NOTE: this cannot be used to convert to pose-space location of the supplied * pose-channel into its local space (i.e. 'visual'-keyframing) */ void BKE_armature_loc_world_to_pose(Object *ob, const float inloc[3], float outloc[3]) { float xLocMat[4][4]; float nLocMat[4][4]; /* build matrix for location */ unit_m4(xLocMat); copy_v3_v3(xLocMat[3], inloc); /* get bone-space cursor matrix and extract location */ BKE_armature_mat_world_to_pose(ob, xLocMat, nLocMat); copy_v3_v3(outloc, nLocMat[3]); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Bone Matrix Calculation API * \{ */ /* Simple helper, computes the offset bone matrix. * offs_bone = yoffs(b-1) + root(b) + bonemat(b). */ void BKE_bone_offset_matrix_get(const Bone *bone, float offs_bone[4][4]) { BLI_assert(bone->parent != NULL); /* Bone transform itself. */ copy_m4_m3(offs_bone, bone->bone_mat); /* The bone's root offset (is in the parent's coordinate system). */ copy_v3_v3(offs_bone[3], bone->head); /* Get the length translation of parent (length along y axis). */ offs_bone[3][1] += bone->parent->length; } /* Construct the matrices (rot/scale and loc) * to apply the PoseChannels into the armature (object) space. * I.e. (roughly) the "pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)" in the * pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) * ...function. * * This allows to get the transformations of a bone in its object space, * *before* constraints (and IK) get applied (used by pose evaluation code). * And reverse: to find pchan transformations needed to place a bone at a given loc/rot/scale * in object space (used by interactive transform, and snapping code). * * Note that, with the HINGE/NO_SCALE/NO_LOCAL_LOCATION options, the location matrix * will differ from the rotation/scale matrix... * * NOTE: This cannot be used to convert to pose-space transforms of the supplied * pose-channel into its local space (i.e. 'visual'-keyframing). * (note: I don't understand that, so I keep it :p --mont29). */ void BKE_bone_parent_transform_calc_from_pchan(const bPoseChannel *pchan, BoneParentTransform *r_bpt) { const Bone *bone, *parbone; const bPoseChannel *parchan; /* set up variables for quicker access below */ bone = pchan->bone; parbone = bone->parent; parchan = pchan->parent; if (parchan) { float offs_bone[4][4]; /* yoffs(b-1) + root(b) + bonemat(b). */ BKE_bone_offset_matrix_get(bone, offs_bone); BKE_bone_parent_transform_calc_from_matrices(bone->flag, bone->inherit_scale_mode, offs_bone, parbone->arm_mat, parchan->pose_mat, r_bpt); } else { BKE_bone_parent_transform_calc_from_matrices( bone->flag, bone->inherit_scale_mode, bone->arm_mat, NULL, NULL, r_bpt); } } /* Compute the parent transform using data decoupled from specific data structures. * * bone_flag: Bone->flag containing settings * offs_bone: delta from parent to current arm_mat (or just arm_mat if no parent) * parent_arm_mat, parent_pose_mat: arm_mat and pose_mat of parent, or NULL * r_bpt: OUTPUT parent transform */ void BKE_bone_parent_transform_calc_from_matrices(int bone_flag, int inherit_scale_mode, const float offs_bone[4][4], const float parent_arm_mat[4][4], const float parent_pose_mat[4][4], BoneParentTransform *r_bpt) { copy_v3_fl(r_bpt->post_scale, 1.0f); if (parent_pose_mat) { const bool use_rotation = (bone_flag & BONE_HINGE) == 0; const bool full_transform = use_rotation && inherit_scale_mode == BONE_INHERIT_SCALE_FULL; /* Compose the rotscale matrix for this bone. */ if (full_transform) { /* Parent pose rotation and scale. */ mul_m4_m4m4(r_bpt->rotscale_mat, parent_pose_mat, offs_bone); } else { float tmat[4][4], tscale[3]; /* If using parent pose rotation: */ if (use_rotation) { copy_m4_m4(tmat, parent_pose_mat); /* Normalize the matrix when needed. */ switch (inherit_scale_mode) { case BONE_INHERIT_SCALE_FULL: case BONE_INHERIT_SCALE_FIX_SHEAR: /* Keep scale and shear. */ break; case BONE_INHERIT_SCALE_NONE: case BONE_INHERIT_SCALE_AVERAGE: /* Remove scale and shear from parent. */ orthogonalize_m4_stable(tmat, 1, true); break; case BONE_INHERIT_SCALE_ALIGNED: /* Remove shear and extract scale. */ orthogonalize_m4_stable(tmat, 1, false); normalize_m4_ex(tmat, r_bpt->post_scale); break; case BONE_INHERIT_SCALE_NONE_LEGACY: /* Remove only scale - bad legacy way. */ normalize_m4(tmat); break; default: BLI_assert_unreachable(); } } /* If removing parent pose rotation: */ else { copy_m4_m4(tmat, parent_arm_mat); /* Copy the parent scale when needed. */ switch (inherit_scale_mode) { case BONE_INHERIT_SCALE_FULL: /* Ignore effects of shear. */ mat4_to_size(tscale, parent_pose_mat); rescale_m4(tmat, tscale); break; case BONE_INHERIT_SCALE_FIX_SHEAR: /* Take the effects of parent shear into account to get exact volume. */ mat4_to_size_fix_shear(tscale, parent_pose_mat); rescale_m4(tmat, tscale); break; case BONE_INHERIT_SCALE_ALIGNED: mat4_to_size_fix_shear(r_bpt->post_scale, parent_pose_mat); break; case BONE_INHERIT_SCALE_NONE: case BONE_INHERIT_SCALE_AVERAGE: case BONE_INHERIT_SCALE_NONE_LEGACY: /* Keep unscaled. */ break; default: BLI_assert_unreachable(); } } /* Apply the average parent scale when needed. */ if (inherit_scale_mode == BONE_INHERIT_SCALE_AVERAGE) { mul_mat3_m4_fl(tmat, cbrtf(fabsf(mat4_to_volume_scale(parent_pose_mat)))); } mul_m4_m4m4(r_bpt->rotscale_mat, tmat, offs_bone); /* Remove remaining shear when needed, preserving volume. */ if (inherit_scale_mode == BONE_INHERIT_SCALE_FIX_SHEAR) { orthogonalize_m4_stable(r_bpt->rotscale_mat, 1, false); } } /* Compose the loc matrix for this bone. */ /* NOTE: That version does not modify bone's loc when HINGE/NO_SCALE options are set. */ /* In this case, use the object's space *orientation*. */ if (bone_flag & BONE_NO_LOCAL_LOCATION) { /* XXX I'm sure that code can be simplified! */ float bone_loc[4][4], bone_rotscale[3][3], tmat4[4][4], tmat3[3][3]; unit_m4(bone_loc); unit_m4(r_bpt->loc_mat); unit_m4(tmat4); mul_v3_m4v3(bone_loc[3], parent_pose_mat, offs_bone[3]); unit_m3(bone_rotscale); copy_m3_m4(tmat3, parent_pose_mat); mul_m3_m3m3(bone_rotscale, tmat3, bone_rotscale); copy_m4_m3(tmat4, bone_rotscale); mul_m4_m4m4(r_bpt->loc_mat, bone_loc, tmat4); } /* Those flags do not affect position, use plain parent transform space! */ else if (!full_transform) { mul_m4_m4m4(r_bpt->loc_mat, parent_pose_mat, offs_bone); } /* Else (i.e. default, usual case), * just use the same matrix for rotation/scaling, and location. */ else { copy_m4_m4(r_bpt->loc_mat, r_bpt->rotscale_mat); } } /* Root bones. */ else { /* Rotation/scaling. */ copy_m4_m4(r_bpt->rotscale_mat, offs_bone); /* Translation. */ if (bone_flag & BONE_NO_LOCAL_LOCATION) { /* Translation of arm_mat, without the rotation. */ unit_m4(r_bpt->loc_mat); copy_v3_v3(r_bpt->loc_mat[3], offs_bone[3]); } else { copy_m4_m4(r_bpt->loc_mat, r_bpt->rotscale_mat); } } } void BKE_bone_parent_transform_clear(struct BoneParentTransform *bpt) { unit_m4(bpt->rotscale_mat); unit_m4(bpt->loc_mat); copy_v3_fl(bpt->post_scale, 1.0f); } void BKE_bone_parent_transform_invert(struct BoneParentTransform *bpt) { invert_m4(bpt->rotscale_mat); invert_m4(bpt->loc_mat); invert_v3(bpt->post_scale); } void BKE_bone_parent_transform_combine(const struct BoneParentTransform *in1, const struct BoneParentTransform *in2, struct BoneParentTransform *result) { mul_m4_m4m4(result->rotscale_mat, in1->rotscale_mat, in2->rotscale_mat); mul_m4_m4m4(result->loc_mat, in1->loc_mat, in2->loc_mat); mul_v3_v3v3(result->post_scale, in1->post_scale, in2->post_scale); } void BKE_bone_parent_transform_apply(const struct BoneParentTransform *bpt, const float inmat[4][4], float outmat[4][4]) { /* in case inmat == outmat */ float tmploc[3]; copy_v3_v3(tmploc, inmat[3]); mul_m4_m4m4(outmat, bpt->rotscale_mat, inmat); mul_v3_m4v3(outmat[3], bpt->loc_mat, tmploc); rescale_m4(outmat, bpt->post_scale); } /* Convert Pose-Space Matrix to Bone-Space Matrix. * NOTE: this cannot be used to convert to pose-space transforms of the supplied * pose-channel into its local space (i.e. 'visual'-keyframing) */ void BKE_armature_mat_pose_to_bone(bPoseChannel *pchan, const float inmat[4][4], float outmat[4][4]) { BoneParentTransform bpt; BKE_bone_parent_transform_calc_from_pchan(pchan, &bpt); BKE_bone_parent_transform_invert(&bpt); BKE_bone_parent_transform_apply(&bpt, inmat, outmat); } /* Convert Bone-Space Matrix to Pose-Space Matrix. */ void BKE_armature_mat_bone_to_pose(bPoseChannel *pchan, const float inmat[4][4], float outmat[4][4]) { BoneParentTransform bpt; BKE_bone_parent_transform_calc_from_pchan(pchan, &bpt); BKE_bone_parent_transform_apply(&bpt, inmat, outmat); } /* Convert Pose-Space Location to Bone-Space Location * NOTE: this cannot be used to convert to pose-space location of the supplied * pose-channel into its local space (i.e. 'visual'-keyframing) */ void BKE_armature_loc_pose_to_bone(bPoseChannel *pchan, const float inloc[3], float outloc[3]) { float xLocMat[4][4]; float nLocMat[4][4]; /* build matrix for location */ unit_m4(xLocMat); copy_v3_v3(xLocMat[3], inloc); /* get bone-space cursor matrix and extract location */ BKE_armature_mat_pose_to_bone(pchan, xLocMat, nLocMat); copy_v3_v3(outloc, nLocMat[3]); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Bone Matrix Read/Write API * * High level functions for transforming bones and reading the transform values. * \{ */ void BKE_armature_mat_pose_to_bone_ex(struct Depsgraph *depsgraph, Object *ob, bPoseChannel *pchan, const float inmat[4][4], float outmat[4][4]) { bPoseChannel work_pchan = *pchan; /* recalculate pose matrix with only parent transformations, * bone loc/sca/rot is ignored, scene and frame are not used. */ BKE_pose_where_is_bone(depsgraph, NULL, ob, &work_pchan, 0.0f, false); /* Find the matrix, need to remove the bone transforms first so this is calculated * as a matrix to set rather than a difference on top of what's already there. */ unit_m4(outmat); BKE_pchan_apply_mat4(&work_pchan, outmat, false); BKE_armature_mat_pose_to_bone(&work_pchan, inmat, outmat); } /** * Same as #BKE_object_mat3_to_rot(). */ void BKE_pchan_mat3_to_rot(bPoseChannel *pchan, const float mat[3][3], bool use_compat) { BLI_ASSERT_UNIT_M3(mat); switch (pchan->rotmode) { case ROT_MODE_QUAT: mat3_normalized_to_quat(pchan->quat, mat); break; case ROT_MODE_AXISANGLE: mat3_normalized_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat); break; default: /* euler */ if (use_compat) { mat3_normalized_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat); } else { mat3_normalized_to_eulO(pchan->eul, pchan->rotmode, mat); } break; } } /** * Same as #BKE_object_rot_to_mat3(). */ void BKE_pchan_rot_to_mat3(const bPoseChannel *pchan, float r_mat[3][3]) { /* rotations may either be quats, eulers (with various rotation orders), or axis-angle */ if (pchan->rotmode > 0) { /* Euler rotations (will cause gimbal lock, * but this can be alleviated a bit with rotation orders) */ eulO_to_mat3(r_mat, pchan->eul, pchan->rotmode); } else if (pchan->rotmode == ROT_MODE_AXISANGLE) { /* axis-angle - not really that great for 3D-changing orientations */ axis_angle_to_mat3(r_mat, pchan->rotAxis, pchan->rotAngle); } else { /* quats are normalized before use to eliminate scaling issues */ float quat[4]; /* NOTE: we now don't normalize the stored values anymore, * since this was kind of evil in some cases but if this proves to be too problematic, * switch back to the old system of operating directly on the stored copy. */ normalize_qt_qt(quat, pchan->quat); quat_to_mat3(r_mat, quat); } } /** * Apply a 4x4 matrix to the pose bone, * similar to #BKE_object_apply_mat4(). */ void BKE_pchan_apply_mat4(bPoseChannel *pchan, const float mat[4][4], bool use_compat) { float rot[3][3]; mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat); BKE_pchan_mat3_to_rot(pchan, rot, use_compat); } /** * Remove rest-position effects from pose-transform for obtaining * 'visual' transformation of pose-channel. * (used by the Visual-Keyframing stuff). */ void BKE_armature_mat_pose_to_delta(float delta_mat[4][4], float pose_mat[4][4], float arm_mat[4][4]) { float imat[4][4]; invert_m4_m4(imat, arm_mat); mul_m4_m4m4(delta_mat, imat, pose_mat); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Rotation Mode Conversions * * Used for Objects and Pose Channels, since both can have multiple rotation representations. * \{ */ /** * Called from RNA when rotation mode changes * - the result should be that the rotations given in the provided pointers have had conversions * applied (as appropriate), such that the rotation of the element hasn't 'visually' changed. */ void BKE_rotMode_change_values( float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode) { /* check if any change - if so, need to convert data */ if (newMode > 0) { /* to euler */ if (oldMode == ROT_MODE_AXISANGLE) { /* axis-angle to euler */ axis_angle_to_eulO(eul, newMode, axis, *angle); } else if (oldMode == ROT_MODE_QUAT) { /* quat to euler */ normalize_qt(quat); quat_to_eulO(eul, newMode, quat); } /* else { no conversion needed } */ } else if (newMode == ROT_MODE_QUAT) { /* to quat */ if (oldMode == ROT_MODE_AXISANGLE) { /* axis angle to quat */ axis_angle_to_quat(quat, axis, *angle); } else if (oldMode > 0) { /* euler to quat */ eulO_to_quat(quat, eul, oldMode); } /* else { no conversion needed } */ } else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */ if (oldMode > 0) { /* euler to axis angle */ eulO_to_axis_angle(axis, angle, eul, oldMode); } else if (oldMode == ROT_MODE_QUAT) { /* quat to axis angle */ normalize_qt(quat); quat_to_axis_angle(axis, angle, quat); } /* When converting to axis-angle, * we need a special exception for the case when there is no axis. */ if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) { /* for now, rotate around y-axis then (so that it simply becomes the roll) */ axis[1] = 1.0f; } } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Bone Vector, Roll Conversion * * Used for Objects and Pose Channels, since both can have multiple rotation representations. * * How it Works * ============ * * This is the bone transformation trick; they're hierarchical so each bone(b) * is in the coord system of bone(b-1): * * arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * * -> yoffs is just the y axis translation in parent's coord system * -> d_root is the translation of the bone root, also in parent's coord system * * pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) * * we then - in init deform - store the deform in chan_mat, such that: * * pose_mat(b)= arm_mat(b) * chan_mat(b) * * \{ */ /* Computes vector and roll based on a rotation. * "mat" must contain only a rotation, and no scaling. */ void mat3_to_vec_roll(const float mat[3][3], float r_vec[3], float *r_roll) { if (r_vec) { copy_v3_v3(r_vec, mat[1]); } if (r_roll) { mat3_vec_to_roll(mat, mat[1], r_roll); } } /* Computes roll around the vector that best approximates the matrix. * If vec is the Y vector from purely rotational mat, result should be exact. */ void mat3_vec_to_roll(const float mat[3][3], const float vec[3], float *r_roll) { float vecmat[3][3], vecmatinv[3][3], rollmat[3][3], q[4]; /* Compute the orientation relative to the vector with zero roll. */ vec_roll_to_mat3(vec, 0.0f, vecmat); invert_m3_m3(vecmatinv, vecmat); mul_m3_m3m3(rollmat, vecmatinv, mat); /* Extract the twist angle as the roll value. */ mat3_to_quat(q, rollmat); *r_roll = quat_split_swing_and_twist(q, 1, NULL, NULL); } /* Calculates the rest matrix of a bone based on its vector and a roll around that vector. */ /** * Given `v = (v.x, v.y, v.z)` our (normalized) bone vector, we want the rotation matrix M * from the Y axis (so that `M * (0, 1, 0) = v`). * - The rotation axis a lays on XZ plane, and it is orthonormal to v, * hence to the projection of v onto XZ plane. * - `a = (v.z, 0, -v.x)` * * We know a is eigenvector of M (so M * a = a). * Finally, we have w, such that M * w = (0, 1, 0) * (i.e. the vector that will be aligned with Y axis once transformed). * We know w is symmetric to v by the Y axis. * - `w = (-v.x, v.y, -v.z)` * * Solving this, we get (x, y and z being the components of v): *
 *     ┌ (x^2 * y + z^2) / (x^2 + z^2),   x,   x * z * (y - 1) / (x^2 + z^2) ┐
 * M = │  x * (y^2 - 1)  / (x^2 + z^2),   y,    z * (y^2 - 1)  / (x^2 + z^2) │
 *     └ x * z * (y - 1) / (x^2 + z^2),   z,   (x^2 + z^2 * y) / (x^2 + z^2) ┘
 * 
* * This is stable as long as v (the bone) is not too much aligned with +/-Y * (i.e. x and z components are not too close to 0). * * Since v is normalized, we have `x^2 + y^2 + z^2 = 1`, * hence `x^2 + z^2 = 1 - y^2 = (1 - y)(1 + y)`. * * This allows to simplifies M like this: *
 *     ┌ 1 - x^2 / (1 + y),   x,     -x * z / (1 + y) ┐
 * M = │                -x,   y,                   -z │
 *     └  -x * z / (1 + y),   z,    1 - z^2 / (1 + y) ┘
 * 
* * Written this way, we see the case v = +Y is no more a singularity. * The only one * remaining is the bone being aligned with -Y. * * Let's handle * the asymptotic behavior when bone vector is reaching the limit of y = -1. * Each of the four corner elements can vary from -1 to 1, * depending on the axis a chosen for doing the rotation. * And the "rotation" here is in fact established by mirroring XZ plane by that given axis, * then inversing the Y-axis. * For sufficiently small x and z, and with y approaching -1, * all elements but the four corner ones of M will degenerate. * So let's now focus on these corner elements. * * We rewrite M so that it only contains its four corner elements, * and combine the `1 / (1 + y)` factor: *
 *                    ┌ 1 + y - x^2,        -x * z ┐
 * M* = 1 / (1 + y) * │                            │
 *                    └      -x * z,   1 + y - z^2 ┘
 * 
* * When y is close to -1, computing 1 / (1 + y) will cause severe numerical instability, * so we ignore it and normalize M instead. * We know `y^2 = 1 - (x^2 + z^2)`, and `y < 0`, hence `y = -sqrt(1 - (x^2 + z^2))`. * * Since x and z are both close to 0, we apply the binomial expansion to the first order: * `y = -sqrt(1 - (x^2 + z^2)) = -1 + (x^2 + z^2) / 2`. Which gives: *
 *                        ┌  z^2 - x^2,  -2 * x * z ┐
 * M* = 1 / (x^2 + z^2) * │                         │
 *                        └ -2 * x * z,   x^2 - z^2 ┘
 * 
*/ void vec_roll_to_mat3_normalized(const float nor[3], const float roll, float r_mat[3][3]) { const float THETA_SAFE = 1.0e-5f; /* theta above this value are always safe to use. */ const float THETA_CRITICAL = 1.0e-9f; /* above this is safe under certain conditions. */ const float x = nor[0]; const float y = nor[1]; const float z = nor[2]; const float theta = 1.0f + y; const float theta_alt = x * x + z * z; float rMatrix[3][3], bMatrix[3][3]; BLI_ASSERT_UNIT_V3(nor); /* When theta is close to zero (nor is aligned close to negative Y Axis), * we have to check we do have non-null X/Z components as well. * Also, due to float precision errors, nor can be (0.0, -0.99999994, 0.0) which results * in theta being close to zero. This will cause problems when theta is used as divisor. */ if (theta > THETA_SAFE || ((x || z) && theta > THETA_CRITICAL)) { /* nor is *not* aligned to negative Y-axis (0,-1,0). * We got these values for free... so be happy with it... ;) */ bMatrix[0][1] = -x; bMatrix[1][0] = x; bMatrix[1][1] = y; bMatrix[1][2] = z; bMatrix[2][1] = -z; if (theta > THETA_SAFE) { /* nor differs significantly from negative Y axis (0,-1,0): apply the general case. */ bMatrix[0][0] = 1 - x * x / theta; bMatrix[2][2] = 1 - z * z / theta; bMatrix[2][0] = bMatrix[0][2] = -x * z / theta; } else { /* nor is close to negative Y axis (0,-1,0): apply the special case. */ bMatrix[0][0] = (x + z) * (x - z) / -theta_alt; bMatrix[2][2] = -bMatrix[0][0]; bMatrix[2][0] = bMatrix[0][2] = 2.0f * x * z / theta_alt; } } else { /* nor is very close to negative Y axis (0,-1,0): use simple symmetry by Z axis. */ unit_m3(bMatrix); bMatrix[0][0] = bMatrix[1][1] = -1.0; } /* Make Roll matrix */ axis_angle_normalized_to_mat3(rMatrix, nor, roll); /* Combine and output result */ mul_m3_m3m3(r_mat, rMatrix, bMatrix); } void vec_roll_to_mat3(const float vec[3], const float roll, float r_mat[3][3]) { float nor[3]; normalize_v3_v3(nor, vec); vec_roll_to_mat3_normalized(nor, roll, r_mat); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature Bone Matrix Calculation (Recursive) * \{ */ /** * Recursive part, calculates rest-position of entire tree of children. * \note Used when exiting edit-mode too. */ void BKE_armature_where_is_bone(Bone *bone, const Bone *bone_parent, const bool use_recursion) { float vec[3]; /* Bone Space */ sub_v3_v3v3(vec, bone->tail, bone->head); bone->length = len_v3(vec); vec_roll_to_mat3(vec, bone->roll, bone->bone_mat); /* this is called on old file reading too... */ if (bone->xwidth == 0.0f) { bone->xwidth = 0.1f; bone->zwidth = 0.1f; bone->segments = 1; } if (bone_parent) { float offs_bone[4][4]; /* yoffs(b-1) + root(b) + bonemat(b) */ BKE_bone_offset_matrix_get(bone, offs_bone); /* Compose the matrix for this bone. */ mul_m4_m4m4(bone->arm_mat, bone_parent->arm_mat, offs_bone); } else { copy_m4_m3(bone->arm_mat, bone->bone_mat); copy_v3_v3(bone->arm_mat[3], bone->head); } /* and the kiddies */ if (use_recursion) { bone_parent = bone; for (bone = bone->childbase.first; bone; bone = bone->next) { BKE_armature_where_is_bone(bone, bone_parent, use_recursion); } } } /* updates vectors and matrices on rest-position level, only needed * after editing armature itself, now only on reading file */ void BKE_armature_where_is(bArmature *arm) { Bone *bone; /* hierarchical from root to children */ for (bone = arm->bonebase.first; bone; bone = bone->next) { BKE_armature_where_is_bone(bone, NULL, true); } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Pose Rebuild * \{ */ /* if bone layer is protected, copy the data from from->pose * when used with linked libraries this copies from the linked pose into the local pose */ static void pose_proxy_sync(Object *ob, Object *from, int layer_protected) { bPose *pose = ob->pose, *frompose = from->pose; bPoseChannel *pchan, *pchanp; bConstraint *con; int error = 0; if (frompose == NULL) { return; } /* in some cases when rigs change, we can't synchronize * to avoid crashing check for possible errors here */ for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) { if (pchan->bone->layer & layer_protected) { if (BKE_pose_channel_find_name(frompose, pchan->name) == NULL) { CLOG_ERROR(&LOG, "failed to sync proxy armature because '%s' is missing pose channel '%s'", from->id.name, pchan->name); error = 1; } } } if (error) { return; } /* clear all transformation values from library */ BKE_pose_rest(frompose, false); /* copy over all of the proxy's bone groups */ /* TODO: for later * - implement 'local' bone groups as for constraints * NOTE: this isn't trivial, as bones reference groups by index not by pointer, * so syncing things correctly needs careful attention */ BLI_freelistN(&pose->agroups); BLI_duplicatelist(&pose->agroups, &frompose->agroups); pose->active_group = frompose->active_group; for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) { pchanp = BKE_pose_channel_find_name(frompose, pchan->name); if (UNLIKELY(pchanp == NULL)) { /* happens for proxies that become invalid because of a missing link * for regular cases it shouldn't happen at all */ } else if (pchan->bone->layer & layer_protected) { ListBase proxylocal_constraints = {NULL, NULL}; bPoseChannel pchanw; /* copy posechannel to temp, but restore important pointers */ pchanw = *pchanp; pchanw.bone = pchan->bone; pchanw.prev = pchan->prev; pchanw.next = pchan->next; pchanw.parent = pchan->parent; pchanw.child = pchan->child; pchanw.custom_tx = pchan->custom_tx; pchanw.bbone_prev = pchan->bbone_prev; pchanw.bbone_next = pchan->bbone_next; pchanw.mpath = pchan->mpath; pchan->mpath = NULL; /* Reset runtime data, we don't want to share that with the proxy. */ BKE_pose_channel_runtime_reset_on_copy(&pchanw.runtime); /* this is freed so copy a copy, else undo crashes */ if (pchanw.prop) { pchanw.prop = IDP_CopyProperty(pchanw.prop); /* use the values from the existing props */ if (pchan->prop) { IDP_SyncGroupValues(pchanw.prop, pchan->prop); } } /* Constraints - proxy constraints are flushed... local ones are added after * 1: extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints. * 2: copy proxy-pchan's constraints on-to new. * 3: add extracted local constraints back on top. * * Note for BKE_constraints_copy: * When copying constraints, disable 'do_extern' otherwise * we get the libs direct linked in this blend. */ BKE_constraints_proxylocal_extract(&proxylocal_constraints, &pchan->constraints); BKE_constraints_copy(&pchanw.constraints, &pchanp->constraints, false); BLI_movelisttolist(&pchanw.constraints, &proxylocal_constraints); /* constraints - set target ob pointer to own object */ for (con = pchanw.constraints.first; con; con = con->next) { const bConstraintTypeInfo *cti = BKE_constraint_typeinfo_get(con); ListBase targets = {NULL, NULL}; bConstraintTarget *ct; if (cti && cti->get_constraint_targets) { cti->get_constraint_targets(con, &targets); for (ct = targets.first; ct; ct = ct->next) { if (ct->tar == from) { ct->tar = ob; } } if (cti->flush_constraint_targets) { cti->flush_constraint_targets(con, &targets, 0); } } } /* free stuff from current channel */ BKE_pose_channel_free(pchan); /* copy data in temp back over to the cleaned-out (but still allocated) original channel */ *pchan = pchanw; if (pchan->custom) { id_us_plus(&pchan->custom->id); } } else { /* always copy custom shape */ pchan->custom = pchanp->custom; if (pchan->custom) { id_us_plus(&pchan->custom->id); } if (pchanp->custom_tx) { pchan->custom_tx = BKE_pose_channel_find_name(pose, pchanp->custom_tx->name); } /* ID-Property Syncing */ { IDProperty *prop_orig = pchan->prop; if (pchanp->prop) { pchan->prop = IDP_CopyProperty(pchanp->prop); if (prop_orig) { /* copy existing values across when types match */ IDP_SyncGroupValues(pchan->prop, prop_orig); } } else { pchan->prop = NULL; } if (prop_orig) { IDP_FreeProperty(prop_orig); } } } } } /** * \param r_last_visited_bone_p: The last bone handled by the last call to this function. */ static int rebuild_pose_bone( bPose *pose, Bone *bone, bPoseChannel *parchan, int counter, Bone **r_last_visited_bone_p) { bPoseChannel *pchan = BKE_pose_channel_ensure(pose, bone->name); /* verify checks and/or adds */ pchan->bone = bone; pchan->parent = parchan; /* We ensure the current pchan is immediately after the one we just generated/updated in the * previous call to `rebuild_pose_bone`. * * It may be either the parent, the previous sibling, or the last * (grand-(grand-(...)))-child (as processed by the recursive, depth-first nature of this * function) of the previous sibling. * * NOTE: In most cases there is nothing to do here, but pose list may get out of order when some * bones are added, removed or moved in the armature data. */ bPoseChannel *pchan_prev = pchan->prev; const Bone *last_visited_bone = *r_last_visited_bone_p; if ((pchan_prev == NULL && last_visited_bone != NULL) || (pchan_prev != NULL && pchan_prev->bone != last_visited_bone)) { pchan_prev = last_visited_bone != NULL ? BKE_pose_channel_find_name(pose, last_visited_bone->name) : NULL; BLI_remlink(&pose->chanbase, pchan); BLI_insertlinkafter(&pose->chanbase, pchan_prev, pchan); } *r_last_visited_bone_p = pchan->bone; counter++; for (bone = bone->childbase.first; bone; bone = bone->next) { counter = rebuild_pose_bone(pose, bone, pchan, counter, r_last_visited_bone_p); /* for quick detecting of next bone in chain, only b-bone uses it now */ if (bone->flag & BONE_CONNECTED) { pchan->child = BKE_pose_channel_find_name(pose, bone->name); } } return counter; } /** * Clear pointers of object's pose * (needed in remap case, since we cannot always wait for a complete pose rebuild). */ void BKE_pose_clear_pointers(bPose *pose) { LISTBASE_FOREACH (bPoseChannel *, pchan, &pose->chanbase) { pchan->bone = NULL; pchan->child = NULL; } } void BKE_pose_remap_bone_pointers(bArmature *armature, bPose *pose) { LISTBASE_FOREACH (bPoseChannel *, pchan, &pose->chanbase) { pchan->bone = BKE_armature_find_bone_name(armature, pchan->name); } } /** Find the matching pose channel using the bone name, if not NULL. */ static bPoseChannel *pose_channel_find_bone(bPose *pose, Bone *bone) { return (bone != NULL) ? BKE_pose_channel_find_name(pose, bone->name) : NULL; } /** Update the links for the B-Bone handles from Bone data. */ void BKE_pchan_rebuild_bbone_handles(bPose *pose, bPoseChannel *pchan) { pchan->bbone_prev = pose_channel_find_bone(pose, pchan->bone->bbone_prev); pchan->bbone_next = pose_channel_find_bone(pose, pchan->bone->bbone_next); } void BKE_pose_channels_clear_with_null_bone(bPose *pose, const bool do_id_user) { LISTBASE_FOREACH_MUTABLE (bPoseChannel *, pchan, &pose->chanbase) { if (pchan->bone == NULL) { BKE_pose_channel_free_ex(pchan, do_id_user); BKE_pose_channels_hash_free(pose); BLI_freelinkN(&pose->chanbase, pchan); } } } /** * Only after leave editmode, duplicating, validating older files, library syncing. * * \note pose->flag is set for it. * * \param bmain: May be NULL, only used to tag depsgraph as being dirty... */ void BKE_pose_rebuild(Main *bmain, Object *ob, bArmature *arm, const bool do_id_user) { Bone *bone; bPose *pose; bPoseChannel *pchan; int counter = 0; /* only done here */ if (ob->pose == NULL) { /* create new pose */ ob->pose = MEM_callocN(sizeof(bPose), "new pose"); /* set default settings for animviz */ animviz_settings_init(&ob->pose->avs); } pose = ob->pose; /* clear */ BKE_pose_clear_pointers(pose); /* first step, check if all channels are there */ Bone *prev_bone = NULL; for (bone = arm->bonebase.first; bone; bone = bone->next) { counter = rebuild_pose_bone(pose, bone, NULL, counter, &prev_bone); } /* and a check for garbage */ BKE_pose_channels_clear_with_null_bone(pose, do_id_user); BKE_pose_channels_hash_ensure(pose); for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) { /* Find the custom B-Bone handles. */ BKE_pchan_rebuild_bbone_handles(pose, pchan); /* Re-validate that we are still using a valid pchan form custom transform. */ /* Note that we could store pointers of freed pchan in a GSet to speed this up, however this is * supposed to be a rarely used feature, so for now assuming that always building that GSet * would be less optimal. */ if (pchan->custom_tx != NULL && BLI_findindex(&pose->chanbase, pchan->custom_tx) == -1) { pchan->custom_tx = NULL; } } /* printf("rebuild pose %s, %d bones\n", ob->id.name, counter); */ /* synchronize protected layers with proxy */ /* HACK! To preserve 2.7x behavior that you always can pose even locked bones, * do not do any restoration if this is a COW temp copy! */ /* Switched back to just NO_MAIN tag, for some reasons (c) * using COW tag was working this morning, but not anymore... */ if (ob->proxy != NULL && (ob->id.tag & LIB_TAG_NO_MAIN) == 0) { BKE_object_copy_proxy_drivers(ob, ob->proxy); pose_proxy_sync(ob, ob->proxy, arm->layer_protected); } BKE_pose_update_constraint_flags(pose); /* for IK detection for example */ pose->flag &= ~POSE_RECALC; pose->flag |= POSE_WAS_REBUILT; /* Rebuilding poses forces us to also rebuild the dependency graph, * since there is one node per pose/bone. */ if (bmain != NULL) { DEG_relations_tag_update(bmain); } } /** * Ensures object's pose is rebuilt if needed. * * \param bmain: May be NULL, only used to tag depsgraph as being dirty... */ void BKE_pose_ensure(Main *bmain, Object *ob, bArmature *arm, const bool do_id_user) { BLI_assert(!ELEM(NULL, arm, ob)); if (ob->type == OB_ARMATURE && ((ob->pose == NULL) || (ob->pose->flag & POSE_RECALC))) { BLI_assert(GS(arm->id.name) == ID_AR); BKE_pose_rebuild(bmain, ob, arm, do_id_user); } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Pose Solver * \{ */ /** * Convert the loc/rot/size to \a r_chanmat (typically #bPoseChannel.chan_mat). */ void BKE_pchan_to_mat4(const bPoseChannel *pchan, float r_chanmat[4][4]) { float smat[3][3]; float rmat[3][3]; float tmat[3][3]; /* get scaling matrix */ size_to_mat3(smat, pchan->size); /* get rotation matrix */ BKE_pchan_rot_to_mat3(pchan, rmat); /* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */ mul_m3_m3m3(tmat, rmat, smat); copy_m4_m3(r_chanmat, tmat); /* prevent action channels breaking chains */ /* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */ if ((pchan->bone == NULL) || !(pchan->bone->flag & BONE_CONNECTED)) { copy_v3_v3(r_chanmat[3], pchan->loc); } } /* loc/rot/size to mat4 */ /* used in constraint.c too */ void BKE_pchan_calc_mat(bPoseChannel *pchan) { /* this is just a wrapper around the copy of this function which calculates the matrix * and stores the result in any given channel */ BKE_pchan_to_mat4(pchan, pchan->chan_mat); } /* calculate tail of posechannel */ void BKE_pose_where_is_bone_tail(bPoseChannel *pchan) { float vec[3]; copy_v3_v3(vec, pchan->pose_mat[1]); mul_v3_fl(vec, pchan->bone->length); add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec); } /* The main armature solver, does all constraints excluding IK */ /* pchan is validated, as having bone and parent pointer * 'do_extra': when zero skips loc/size/rot, constraints and strip modifiers. */ void BKE_pose_where_is_bone(struct Depsgraph *depsgraph, Scene *scene, Object *ob, bPoseChannel *pchan, float ctime, bool do_extra) { /* This gives a chan_mat with actions (ipos) results. */ if (do_extra) { BKE_pchan_calc_mat(pchan); } else { unit_m4(pchan->chan_mat); } /* Construct the posemat based on PoseChannels, that we do before applying constraints. */ /* pose_mat(b) = pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */ BKE_armature_mat_bone_to_pose(pchan, pchan->chan_mat, pchan->pose_mat); /* Only rootbones get the cyclic offset (unless user doesn't want that). */ /* XXX That could be a problem for snapping and other "reverse transform" features... */ if (!pchan->parent) { if ((pchan->bone->flag & BONE_NO_CYCLICOFFSET) == 0) { add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset); } } if (do_extra) { /* Do constraints */ if (pchan->constraints.first) { bConstraintOb *cob; float vec[3]; /* make a copy of location of PoseChannel for later */ copy_v3_v3(vec, pchan->pose_mat[3]); /* prepare PoseChannel for Constraint solving * - makes a copy of matrix, and creates temporary struct to use */ cob = BKE_constraints_make_evalob(depsgraph, scene, ob, pchan, CONSTRAINT_OBTYPE_BONE); /* Solve PoseChannel's Constraints */ /* ctime doesn't alter objects. */ BKE_constraints_solve(depsgraph, &pchan->constraints, cob, ctime); /* cleanup after Constraint Solving * - applies matrix back to pchan, and frees temporary struct used */ BKE_constraints_clear_evalob(cob); /* prevent constraints breaking a chain */ if (pchan->bone->flag & BONE_CONNECTED) { copy_v3_v3(pchan->pose_mat[3], vec); } } } /* calculate head */ copy_v3_v3(pchan->pose_head, pchan->pose_mat[3]); /* calculate tail */ BKE_pose_where_is_bone_tail(pchan); } /* This only reads anim data from channels, and writes to channels */ /* This is the only function adding poses */ void BKE_pose_where_is(struct Depsgraph *depsgraph, Scene *scene, Object *ob) { bArmature *arm; Bone *bone; bPoseChannel *pchan; float imat[4][4]; float ctime; if (ob->type != OB_ARMATURE) { return; } arm = ob->data; if (ELEM(NULL, arm, scene)) { return; } /* WARNING! passing NULL bmain here means we won't tag depsgraph's as dirty - * hopefully this is OK. */ BKE_pose_ensure(NULL, ob, arm, true); ctime = BKE_scene_frame_get(scene); /* not accurate... */ /* In edit-mode or rest-position we read the data from the bones. */ if (arm->edbo || (arm->flag & ARM_RESTPOS)) { for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) { bone = pchan->bone; if (bone) { copy_m4_m4(pchan->pose_mat, bone->arm_mat); copy_v3_v3(pchan->pose_head, bone->arm_head); copy_v3_v3(pchan->pose_tail, bone->arm_tail); } } } else { invert_m4_m4(ob->imat, ob->obmat); /* imat is needed */ /* 1. clear flags */ for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) { pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE); } /* 2a. construct the IK tree (standard IK) */ BIK_init_tree(depsgraph, scene, ob, ctime); /* 2b. construct the Spline IK trees * - this is not integrated as an IK plugin, since it should be able * to function in conjunction with standard IK */ BKE_pose_splineik_init_tree(scene, ob, ctime); /* 3. the main loop, channels are already hierarchical sorted from root to children */ for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) { /* 4a. if we find an IK root, we handle it separated */ if (pchan->flag & POSE_IKTREE) { BIK_execute_tree(depsgraph, scene, ob, pchan, ctime); } /* 4b. if we find a Spline IK root, we handle it separated too */ else if (pchan->flag & POSE_IKSPLINE) { BKE_splineik_execute_tree(depsgraph, scene, ob, pchan, ctime); } /* 5. otherwise just call the normal solver */ else if (!(pchan->flag & POSE_DONE)) { BKE_pose_where_is_bone(depsgraph, scene, ob, pchan, ctime, 1); } } /* 6. release the IK tree */ BIK_release_tree(scene, ob, ctime); } /* calculating deform matrices */ for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) { if (pchan->bone) { invert_m4_m4(imat, pchan->bone->arm_mat); mul_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat); } } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Calculate Bounding Box (Armature & Pose) * \{ */ static int minmax_armature(Object *ob, float r_min[3], float r_max[3]) { bPoseChannel *pchan; /* For now, we assume BKE_pose_where_is has already been called * (hence we have valid data in pachan). */ for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) { minmax_v3v3_v3(r_min, r_max, pchan->pose_head); minmax_v3v3_v3(r_min, r_max, pchan->pose_tail); } return (BLI_listbase_is_empty(&ob->pose->chanbase) == false); } static void boundbox_armature(Object *ob) { BoundBox *bb; float min[3], max[3]; if (ob->runtime.bb == NULL) { ob->runtime.bb = MEM_callocN(sizeof(BoundBox), "Armature boundbox"); } bb = ob->runtime.bb; INIT_MINMAX(min, max); if (!minmax_armature(ob, min, max)) { min[0] = min[1] = min[2] = -1.0f; max[0] = max[1] = max[2] = 1.0f; } BKE_boundbox_init_from_minmax(bb, min, max); bb->flag &= ~BOUNDBOX_DIRTY; } BoundBox *BKE_armature_boundbox_get(Object *ob) { boundbox_armature(ob); return ob->runtime.bb; } bool BKE_pose_minmax(Object *ob, float r_min[3], float r_max[3], bool use_hidden, bool use_select) { bool changed = false; if (ob->pose) { bArmature *arm = ob->data; bPoseChannel *pchan; for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) { /* XXX pchan->bone may be NULL for duplicated bones, see duplicateEditBoneObjects() comment * (editarmature.c:2592)... Skip in this case too! */ if (pchan->bone && (!((use_hidden == false) && (PBONE_VISIBLE(arm, pchan->bone) == false)) && !((use_select == true) && ((pchan->bone->flag & BONE_SELECTED) == 0)))) { bPoseChannel *pchan_tx = (pchan->custom && pchan->custom_tx) ? pchan->custom_tx : pchan; BoundBox *bb_custom = ((pchan->custom) && !(arm->flag & ARM_NO_CUSTOM)) ? BKE_object_boundbox_get(pchan->custom) : NULL; if (bb_custom) { float mat[4][4], smat[4][4]; scale_m4_fl(smat, PCHAN_CUSTOM_BONE_LENGTH(pchan)); rescale_m4(smat, pchan->custom_scale_xyz); mul_m4_series(mat, ob->obmat, pchan_tx->pose_mat, smat); BKE_boundbox_minmax(bb_custom, mat, r_min, r_max); } else { float vec[3]; mul_v3_m4v3(vec, ob->obmat, pchan_tx->pose_head); minmax_v3v3_v3(r_min, r_max, vec); mul_v3_m4v3(vec, ob->obmat, pchan_tx->pose_tail); minmax_v3v3_v3(r_min, r_max, vec); } changed = true; } } } return changed; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Graph Evaluation * \{ */ bPoseChannel *BKE_armature_ik_solver_find_root(bPoseChannel *pchan, bKinematicConstraint *data) { bPoseChannel *rootchan = pchan; if (!(data->flag & CONSTRAINT_IK_TIP)) { /* Exclude tip from chain. */ rootchan = rootchan->parent; } if (rootchan != NULL) { int segcount = 0; while (rootchan->parent) { /* Continue up chain, until we reach target number of items. */ segcount++; if (segcount == data->rootbone) { break; } rootchan = rootchan->parent; } } return rootchan; } bPoseChannel *BKE_armature_splineik_solver_find_root(bPoseChannel *pchan, bSplineIKConstraint *data) { bPoseChannel *rootchan = pchan; int segcount = 0; BLI_assert(rootchan != NULL); while (rootchan->parent) { /* Continue up chain, until we reach target number of items. */ segcount++; if (segcount == data->chainlen) { break; } rootchan = rootchan->parent; } return rootchan; } /** \} */