/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. */ /** \file * \ingroup bke */ #include #include #include #include #include #include #include "MEM_guardedalloc.h" #include "BLI_math.h" #include "BLI_listbase.h" #include "BLI_string.h" #include "BLI_ghash.h" #include "BLI_task.h" #include "BLI_utildefines.h" #include "BLI_alloca.h" #include "DNA_anim_types.h" #include "DNA_armature_types.h" #include "DNA_constraint_types.h" #include "DNA_gpencil_types.h" #include "DNA_mesh_types.h" #include "DNA_lattice_types.h" #include "DNA_listBase.h" #include "DNA_meshdata_types.h" #include "DNA_scene_types.h" #include "DNA_object_types.h" #include "BKE_animsys.h" #include "BKE_armature.h" #include "BKE_action.h" #include "BKE_anim.h" #include "BKE_constraint.h" #include "BKE_curve.h" #include "BKE_deform.h" #include "BKE_displist.h" #include "BKE_idprop.h" #include "BKE_library.h" #include "BKE_lattice.h" #include "BKE_main.h" #include "BKE_object.h" #include "BKE_scene.h" #include "DEG_depsgraph_build.h" #include "BIK_api.h" #include "atomic_ops.h" #include "CLG_log.h" static CLG_LogRef LOG = {"bke.armature"}; /* **************** Generic Functions, data level *************** */ bArmature *BKE_armature_add(Main *bmain, const char *name) { bArmature *arm; arm = BKE_libblock_alloc(bmain, ID_AR, name, 0); arm->deformflag = ARM_DEF_VGROUP | ARM_DEF_ENVELOPE; arm->flag = ARM_COL_CUSTOM; /* custom bone-group colors */ arm->layer = 1; return arm; } bArmature *BKE_armature_from_object(Object *ob) { if (ob->type == OB_ARMATURE) { return (bArmature *)ob->data; } return NULL; } int BKE_armature_bonelist_count(ListBase *lb) { int i = 0; for (Bone *bone = lb->first; bone; bone = bone->next) { i += 1 + BKE_armature_bonelist_count(&bone->childbase); } return i; } void BKE_armature_bonelist_free(ListBase *lb) { Bone *bone; for (bone = lb->first; bone; bone = bone->next) { if (bone->prop) { IDP_FreeProperty(bone->prop); } BKE_armature_bonelist_free(&bone->childbase); } BLI_freelistN(lb); } /** Free (or release) any data used by this armature (does not free the armature itself). */ void BKE_armature_free(bArmature *arm) { BKE_animdata_free(&arm->id, false); BKE_armature_bone_hash_free(arm); BKE_armature_bonelist_free(&arm->bonebase); /* free editmode data */ if (arm->edbo) { BLI_freelistN(arm->edbo); MEM_freeN(arm->edbo); arm->edbo = NULL; } } void BKE_armature_make_local(Main *bmain, bArmature *arm, const bool lib_local) { BKE_id_make_local_generic(bmain, &arm->id, true, lib_local); } static void copy_bonechildren(Bone *bone_dst, const Bone *bone_src, const Bone *bone_src_act, Bone **r_bone_dst_act, const int flag) { Bone *bone_src_child, *bone_dst_child; if (bone_src == bone_src_act) { *r_bone_dst_act = bone_dst; } if (bone_src->prop) { bone_dst->prop = IDP_CopyProperty_ex(bone_src->prop, flag); } /* Copy this bone's list */ BLI_duplicatelist(&bone_dst->childbase, &bone_src->childbase); /* For each child in the list, update it's children */ for (bone_src_child = bone_src->childbase.first, bone_dst_child = bone_dst->childbase.first; bone_src_child; bone_src_child = bone_src_child->next, bone_dst_child = bone_dst_child->next) { bone_dst_child->parent = bone_dst; copy_bonechildren(bone_dst_child, bone_src_child, bone_src_act, r_bone_dst_act, flag); } } static void copy_bonechildren_custom_handles(Bone *bone_dst, bArmature *arm_dst) { Bone *bone_dst_child; if (bone_dst->bbone_prev) { bone_dst->bbone_prev = BKE_armature_find_bone_name(arm_dst, bone_dst->bbone_prev->name); } if (bone_dst->bbone_next) { bone_dst->bbone_next = BKE_armature_find_bone_name(arm_dst, bone_dst->bbone_next->name); } for (bone_dst_child = bone_dst->childbase.first; bone_dst_child; bone_dst_child = bone_dst_child->next) { copy_bonechildren_custom_handles(bone_dst_child, arm_dst); } } /** * Only copy internal data of Armature ID from source * to already allocated/initialized destination. * You probably never want to use that directly, * use #BKE_id_copy or #BKE_id_copy_ex for typical needs. * * WARNING! This function will not handle ID user count! * * \param flag: Copying options (see BKE_library.h's LIB_ID_COPY_... flags for more). */ void BKE_armature_copy_data(Main *UNUSED(bmain), bArmature *arm_dst, const bArmature *arm_src, const int flag) { Bone *bone_src, *bone_dst; Bone *bone_dst_act = NULL; /* We never handle usercount here for own data. */ const int flag_subdata = flag | LIB_ID_CREATE_NO_USER_REFCOUNT; arm_dst->bonehash = NULL; BLI_duplicatelist(&arm_dst->bonebase, &arm_src->bonebase); /* Duplicate the childrens' lists */ bone_dst = arm_dst->bonebase.first; for (bone_src = arm_src->bonebase.first; bone_src; bone_src = bone_src->next) { bone_dst->parent = NULL; copy_bonechildren(bone_dst, bone_src, arm_src->act_bone, &bone_dst_act, flag_subdata); bone_dst = bone_dst->next; } arm_dst->act_bone = bone_dst_act; BKE_armature_bone_hash_make(arm_dst); /* Fix custom handle references. */ for (bone_dst = arm_dst->bonebase.first; bone_dst; bone_dst = bone_dst->next) { copy_bonechildren_custom_handles(bone_dst, arm_dst); } arm_dst->edbo = NULL; arm_dst->act_edbone = NULL; } bArmature *BKE_armature_copy(Main *bmain, const bArmature *arm) { bArmature *arm_copy; BKE_id_copy(bmain, &arm->id, (ID **)&arm_copy); return arm_copy; } static void copy_bone_transform(Bone *bone_dst, const Bone *bone_src) { bone_dst->roll = bone_src->roll; copy_v3_v3(bone_dst->head, bone_src->head); copy_v3_v3(bone_dst->tail, bone_src->tail); copy_m3_m3(bone_dst->bone_mat, bone_src->bone_mat); copy_v3_v3(bone_dst->arm_head, bone_src->arm_head); copy_v3_v3(bone_dst->arm_tail, bone_src->arm_tail); copy_m4_m4(bone_dst->arm_mat, bone_src->arm_mat); bone_dst->arm_roll = bone_src->arm_roll; } void BKE_armature_copy_bone_transforms(bArmature *armature_dst, const bArmature *armature_src) { Bone *bone_dst = armature_dst->bonebase.first; const Bone *bone_src = armature_src->bonebase.first; while (bone_dst != NULL) { BLI_assert(bone_src != NULL); copy_bone_transform(bone_dst, bone_src); bone_dst = bone_dst->next; bone_src = bone_src->next; } } /** Helper for #ED_armature_transform */ static void armature_transform_recurse(ListBase *bonebase, const float mat[4][4], const bool do_props, /* Cached from 'mat'. */ const float mat3[3][3], const float scale, /* Child bones. */ const Bone *bone_parent, const float arm_mat_parent_inv[4][4]) { for (Bone *bone = bonebase->first; bone; bone = bone->next) { float roll_mat3_pre[3][3]; { float delta[3]; sub_v3_v3v3(delta, bone->tail, bone->head); vec_roll_to_mat3(delta, bone->roll, roll_mat3_pre); if (bone->parent == NULL) { mul_m3_m3m3(roll_mat3_pre, mat3, roll_mat3_pre); } } bone->roll = 0.0f; mul_m4_v3(mat, bone->arm_head); mul_m4_v3(mat, bone->arm_tail); /* Get the new head and tail */ if (bone_parent) { sub_v3_v3v3(bone->head, bone->arm_head, bone_parent->arm_tail); sub_v3_v3v3(bone->tail, bone->arm_tail, bone_parent->arm_tail); mul_mat3_m4_v3(arm_mat_parent_inv, bone->head); mul_mat3_m4_v3(arm_mat_parent_inv, bone->tail); } else { copy_v3_v3(bone->head, bone->arm_head); copy_v3_v3(bone->tail, bone->arm_tail); } { float roll_mat3_post[3][3]; float delta_mat3[3][3]; float delta[3]; sub_v3_v3v3(delta, bone->tail, bone->head); vec_roll_to_mat3(delta, bone->roll, roll_mat3_post); normalize_v3(delta); invert_m3(roll_mat3_post); mul_m3_m3m3(delta_mat3, roll_mat3_post, roll_mat3_pre); bone->roll = atan2f(delta_mat3[2][0], delta_mat3[2][2]); } BKE_armature_where_is_bone(bone, bone_parent, false); { float arm_mat3[3][3]; copy_m3_m4(arm_mat3, bone->arm_mat); mat3_to_vec_roll(arm_mat3, NULL, &bone->arm_roll); } if (do_props) { bone->rad_head *= scale; bone->rad_tail *= scale; bone->dist *= scale; /* we could be smarter and scale by the matrix along the x & z axis */ bone->xwidth *= scale; bone->zwidth *= scale; } if (!BLI_listbase_is_empty(&bone->childbase)) { float arm_mat_inv[4][4]; invert_m4_m4(arm_mat_inv, bone->arm_mat); armature_transform_recurse(&bone->childbase, mat, do_props, mat3, scale, bone, arm_mat_inv); } } } void BKE_armature_transform(bArmature *arm, const float mat[4][4], const bool do_props) { /* Store the scale of the matrix here to use on envelopes. */ float scale = mat4_to_scale(mat); float mat3[3][3]; copy_m3_m4(mat3, mat); normalize_m3(mat3); armature_transform_recurse(&arm->bonebase, mat, do_props, mat3, scale, NULL, NULL); } static Bone *get_named_bone_bonechildren(ListBase *lb, const char *name) { Bone *curBone, *rbone; for (curBone = lb->first; curBone; curBone = curBone->next) { if (STREQ(curBone->name, name)) { return curBone; } rbone = get_named_bone_bonechildren(&curBone->childbase, name); if (rbone) { return rbone; } } return NULL; } /** * Walk the list until the bone is found (slow!), * use #BKE_armature_bone_from_name_map for multiple lookups. */ Bone *BKE_armature_find_bone_name(bArmature *arm, const char *name) { if (!arm) { return NULL; } if (arm->bonehash) { return BLI_ghash_lookup(arm->bonehash, name); } return get_named_bone_bonechildren(&arm->bonebase, name); } static void armature_bone_from_name_insert_recursive(GHash *bone_hash, ListBase *lb) { for (Bone *bone = lb->first; bone; bone = bone->next) { BLI_ghash_insert(bone_hash, bone->name, bone); armature_bone_from_name_insert_recursive(bone_hash, &bone->childbase); } } /** * Create a (name -> bone) map. * * \note typically #bPose.chanhash us used via #BKE_pose_channel_find_name * this is for the cases we can't use pose channels. */ static GHash *armature_bone_from_name_map(bArmature *arm) { const int bones_count = BKE_armature_bonelist_count(&arm->bonebase); GHash *bone_hash = BLI_ghash_str_new_ex(__func__, bones_count); armature_bone_from_name_insert_recursive(bone_hash, &arm->bonebase); return bone_hash; } void BKE_armature_bone_hash_make(bArmature *arm) { if (!arm->bonehash) { arm->bonehash = armature_bone_from_name_map(arm); } } void BKE_armature_bone_hash_free(bArmature *arm) { if (arm->bonehash) { BLI_ghash_free(arm->bonehash, NULL, NULL); arm->bonehash = NULL; } } bool BKE_armature_bone_flag_test_recursive(const Bone *bone, int flag) { if (bone->flag & flag) { return true; } else if (bone->parent) { return BKE_armature_bone_flag_test_recursive(bone->parent, flag); } else { return false; } } static void armature_refresh_layer_used_recursive(bArmature *arm, ListBase *bones) { for (Bone *bone = bones->first; bone; bone = bone->next) { arm->layer_used |= bone->layer; armature_refresh_layer_used_recursive(arm, &bone->childbase); } } /* Update the layers_used variable after bones are moved between layer * NOTE: Used to be done in drawing code in 2.7, but that won't work with * Copy-on-Write, as drawing uses evaluated copies. */ void BKE_armature_refresh_layer_used(bArmature *arm) { arm->layer_used = 0; armature_refresh_layer_used_recursive(arm, &arm->bonebase); } /* Finds the best possible extension to the name on a particular axis. (For renaming, check for * unique names afterwards) strip_number: removes number extensions (TODO: not used) * axis: the axis to name on * head/tail: the head/tail co-ordinate of the bone on the specified axis */ int bone_autoside_name( char name[MAXBONENAME], int UNUSED(strip_number), short axis, float head, float tail) { unsigned int len; char basename[MAXBONENAME] = ""; char extension[5] = ""; len = strlen(name); if (len == 0) { return 0; } BLI_strncpy(basename, name, sizeof(basename)); /* Figure out extension to append: * - The extension to append is based upon the axis that we are working on. * - If head happens to be on 0, then we must consider the tail position as well to decide * which side the bone is on * -> If tail is 0, then it's bone is considered to be on axis, so no extension should be added * -> Otherwise, extension is added from perspective of object based on which side tail goes to * - If head is non-zero, extension is added from perspective of object based on side head is on */ if (axis == 2) { /* z-axis - vertical (top/bottom) */ if (IS_EQF(head, 0.0f)) { if (tail < 0) { strcpy(extension, "Bot"); } else if (tail > 0) { strcpy(extension, "Top"); } } else { if (head < 0) { strcpy(extension, "Bot"); } else { strcpy(extension, "Top"); } } } else if (axis == 1) { /* y-axis - depth (front/back) */ if (IS_EQF(head, 0.0f)) { if (tail < 0) { strcpy(extension, "Fr"); } else if (tail > 0) { strcpy(extension, "Bk"); } } else { if (head < 0) { strcpy(extension, "Fr"); } else { strcpy(extension, "Bk"); } } } else { /* x-axis - horizontal (left/right) */ if (IS_EQF(head, 0.0f)) { if (tail < 0) { strcpy(extension, "R"); } else if (tail > 0) { strcpy(extension, "L"); } } else { if (head < 0) { strcpy(extension, "R"); /* XXX Shouldn't this be simple else, as for z and y axes? */ } else if (head > 0) { strcpy(extension, "L"); } } } /* Simple name truncation * - truncate if there is an extension and it wouldn't be able to fit * - otherwise, just append to end */ if (extension[0]) { bool changed = true; while (changed) { /* remove extensions */ changed = false; if (len > 2 && basename[len - 2] == '.') { if (basename[len - 1] == 'L' || basename[len - 1] == 'R') { /* L R */ basename[len - 2] = '\0'; len -= 2; changed = true; } } else if (len > 3 && basename[len - 3] == '.') { if ((basename[len - 2] == 'F' && basename[len - 1] == 'r') || /* Fr */ (basename[len - 2] == 'B' && basename[len - 1] == 'k')) /* Bk */ { basename[len - 3] = '\0'; len -= 3; changed = true; } } else if (len > 4 && basename[len - 4] == '.') { if ((basename[len - 3] == 'T' && basename[len - 2] == 'o' && basename[len - 1] == 'p') || /* Top */ (basename[len - 3] == 'B' && basename[len - 2] == 'o' && basename[len - 1] == 't')) /* Bot */ { basename[len - 4] = '\0'; len -= 4; changed = true; } } } if ((MAXBONENAME - len) < strlen(extension) + 1) { /* add 1 for the '.' */ strncpy(name, basename, len - strlen(extension)); } BLI_snprintf(name, MAXBONENAME, "%s.%s", basename, extension); return 1; } else { return 0; } } /* ************* B-Bone support ******************* */ /* Compute a set of bezier parameter values that produce approximately equally spaced points. */ static void equalize_cubic_bezier(const float control[4][3], int temp_segments, int final_segments, float *r_t_points) { float(*coords)[3] = BLI_array_alloca(coords, temp_segments + 1); float *pdist = BLI_array_alloca(pdist, temp_segments + 1); /* Compute the first pass of bezier point coordinates. */ for (int i = 0; i < 3; i++) { BKE_curve_forward_diff_bezier(control[0][i], control[1][i], control[2][i], control[3][i], &coords[0][i], temp_segments, sizeof(*coords)); } /* Calculate the length of the polyline at each point. */ pdist[0] = 0.0f; for (int i = 0; i < temp_segments; i++) { pdist[i + 1] = pdist[i] + len_v3v3(coords[i], coords[i + 1]); } /* Go over distances and calculate new parameter values. */ float dist_step = pdist[temp_segments] / final_segments; r_t_points[0] = 0.0f; for (int i = 1, nr = 1; i <= final_segments; i++) { float dist = i * dist_step; /* We're looking for location (distance) 'dist' in the array. */ while ((nr < temp_segments) && (dist >= pdist[nr])) { nr++; } float fac = (pdist[nr] - dist) / (pdist[nr] - pdist[nr - 1]); r_t_points[i] = (nr - fac) / temp_segments; } r_t_points[final_segments] = 1.0f; } /* Evaluate bezier position and tangent at a specific parameter value * using the De Casteljau algorithm. */ static void evaluate_cubic_bezier(const float control[4][3], float t, float r_pos[3], float r_tangent[3]) { float layer1[3][3]; interp_v3_v3v3(layer1[0], control[0], control[1], t); interp_v3_v3v3(layer1[1], control[1], control[2], t); interp_v3_v3v3(layer1[2], control[2], control[3], t); float layer2[2][3]; interp_v3_v3v3(layer2[0], layer1[0], layer1[1], t); interp_v3_v3v3(layer2[1], layer1[1], layer1[2], t); sub_v3_v3v3(r_tangent, layer2[1], layer2[0]); madd_v3_v3v3fl(r_pos, layer2[0], r_tangent, t); } /* Get "next" and "prev" bones - these are used for handle calculations. */ void BKE_pchan_bbone_handles_get(bPoseChannel *pchan, bPoseChannel **r_prev, bPoseChannel **r_next) { if (pchan->bone->bbone_prev_type == BBONE_HANDLE_AUTO) { /* Use connected parent. */ if (pchan->bone->flag & BONE_CONNECTED) { *r_prev = pchan->parent; } else { *r_prev = NULL; } } else { /* Use the provided bone as prev - leave blank to eliminate this effect altogether. */ *r_prev = pchan->bbone_prev; } if (pchan->bone->bbone_next_type == BBONE_HANDLE_AUTO) { /* Use connected child. */ *r_next = pchan->child; } else { /* Use the provided bone as next - leave blank to eliminate this effect altogether. */ *r_next = pchan->bbone_next; } } /* Compute B-Bone spline parameters for the given channel. */ void BKE_pchan_bbone_spline_params_get(struct bPoseChannel *pchan, const bool rest, struct BBoneSplineParameters *param) { bPoseChannel *next, *prev; Bone *bone = pchan->bone; float imat[4][4], posemat[4][4]; float delta[3]; memset(param, 0, sizeof(*param)); param->segments = bone->segments; param->length = bone->length; if (!rest) { float scale[3]; /* Check if we need to take non-uniform bone scaling into account. */ mat4_to_size(scale, pchan->pose_mat); if (fabsf(scale[0] - scale[1]) > 1e-6f || fabsf(scale[1] - scale[2]) > 1e-6f) { param->do_scale = true; copy_v3_v3(param->scale, scale); } } BKE_pchan_bbone_handles_get(pchan, &prev, &next); /* Find the handle points, since this is inside bone space, the * first point = (0, 0, 0) * last point = (0, length, 0) */ if (rest) { invert_m4_m4(imat, pchan->bone->arm_mat); } else if (param->do_scale) { copy_m4_m4(posemat, pchan->pose_mat); normalize_m4(posemat); invert_m4_m4(imat, posemat); } else { invert_m4_m4(imat, pchan->pose_mat); } if (prev) { float h1[3]; bool done = false; param->use_prev = true; /* Transform previous point inside this bone space. */ if (bone->bbone_prev_type == BBONE_HANDLE_RELATIVE) { /* Use delta movement (from restpose), and apply this relative to the current bone's head. */ if (rest) { /* In restpose, arm_head == pose_head */ zero_v3(param->prev_h); done = true; } else { sub_v3_v3v3(delta, prev->pose_head, prev->bone->arm_head); sub_v3_v3v3(h1, pchan->pose_head, delta); } } else if (bone->bbone_prev_type == BBONE_HANDLE_TANGENT) { /* Use bone direction by offsetting so that its tail meets current bone's head */ if (rest) { sub_v3_v3v3(delta, prev->bone->arm_tail, prev->bone->arm_head); sub_v3_v3v3(h1, bone->arm_head, delta); } else { sub_v3_v3v3(delta, prev->pose_tail, prev->pose_head); sub_v3_v3v3(h1, pchan->pose_head, delta); } } else { /* Apply special handling for smoothly joining B-Bone chains */ param->prev_bbone = (prev->bone->segments > 1); /* Use bone head as absolute position. */ copy_v3_v3(h1, rest ? prev->bone->arm_head : prev->pose_head); } if (!done) { mul_v3_m4v3(param->prev_h, imat, h1); } if (!param->prev_bbone) { /* Find the previous roll to interpolate. */ mul_m4_m4m4(param->prev_mat, imat, rest ? prev->bone->arm_mat : prev->pose_mat); } } if (next) { float h2[3]; bool done = false; param->use_next = true; /* Transform next point inside this bone space. */ if (bone->bbone_next_type == BBONE_HANDLE_RELATIVE) { /* Use delta movement (from restpose), and apply this relative to the current bone's tail. */ if (rest) { /* In restpose, arm_head == pose_head */ copy_v3_fl3(param->next_h, 0.0f, param->length, 0.0); done = true; } else { sub_v3_v3v3(delta, next->pose_head, next->bone->arm_head); add_v3_v3v3(h2, pchan->pose_tail, delta); } } else if (bone->bbone_next_type == BBONE_HANDLE_TANGENT) { /* Use bone direction by offsetting so that its head meets current bone's tail */ if (rest) { sub_v3_v3v3(delta, next->bone->arm_tail, next->bone->arm_head); add_v3_v3v3(h2, bone->arm_tail, delta); } else { sub_v3_v3v3(delta, next->pose_tail, next->pose_head); add_v3_v3v3(h2, pchan->pose_tail, delta); } } else { /* Apply special handling for smoothly joining B-Bone chains */ param->next_bbone = (next->bone->segments > 1); /* Use bone tail as absolute position. */ copy_v3_v3(h2, rest ? next->bone->arm_tail : next->pose_tail); } if (!done) { mul_v3_m4v3(param->next_h, imat, h2); } /* Find the next roll to interpolate as well. */ mul_m4_m4m4(param->next_mat, imat, rest ? next->bone->arm_mat : next->pose_mat); } /* Add effects from bbone properties over the top * - These properties allow users to hand-animate the * bone curve/shape, without having to resort to using * extra bones * - The "bone" level offsets are for defining the restpose * shape of the bone (e.g. for curved eyebrows for example). * -> In the viewport, it's needed to define what the rest pose * looks like * -> For "rest == 0", we also still need to have it present * so that we can "cancel out" this restpose when it comes * time to deform some geometry, it won't cause double transforms. * - The "pchan" level offsets are the ones that animators actually * end up animating */ { param->ease1 = bone->ease1 + (!rest ? pchan->ease1 : 0.0f); param->ease2 = bone->ease2 + (!rest ? pchan->ease2 : 0.0f); param->roll1 = bone->roll1 + (!rest ? pchan->roll1 : 0.0f); param->roll2 = bone->roll2 + (!rest ? pchan->roll2 : 0.0f); if (bone->flag & BONE_ADD_PARENT_END_ROLL) { if (prev) { if (prev->bone) { param->roll1 += prev->bone->roll2; } if (!rest) { param->roll1 += prev->roll2; } } } param->scale_in_x = bone->scale_in_x * (!rest ? pchan->scale_in_x : 1.0f); param->scale_in_y = bone->scale_in_y * (!rest ? pchan->scale_in_y : 1.0f); param->scale_out_x = bone->scale_out_x * (!rest ? pchan->scale_out_x : 1.0f); param->scale_out_y = bone->scale_out_y * (!rest ? pchan->scale_out_y : 1.0f); /* Extra curve x / y */ param->curve_in_x = bone->curve_in_x + (!rest ? pchan->curve_in_x : 0.0f); param->curve_in_y = bone->curve_in_y + (!rest ? pchan->curve_in_y : 0.0f); param->curve_out_x = bone->curve_out_x + (!rest ? pchan->curve_out_x : 0.0f); param->curve_out_y = bone->curve_out_y + (!rest ? pchan->curve_out_y : 0.0f); } } /* Fills the array with the desired amount of bone->segments elements. * This calculation is done within unit bone space. */ void BKE_pchan_bbone_spline_setup(bPoseChannel *pchan, const bool rest, const bool for_deform, Mat4 *result_array) { BBoneSplineParameters param; BKE_pchan_bbone_spline_params_get(pchan, rest, ¶m); pchan->bone->segments = BKE_pchan_bbone_spline_compute(¶m, for_deform, result_array); } /* Computes the bezier handle vectors and rolls coming from custom handles. */ void BKE_pchan_bbone_handles_compute(const BBoneSplineParameters *param, float h1[3], float *r_roll1, float h2[3], float *r_roll2, bool ease, bool offsets) { float mat3[3][3]; float length = param->length; float epsilon = 1e-5 * length; if (param->do_scale) { length *= param->scale[1]; } *r_roll1 = *r_roll2 = 0.0f; if (param->use_prev) { copy_v3_v3(h1, param->prev_h); if (param->prev_bbone) { /* If previous bone is B-bone too, use average handle direction. */ h1[1] -= length; } if (normalize_v3(h1) < epsilon) { copy_v3_fl3(h1, 0.0f, -1.0f, 0.0f); } negate_v3(h1); if (!param->prev_bbone) { /* Find the previous roll to interpolate. */ copy_m3_m4(mat3, param->prev_mat); mat3_vec_to_roll(mat3, h1, r_roll1); } } else { h1[0] = 0.0f; h1[1] = 1.0; h1[2] = 0.0f; } if (param->use_next) { copy_v3_v3(h2, param->next_h); /* If next bone is B-bone too, use average handle direction. */ if (param->next_bbone) { /* pass */ } else { h2[1] -= length; } if (normalize_v3(h2) < epsilon) { copy_v3_fl3(h2, 0.0f, 1.0f, 0.0f); } /* Find the next roll to interpolate as well. */ copy_m3_m4(mat3, param->next_mat); mat3_vec_to_roll(mat3, h2, r_roll2); } else { h2[0] = 0.0f; h2[1] = 1.0f; h2[2] = 0.0f; } if (ease) { const float circle_factor = length * (cubic_tangent_factor_circle_v3(h1, h2) / 0.75f); const float hlength1 = param->ease1 * circle_factor; const float hlength2 = param->ease2 * circle_factor; /* and only now negate h2 */ mul_v3_fl(h1, hlength1); mul_v3_fl(h2, -hlength2); } /* Add effects from bbone properties over the top * - These properties allow users to hand-animate the * bone curve/shape, without having to resort to using * extra bones * - The "bone" level offsets are for defining the restpose * shape of the bone (e.g. for curved eyebrows for example). * -> In the viewport, it's needed to define what the rest pose * looks like * -> For "rest == 0", we also still need to have it present * so that we can "cancel out" this restpose when it comes * time to deform some geometry, it won't cause double transforms. * - The "pchan" level offsets are the ones that animators actually * end up animating */ if (offsets) { /* Add extra rolls. */ *r_roll1 += param->roll1; *r_roll2 += param->roll2; /* Extra curve x / y */ /* NOTE: * Scale correction factors here are to compensate for some random floating-point glitches * when scaling up the bone or it's parent by a factor of approximately 8.15/6, which results * in the bone length getting scaled up too (from 1 to 8), causing the curve to flatten out. */ const float xscale_correction = (param->do_scale) ? param->scale[0] : 1.0f; const float yscale_correction = (param->do_scale) ? param->scale[2] : 1.0f; h1[0] += param->curve_in_x * xscale_correction; h1[2] += param->curve_in_y * yscale_correction; h2[0] += param->curve_out_x * xscale_correction; h2[2] += param->curve_out_y * yscale_correction; } } static void make_bbone_spline_matrix(BBoneSplineParameters *param, const float scalemats[2][4][4], const float pos[3], const float axis[3], float roll, float scalex, float scaley, float result[4][4]) { float mat3[3][3]; vec_roll_to_mat3(axis, roll, mat3); copy_m4_m3(result, mat3); copy_v3_v3(result[3], pos); if (param->do_scale) { /* Correct for scaling when this matrix is used in scaled space. */ mul_m4_series(result, scalemats[0], result, scalemats[1]); } /* BBone scale... */ mul_v3_fl(result[0], scalex); mul_v3_fl(result[2], scaley); } /* Fade from first to second derivative when the handle is very short. */ static void ease_handle_axis(const float deriv1[3], const float deriv2[3], float r_axis[3]) { const float gap = 0.1f; copy_v3_v3(r_axis, deriv1); float len1 = len_squared_v3(deriv1), len2 = len_squared_v3(deriv2); float ratio = len1 / len2; if (ratio < gap * gap) { madd_v3_v3fl(r_axis, deriv2, gap - sqrtf(ratio)); } } /* Fills the array with the desired amount of bone->segments elements. * This calculation is done within unit bone space. */ int BKE_pchan_bbone_spline_compute(BBoneSplineParameters *param, const bool for_deform, Mat4 *result_array) { float scalemats[2][4][4]; float bezt_controls[4][3]; float h1[3], roll1, h2[3], roll2, prev[3], cur[3], axis[3]; float length = param->length; if (param->do_scale) { size_to_mat4(scalemats[1], param->scale); invert_m4_m4(scalemats[0], scalemats[1]); length *= param->scale[1]; } BKE_pchan_bbone_handles_compute(param, h1, &roll1, h2, &roll2, true, true); /* Make curve. */ CLAMP_MAX(param->segments, MAX_BBONE_SUBDIV); copy_v3_fl3(bezt_controls[3], 0.0f, length, 0.0f); add_v3_v3v3(bezt_controls[2], bezt_controls[3], h2); copy_v3_v3(bezt_controls[1], h1); zero_v3(bezt_controls[0]); float bezt_points[MAX_BBONE_SUBDIV + 1]; equalize_cubic_bezier(bezt_controls, MAX_BBONE_SUBDIV, param->segments, bezt_points); /* Deformation uses N+1 matrices computed at points between the segments. */ if (for_deform) { /* Bezier derivatives. */ float bezt_deriv1[3][3], bezt_deriv2[2][3]; for (int i = 0; i < 3; i++) { sub_v3_v3v3(bezt_deriv1[i], bezt_controls[i + 1], bezt_controls[i]); } for (int i = 0; i < 2; i++) { sub_v3_v3v3(bezt_deriv2[i], bezt_deriv1[i + 1], bezt_deriv1[i]); } /* End points require special handling to fix zero length handles. */ ease_handle_axis(bezt_deriv1[0], bezt_deriv2[0], axis); make_bbone_spline_matrix(param, scalemats, bezt_controls[0], axis, roll1, param->scale_in_x, param->scale_in_y, result_array[0].mat); for (int a = 1; a < param->segments; a++) { evaluate_cubic_bezier(bezt_controls, bezt_points[a], cur, axis); float fac = ((float)a) / param->segments; float roll = interpf(roll2, roll1, fac); float scalex = interpf(param->scale_out_x, param->scale_in_x, fac); float scaley = interpf(param->scale_out_y, param->scale_in_y, fac); make_bbone_spline_matrix( param, scalemats, cur, axis, roll, scalex, scaley, result_array[a].mat); } negate_v3(bezt_deriv2[1]); ease_handle_axis(bezt_deriv1[2], bezt_deriv2[1], axis); make_bbone_spline_matrix(param, scalemats, bezt_controls[3], axis, roll2, param->scale_out_x, param->scale_out_y, result_array[param->segments].mat); } /* Other code (e.g. display) uses matrices for the segments themselves. */ else { zero_v3(prev); for (int a = 0; a < param->segments; a++) { evaluate_cubic_bezier(bezt_controls, bezt_points[a + 1], cur, axis); sub_v3_v3v3(axis, cur, prev); float fac = (a + 0.5f) / param->segments; float roll = interpf(roll2, roll1, fac); float scalex = interpf(param->scale_out_x, param->scale_in_x, fac); float scaley = interpf(param->scale_out_y, param->scale_in_y, fac); make_bbone_spline_matrix( param, scalemats, prev, axis, roll, scalex, scaley, result_array[a].mat); copy_v3_v3(prev, cur); } } return param->segments; } /* ************ Armature Deform ******************* */ static void allocate_bbone_cache(bPoseChannel *pchan, int segments) { bPoseChannel_Runtime *runtime = &pchan->runtime; if (runtime->bbone_segments != segments) { BKE_pose_channel_free_bbone_cache(runtime); runtime->bbone_segments = segments; runtime->bbone_rest_mats = MEM_malloc_arrayN( sizeof(Mat4), 1 + (uint)segments, "bPoseChannel_Runtime::bbone_rest_mats"); runtime->bbone_pose_mats = MEM_malloc_arrayN( sizeof(Mat4), 1 + (uint)segments, "bPoseChannel_Runtime::bbone_pose_mats"); runtime->bbone_deform_mats = MEM_malloc_arrayN( sizeof(Mat4), 2 + (uint)segments, "bPoseChannel_Runtime::bbone_deform_mats"); runtime->bbone_dual_quats = MEM_malloc_arrayN( sizeof(DualQuat), 1 + (uint)segments, "bPoseChannel_Runtime::bbone_dual_quats"); } } /** Compute and cache the B-Bone shape in the channel runtime struct. */ void BKE_pchan_bbone_segments_cache_compute(bPoseChannel *pchan) { bPoseChannel_Runtime *runtime = &pchan->runtime; Bone *bone = pchan->bone; int segments = bone->segments; BLI_assert(segments > 1); /* Allocate the cache if needed. */ allocate_bbone_cache(pchan, segments); /* Compute the shape. */ Mat4 *b_bone = runtime->bbone_pose_mats; Mat4 *b_bone_rest = runtime->bbone_rest_mats; Mat4 *b_bone_mats = runtime->bbone_deform_mats; DualQuat *b_bone_dual_quats = runtime->bbone_dual_quats; int a; BKE_pchan_bbone_spline_setup(pchan, false, true, b_bone); BKE_pchan_bbone_spline_setup(pchan, true, true, b_bone_rest); /* Compute deform matrices. */ /* first matrix is the inverse arm_mat, to bring points in local bone space * for finding out which segment it belongs to */ invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat); /* then we make the b_bone_mats: * - first transform to local bone space * - translate over the curve to the bbone mat space * - transform with b_bone matrix * - transform back into global space */ for (a = 0; a <= bone->segments; a++) { float tmat[4][4]; invert_m4_m4(tmat, b_bone_rest[a].mat); mul_m4_series(b_bone_mats[a + 1].mat, pchan->chan_mat, bone->arm_mat, b_bone[a].mat, tmat, b_bone_mats[0].mat); mat4_to_dquat(&b_bone_dual_quats[a], bone->arm_mat, b_bone_mats[a + 1].mat); } } /** Copy cached B-Bone segments from one channel to another */ void BKE_pchan_bbone_segments_cache_copy(bPoseChannel *pchan, bPoseChannel *pchan_from) { bPoseChannel_Runtime *runtime = &pchan->runtime; bPoseChannel_Runtime *runtime_from = &pchan_from->runtime; int segments = runtime_from->bbone_segments; if (segments <= 1) { BKE_pose_channel_free_bbone_cache(&pchan->runtime); } else { allocate_bbone_cache(pchan, segments); memcpy(runtime->bbone_rest_mats, runtime_from->bbone_rest_mats, sizeof(Mat4) * (1 + segments)); memcpy(runtime->bbone_pose_mats, runtime_from->bbone_pose_mats, sizeof(Mat4) * (1 + segments)); memcpy(runtime->bbone_deform_mats, runtime_from->bbone_deform_mats, sizeof(Mat4) * (2 + segments)); memcpy(runtime->bbone_dual_quats, runtime_from->bbone_dual_quats, sizeof(DualQuat) * (1 + segments)); } } /** * Calculate index and blend factor for the two B-Bone segment nodes * affecting the point at 0 <= pos <= 1. */ void BKE_pchan_bbone_deform_segment_index(const bPoseChannel *pchan, float pos, int *r_index, float *r_blend_next) { int segments = pchan->bone->segments; CLAMP(pos, 0.0f, 1.0f); /* Calculate the indices of the 2 affecting b_bone segments. * Integer part is the first segment's index. * Integer part plus 1 is the second segment's index. * Fractional part is the blend factor. */ float pre_blend = pos * (float)segments; int index = (int)floorf(pre_blend); CLAMP(index, 0, segments - 1); float blend = pre_blend - index; CLAMP(blend, 0.0f, 1.0f); *r_index = index; *r_blend_next = blend; } /* Add the effect of one bone or B-Bone segment to the accumulated result. */ static void pchan_deform_accumulate(const DualQuat *deform_dq, const float deform_mat[4][4], const float co_in[3], float weight, float co_accum[3], DualQuat *dq_accum, float mat_accum[3][3]) { if (weight == 0.0f) { return; } if (dq_accum) { BLI_assert(!co_accum); add_weighted_dq_dq(dq_accum, deform_dq, weight); } else { float tmp[3]; mul_v3_m4v3(tmp, deform_mat, co_in); sub_v3_v3(tmp, co_in); madd_v3_v3fl(co_accum, tmp, weight); if (mat_accum) { float tmpmat[3][3]; copy_m3_m4(tmpmat, deform_mat); madd_m3_m3m3fl(mat_accum, mat_accum, tmpmat, weight); } } } static void b_bone_deform(const bPoseChannel *pchan, const float co[3], float weight, float vec[3], DualQuat *dq, float defmat[3][3]) { const DualQuat *quats = pchan->runtime.bbone_dual_quats; const Mat4 *mats = pchan->runtime.bbone_deform_mats; const float(*mat)[4] = mats[0].mat; float blend, y; int index; /* Transform co to bone space and get its y component. */ y = mat[0][1] * co[0] + mat[1][1] * co[1] + mat[2][1] * co[2] + mat[3][1]; /* Calculate the indices of the 2 affecting b_bone segments. */ BKE_pchan_bbone_deform_segment_index(pchan, y / pchan->bone->length, &index, &blend); pchan_deform_accumulate( &quats[index], mats[index + 1].mat, co, weight * (1.0f - blend), vec, dq, defmat); pchan_deform_accumulate( &quats[index + 1], mats[index + 2].mat, co, weight * blend, vec, dq, defmat); } /* using vec with dist to bone b1 - b2 */ float distfactor_to_bone( const float vec[3], const float b1[3], const float b2[3], float rad1, float rad2, float rdist) { float dist_sq; float bdelta[3]; float pdelta[3]; float hsqr, a, l, rad; sub_v3_v3v3(bdelta, b2, b1); l = normalize_v3(bdelta); sub_v3_v3v3(pdelta, vec, b1); a = dot_v3v3(bdelta, pdelta); hsqr = len_squared_v3(pdelta); if (a < 0.0f) { /* If we're past the end of the bone, do a spherical field attenuation thing */ dist_sq = len_squared_v3v3(b1, vec); rad = rad1; } else if (a > l) { /* If we're past the end of the bone, do a spherical field attenuation thing */ dist_sq = len_squared_v3v3(b2, vec); rad = rad2; } else { dist_sq = (hsqr - (a * a)); if (l != 0.0f) { rad = a / l; rad = rad * rad2 + (1.0f - rad) * rad1; } else { rad = rad1; } } a = rad * rad; if (dist_sq < a) { return 1.0f; } else { l = rad + rdist; l *= l; if (rdist == 0.0f || dist_sq >= l) { return 0.0f; } else { a = sqrtf(dist_sq) - rad; return 1.0f - (a * a) / (rdist * rdist); } } } static float dist_bone_deform( bPoseChannel *pchan, float vec[3], DualQuat *dq, float mat[3][3], const float co[3]) { Bone *bone = pchan->bone; float fac, contrib = 0.0; if (bone == NULL) { return 0.0f; } fac = distfactor_to_bone( co, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist); if (fac > 0.0f) { fac *= bone->weight; contrib = fac; if (contrib > 0.0f) { if (bone->segments > 1 && pchan->runtime.bbone_segments == bone->segments) { b_bone_deform(pchan, co, fac, vec, dq, mat); } else { pchan_deform_accumulate( &pchan->runtime.deform_dual_quat, pchan->chan_mat, co, fac, vec, dq, mat); } } } return contrib; } static void pchan_bone_deform(bPoseChannel *pchan, float weight, float vec[3], DualQuat *dq, float mat[3][3], const float co[3], float *contrib) { Bone *bone = pchan->bone; if (!weight) { return; } if (bone->segments > 1 && pchan->runtime.bbone_segments == bone->segments) { b_bone_deform(pchan, co, weight, vec, dq, mat); } else { pchan_deform_accumulate( &pchan->runtime.deform_dual_quat, pchan->chan_mat, co, weight, vec, dq, mat); } (*contrib) += weight; } typedef struct ArmatureUserdata { Object *armOb; Object *target; const Mesh *mesh; float (*vertexCos)[3]; float (*defMats)[3][3]; float (*prevCos)[3]; bool use_envelope; bool use_quaternion; bool invert_vgroup; bool use_dverts; int armature_def_nr; int target_totvert; MDeformVert *dverts; int defbase_tot; bPoseChannel **defnrToPC; float premat[4][4]; float postmat[4][4]; } ArmatureUserdata; static void armature_vert_task(void *__restrict userdata, const int i, const TaskParallelTLS *__restrict UNUSED(tls)) { const ArmatureUserdata *data = userdata; float(*const vertexCos)[3] = data->vertexCos; float(*const defMats)[3][3] = data->defMats; float(*const prevCos)[3] = data->prevCos; const bool use_envelope = data->use_envelope; const bool use_quaternion = data->use_quaternion; const bool use_dverts = data->use_dverts; const int armature_def_nr = data->armature_def_nr; MDeformVert *dvert; DualQuat sumdq, *dq = NULL; bPoseChannel *pchan; float *co, dco[3]; float sumvec[3], summat[3][3]; float *vec = NULL, (*smat)[3] = NULL; float contrib = 0.0f; float armature_weight = 1.0f; /* default to 1 if no overall def group */ float prevco_weight = 1.0f; /* weight for optional cached vertexcos */ if (use_quaternion) { memset(&sumdq, 0, sizeof(DualQuat)); dq = &sumdq; } else { sumvec[0] = sumvec[1] = sumvec[2] = 0.0f; vec = sumvec; if (defMats) { zero_m3(summat); smat = summat; } } if (use_dverts || armature_def_nr != -1) { if (data->mesh) { BLI_assert(i < data->mesh->totvert); if (data->mesh->dvert != NULL) { dvert = data->mesh->dvert + i; } else { dvert = NULL; } } else if (data->dverts && i < data->target_totvert) { dvert = data->dverts + i; } else { dvert = NULL; } } else { dvert = NULL; } if (armature_def_nr != -1 && dvert) { armature_weight = defvert_find_weight(dvert, armature_def_nr); if (data->invert_vgroup) { armature_weight = 1.0f - armature_weight; } /* hackish: the blending factor can be used for blending with prevCos too */ if (prevCos) { prevco_weight = armature_weight; armature_weight = 1.0f; } } /* check if there's any point in calculating for this vert */ if (armature_weight == 0.0f) { return; } /* get the coord we work on */ co = prevCos ? prevCos[i] : vertexCos[i]; /* Apply the object's matrix */ mul_m4_v3(data->premat, co); if (use_dverts && dvert && dvert->totweight) { /* use weight groups ? */ MDeformWeight *dw = dvert->dw; int deformed = 0; unsigned int j; float acum_weight = 0; for (j = dvert->totweight; j != 0; j--, dw++) { const int index = dw->def_nr; if (index >= 0 && index < data->defbase_tot && (pchan = data->defnrToPC[index])) { float weight = dw->weight; Bone *bone = pchan->bone; deformed = 1; if (bone && bone->flag & BONE_MULT_VG_ENV) { weight *= distfactor_to_bone( co, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist); } /* check limit of weight */ if (data->target->type == OB_GPENCIL) { if (acum_weight + weight >= 1.0f) { weight = 1.0f - acum_weight; } acum_weight += weight; } pchan_bone_deform(pchan, weight, vec, dq, smat, co, &contrib); /* if acumulated weight limit exceed, exit loop */ if ((data->target->type == OB_GPENCIL) && (acum_weight >= 1.0f)) { break; } } } /* if there are vertexgroups but not groups with bones * (like for softbody groups) */ if (deformed == 0 && use_envelope) { for (pchan = data->armOb->pose->chanbase.first; pchan; pchan = pchan->next) { if (!(pchan->bone->flag & BONE_NO_DEFORM)) { contrib += dist_bone_deform(pchan, vec, dq, smat, co); } } } } else if (use_envelope) { for (pchan = data->armOb->pose->chanbase.first; pchan; pchan = pchan->next) { if (!(pchan->bone->flag & BONE_NO_DEFORM)) { contrib += dist_bone_deform(pchan, vec, dq, smat, co); } } } /* actually should be EPSILON? weight values and contrib can be like 10e-39 small */ if (contrib > 0.0001f) { if (use_quaternion) { normalize_dq(dq, contrib); if (armature_weight != 1.0f) { copy_v3_v3(dco, co); mul_v3m3_dq(dco, (defMats) ? summat : NULL, dq); sub_v3_v3(dco, co); mul_v3_fl(dco, armature_weight); add_v3_v3(co, dco); } else { mul_v3m3_dq(co, (defMats) ? summat : NULL, dq); } smat = summat; } else { mul_v3_fl(vec, armature_weight / contrib); add_v3_v3v3(co, vec, co); } if (defMats) { float pre[3][3], post[3][3], tmpmat[3][3]; copy_m3_m4(pre, data->premat); copy_m3_m4(post, data->postmat); copy_m3_m3(tmpmat, defMats[i]); if (!use_quaternion) { /* quaternion already is scale corrected */ mul_m3_fl(smat, armature_weight / contrib); } mul_m3_series(defMats[i], post, smat, pre, tmpmat); } } /* always, check above code */ mul_m4_v3(data->postmat, co); /* interpolate with previous modifier position using weight group */ if (prevCos) { float mw = 1.0f - prevco_weight; vertexCos[i][0] = prevco_weight * vertexCos[i][0] + mw * co[0]; vertexCos[i][1] = prevco_weight * vertexCos[i][1] + mw * co[1]; vertexCos[i][2] = prevco_weight * vertexCos[i][2] + mw * co[2]; } } void armature_deform_verts(Object *armOb, Object *target, const Mesh *mesh, float (*vertexCos)[3], float (*defMats)[3][3], int numVerts, int deformflag, float (*prevCos)[3], const char *defgrp_name, bGPDstroke *gps) { bArmature *arm = armOb->data; bPoseChannel **defnrToPC = NULL; MDeformVert *dverts = NULL; bDeformGroup *dg; const bool use_envelope = (deformflag & ARM_DEF_ENVELOPE) != 0; const bool use_quaternion = (deformflag & ARM_DEF_QUATERNION) != 0; const bool invert_vgroup = (deformflag & ARM_DEF_INVERT_VGROUP) != 0; int defbase_tot = 0; /* safety for vertexgroup index overflow */ int i, target_totvert = 0; /* safety for vertexgroup overflow */ bool use_dverts = false; int armature_def_nr; /* in editmode, or not an armature */ if (arm->edbo || (armOb->pose == NULL)) { return; } if ((armOb->pose->flag & POSE_RECALC) != 0) { CLOG_ERROR(&LOG, "Trying to evaluate influence of armature '%s' which needs Pose recalc!", armOb->id.name); BLI_assert(0); } /* get the def_nr for the overall armature vertex group if present */ armature_def_nr = defgroup_name_index(target, defgrp_name); if (ELEM(target->type, OB_MESH, OB_LATTICE, OB_GPENCIL)) { defbase_tot = BLI_listbase_count(&target->defbase); if (target->type == OB_MESH) { Mesh *me = target->data; dverts = me->dvert; if (dverts) { target_totvert = me->totvert; } } else if (target->type == OB_LATTICE) { Lattice *lt = target->data; dverts = lt->dvert; if (dverts) { target_totvert = lt->pntsu * lt->pntsv * lt->pntsw; } } else if (target->type == OB_GPENCIL) { dverts = gps->dvert; if (dverts) { target_totvert = gps->totpoints; } } } /* get a vertex-deform-index to posechannel array */ if (deformflag & ARM_DEF_VGROUP) { if (ELEM(target->type, OB_MESH, OB_LATTICE, OB_GPENCIL)) { /* if we have a Mesh, only use dverts if it has them */ if (mesh) { use_dverts = (mesh->dvert != NULL); } else if (dverts) { use_dverts = true; } if (use_dverts) { defnrToPC = MEM_callocN(sizeof(*defnrToPC) * defbase_tot, "defnrToBone"); /* TODO(sergey): Some considerations here: * * - Check whether keeping this consistent across frames gives speedup. */ for (i = 0, dg = target->defbase.first; dg; i++, dg = dg->next) { defnrToPC[i] = BKE_pose_channel_find_name(armOb->pose, dg->name); /* exclude non-deforming bones */ if (defnrToPC[i]) { if (defnrToPC[i]->bone->flag & BONE_NO_DEFORM) { defnrToPC[i] = NULL; } } } } } } ArmatureUserdata data = {.armOb = armOb, .target = target, .mesh = mesh, .vertexCos = vertexCos, .defMats = defMats, .prevCos = prevCos, .use_envelope = use_envelope, .use_quaternion = use_quaternion, .invert_vgroup = invert_vgroup, .use_dverts = use_dverts, .armature_def_nr = armature_def_nr, .target_totvert = target_totvert, .dverts = dverts, .defbase_tot = defbase_tot, .defnrToPC = defnrToPC}; float obinv[4][4]; invert_m4_m4(obinv, target->obmat); mul_m4_m4m4(data.postmat, obinv, armOb->obmat); invert_m4_m4(data.premat, data.postmat); TaskParallelSettings settings; BLI_parallel_range_settings_defaults(&settings); settings.min_iter_per_thread = 32; BLI_task_parallel_range(0, numVerts, &data, armature_vert_task, &settings); if (defnrToPC) { MEM_freeN(defnrToPC); } } /* ************ END Armature Deform ******************* */ void get_objectspace_bone_matrix(struct Bone *bone, float M_accumulatedMatrix[4][4], int UNUSED(root), int UNUSED(posed)) { copy_m4_m4(M_accumulatedMatrix, bone->arm_mat); } /* **************** Space to Space API ****************** */ /* Convert World-Space Matrix to Pose-Space Matrix */ void BKE_armature_mat_world_to_pose(Object *ob, float inmat[4][4], float outmat[4][4]) { float obmat[4][4]; /* prevent crashes */ if (ob == NULL) { return; } /* get inverse of (armature) object's matrix */ invert_m4_m4(obmat, ob->obmat); /* multiply given matrix by object's-inverse to find pose-space matrix */ mul_m4_m4m4(outmat, inmat, obmat); } /* Convert World-Space Location to Pose-Space Location * NOTE: this cannot be used to convert to pose-space location of the supplied * pose-channel into its local space (i.e. 'visual'-keyframing) */ void BKE_armature_loc_world_to_pose(Object *ob, const float inloc[3], float outloc[3]) { float xLocMat[4][4]; float nLocMat[4][4]; /* build matrix for location */ unit_m4(xLocMat); copy_v3_v3(xLocMat[3], inloc); /* get bone-space cursor matrix and extract location */ BKE_armature_mat_world_to_pose(ob, xLocMat, nLocMat); copy_v3_v3(outloc, nLocMat[3]); } /* Simple helper, computes the offset bone matrix. * offs_bone = yoffs(b-1) + root(b) + bonemat(b). */ void BKE_bone_offset_matrix_get(const Bone *bone, float offs_bone[4][4]) { BLI_assert(bone->parent != NULL); /* Bone transform itself. */ copy_m4_m3(offs_bone, bone->bone_mat); /* The bone's root offset (is in the parent's coordinate system). */ copy_v3_v3(offs_bone[3], bone->head); /* Get the length translation of parent (length along y axis). */ offs_bone[3][1] += bone->parent->length; } /* Construct the matrices (rot/scale and loc) * to apply the PoseChannels into the armature (object) space. * I.e. (roughly) the "pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b)" in the * pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) * ...function. * * This allows to get the transformations of a bone in its object space, * *before* constraints (and IK) get applied (used by pose evaluation code). * And reverse: to find pchan transformations needed to place a bone at a given loc/rot/scale * in object space (used by interactive transform, and snapping code). * * Note that, with the HINGE/NO_SCALE/NO_LOCAL_LOCATION options, the location matrix * will differ from the rotation/scale matrix... * * NOTE: This cannot be used to convert to pose-space transforms of the supplied * pose-channel into its local space (i.e. 'visual'-keyframing). * (note: I don't understand that, so I keep it :p --mont29). */ void BKE_bone_parent_transform_calc_from_pchan(const bPoseChannel *pchan, BoneParentTransform *r_bpt) { const Bone *bone, *parbone; const bPoseChannel *parchan; /* set up variables for quicker access below */ bone = pchan->bone; parbone = bone->parent; parchan = pchan->parent; if (parchan) { float offs_bone[4][4]; /* yoffs(b-1) + root(b) + bonemat(b). */ BKE_bone_offset_matrix_get(bone, offs_bone); BKE_bone_parent_transform_calc_from_matrices(bone->flag, bone->inherit_scale_mode, offs_bone, parbone->arm_mat, parchan->pose_mat, r_bpt); } else { BKE_bone_parent_transform_calc_from_matrices( bone->flag, bone->inherit_scale_mode, bone->arm_mat, NULL, NULL, r_bpt); } } /* Compute the parent transform using data decoupled from specific data structures. * * bone_flag: Bone->flag containing settings * offs_bone: delta from parent to current arm_mat (or just arm_mat if no parent) * parent_arm_mat, parent_pose_mat: arm_mat and pose_mat of parent, or NULL * r_bpt: OUTPUT parent transform */ void BKE_bone_parent_transform_calc_from_matrices(int bone_flag, int inherit_scale_mode, const float offs_bone[4][4], const float parent_arm_mat[4][4], const float parent_pose_mat[4][4], BoneParentTransform *r_bpt) { copy_v3_fl(r_bpt->post_scale, 1.0f); if (parent_pose_mat) { const bool use_rotation = (bone_flag & BONE_HINGE) == 0; const bool full_transform = use_rotation && inherit_scale_mode == BONE_INHERIT_SCALE_FULL; /* Compose the rotscale matrix for this bone. */ if (full_transform) { /* Parent pose rotation and scale. */ mul_m4_m4m4(r_bpt->rotscale_mat, parent_pose_mat, offs_bone); } else { float tmat[4][4], tscale[3]; /* If using parent pose rotation: */ if (use_rotation) { copy_m4_m4(tmat, parent_pose_mat); /* Normalize the matrix when needed. */ switch (inherit_scale_mode) { case BONE_INHERIT_SCALE_FULL: case BONE_INHERIT_SCALE_FIX_SHEAR: /* Keep scale and shear. */ break; case BONE_INHERIT_SCALE_NONE: case BONE_INHERIT_SCALE_AVERAGE: /* Remove scale and shear from parent. */ orthogonalize_m4_stable(tmat, 1, true); break; case BONE_INHERIT_SCALE_ALIGNED: /* Remove shear and extract scale. */ orthogonalize_m4_stable(tmat, 1, false); normalize_m4_ex(tmat, r_bpt->post_scale); break; case BONE_INHERIT_SCALE_NONE_LEGACY: /* Remove only scale - bad legacy way. */ normalize_m4(tmat); break; default: BLI_assert(false); } } /* If removing parent pose rotation: */ else { copy_m4_m4(tmat, parent_arm_mat); /* Copy the parent scale when needed. */ switch (inherit_scale_mode) { case BONE_INHERIT_SCALE_FULL: /* Ignore effects of shear. */ mat4_to_size(tscale, parent_pose_mat); rescale_m4(tmat, tscale); break; case BONE_INHERIT_SCALE_FIX_SHEAR: /* Take the effects of parent shear into account to get exact volume. */ mat4_to_size_fix_shear(tscale, parent_pose_mat); rescale_m4(tmat, tscale); break; case BONE_INHERIT_SCALE_ALIGNED: mat4_to_size_fix_shear(r_bpt->post_scale, parent_pose_mat); break; case BONE_INHERIT_SCALE_NONE: case BONE_INHERIT_SCALE_AVERAGE: case BONE_INHERIT_SCALE_NONE_LEGACY: /* Keep unscaled. */ break; default: BLI_assert(false); } } /* Apply the average parent scale when needed. */ if (inherit_scale_mode == BONE_INHERIT_SCALE_AVERAGE) { mul_mat3_m4_fl(tmat, cbrtf(fabsf(mat4_to_volume_scale(parent_pose_mat)))); } mul_m4_m4m4(r_bpt->rotscale_mat, tmat, offs_bone); /* Remove remaining shear when needed, preserving volume. */ if (inherit_scale_mode == BONE_INHERIT_SCALE_FIX_SHEAR) { orthogonalize_m4_stable(r_bpt->rotscale_mat, 1, false); } } /* Compose the loc matrix for this bone. */ /* NOTE: That version does not modify bone's loc when HINGE/NO_SCALE options are set. */ /* In this case, use the object's space *orientation*. */ if (bone_flag & BONE_NO_LOCAL_LOCATION) { /* XXX I'm sure that code can be simplified! */ float bone_loc[4][4], bone_rotscale[3][3], tmat4[4][4], tmat3[3][3]; unit_m4(bone_loc); unit_m4(r_bpt->loc_mat); unit_m4(tmat4); mul_v3_m4v3(bone_loc[3], parent_pose_mat, offs_bone[3]); unit_m3(bone_rotscale); copy_m3_m4(tmat3, parent_pose_mat); mul_m3_m3m3(bone_rotscale, tmat3, bone_rotscale); copy_m4_m3(tmat4, bone_rotscale); mul_m4_m4m4(r_bpt->loc_mat, bone_loc, tmat4); } /* Those flags do not affect position, use plain parent transform space! */ else if (!full_transform) { mul_m4_m4m4(r_bpt->loc_mat, parent_pose_mat, offs_bone); } /* Else (i.e. default, usual case), * just use the same matrix for rotation/scaling, and location. */ else { copy_m4_m4(r_bpt->loc_mat, r_bpt->rotscale_mat); } } /* Root bones. */ else { /* Rotation/scaling. */ copy_m4_m4(r_bpt->rotscale_mat, offs_bone); /* Translation. */ if (bone_flag & BONE_NO_LOCAL_LOCATION) { /* Translation of arm_mat, without the rotation. */ unit_m4(r_bpt->loc_mat); copy_v3_v3(r_bpt->loc_mat[3], offs_bone[3]); } else { copy_m4_m4(r_bpt->loc_mat, r_bpt->rotscale_mat); } } } void BKE_bone_parent_transform_clear(struct BoneParentTransform *bpt) { unit_m4(bpt->rotscale_mat); unit_m4(bpt->loc_mat); copy_v3_fl(bpt->post_scale, 1.0f); } void BKE_bone_parent_transform_invert(struct BoneParentTransform *bpt) { invert_m4(bpt->rotscale_mat); invert_m4(bpt->loc_mat); invert_v3(bpt->post_scale); } void BKE_bone_parent_transform_combine(const struct BoneParentTransform *in1, const struct BoneParentTransform *in2, struct BoneParentTransform *result) { mul_m4_m4m4(result->rotscale_mat, in1->rotscale_mat, in2->rotscale_mat); mul_m4_m4m4(result->loc_mat, in1->loc_mat, in2->loc_mat); mul_v3_v3v3(result->post_scale, in1->post_scale, in2->post_scale); } void BKE_bone_parent_transform_apply(const struct BoneParentTransform *bpt, const float inmat[4][4], float outmat[4][4]) { /* in case inmat == outmat */ float tmploc[3]; copy_v3_v3(tmploc, inmat[3]); mul_m4_m4m4(outmat, bpt->rotscale_mat, inmat); mul_v3_m4v3(outmat[3], bpt->loc_mat, tmploc); rescale_m4(outmat, bpt->post_scale); } /* Convert Pose-Space Matrix to Bone-Space Matrix. * NOTE: this cannot be used to convert to pose-space transforms of the supplied * pose-channel into its local space (i.e. 'visual'-keyframing) */ void BKE_armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[4][4], float outmat[4][4]) { BoneParentTransform bpt; BKE_bone_parent_transform_calc_from_pchan(pchan, &bpt); BKE_bone_parent_transform_invert(&bpt); BKE_bone_parent_transform_apply(&bpt, inmat, outmat); } /* Convert Bone-Space Matrix to Pose-Space Matrix. */ void BKE_armature_mat_bone_to_pose(bPoseChannel *pchan, float inmat[4][4], float outmat[4][4]) { BoneParentTransform bpt; BKE_bone_parent_transform_calc_from_pchan(pchan, &bpt); BKE_bone_parent_transform_apply(&bpt, inmat, outmat); } /* Convert Pose-Space Location to Bone-Space Location * NOTE: this cannot be used to convert to pose-space location of the supplied * pose-channel into its local space (i.e. 'visual'-keyframing) */ void BKE_armature_loc_pose_to_bone(bPoseChannel *pchan, const float inloc[3], float outloc[3]) { float xLocMat[4][4]; float nLocMat[4][4]; /* build matrix for location */ unit_m4(xLocMat); copy_v3_v3(xLocMat[3], inloc); /* get bone-space cursor matrix and extract location */ BKE_armature_mat_pose_to_bone(pchan, xLocMat, nLocMat); copy_v3_v3(outloc, nLocMat[3]); } void BKE_armature_mat_pose_to_bone_ex(struct Depsgraph *depsgraph, Object *ob, bPoseChannel *pchan, float inmat[4][4], float outmat[4][4]) { bPoseChannel work_pchan = *pchan; /* recalculate pose matrix with only parent transformations, * bone loc/sca/rot is ignored, scene and frame are not used. */ BKE_pose_where_is_bone(depsgraph, NULL, ob, &work_pchan, 0.0f, false); /* find the matrix, need to remove the bone transforms first so this is * calculated as a matrix to set rather then a difference ontop of what's * already there. */ unit_m4(outmat); BKE_pchan_apply_mat4(&work_pchan, outmat, false); BKE_armature_mat_pose_to_bone(&work_pchan, inmat, outmat); } /** * Same as #BKE_object_mat3_to_rot(). */ void BKE_pchan_mat3_to_rot(bPoseChannel *pchan, float mat[3][3], bool use_compat) { BLI_ASSERT_UNIT_M3(mat); switch (pchan->rotmode) { case ROT_MODE_QUAT: mat3_normalized_to_quat(pchan->quat, mat); break; case ROT_MODE_AXISANGLE: mat3_normalized_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat); break; default: /* euler */ if (use_compat) { mat3_normalized_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat); } else { mat3_normalized_to_eulO(pchan->eul, pchan->rotmode, mat); } break; } } /** * Same as #BKE_object_rot_to_mat3(). */ void BKE_pchan_rot_to_mat3(const bPoseChannel *pchan, float mat[3][3]) { /* rotations may either be quats, eulers (with various rotation orders), or axis-angle */ if (pchan->rotmode > 0) { /* euler rotations (will cause gimble lock, * but this can be alleviated a bit with rotation orders) */ eulO_to_mat3(mat, pchan->eul, pchan->rotmode); } else if (pchan->rotmode == ROT_MODE_AXISANGLE) { /* axis-angle - not really that great for 3D-changing orientations */ axis_angle_to_mat3(mat, pchan->rotAxis, pchan->rotAngle); } else { /* quats are normalized before use to eliminate scaling issues */ float quat[4]; /* NOTE: we now don't normalize the stored values anymore, * since this was kindof evil in some cases but if this proves to be too problematic, * switch back to the old system of operating directly on the stored copy. */ normalize_qt_qt(quat, pchan->quat); quat_to_mat3(mat, quat); } } /** * Apply a 4x4 matrix to the pose bone, * similar to #BKE_object_apply_mat4(). */ void BKE_pchan_apply_mat4(bPoseChannel *pchan, float mat[4][4], bool use_compat) { float rot[3][3]; mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat); BKE_pchan_mat3_to_rot(pchan, rot, use_compat); } /** * Remove rest-position effects from pose-transform for obtaining * 'visual' transformation of pose-channel. * (used by the Visual-Keyframing stuff). */ void BKE_armature_mat_pose_to_delta(float delta_mat[4][4], float pose_mat[4][4], float arm_mat[4][4]) { float imat[4][4]; invert_m4_m4(imat, arm_mat); mul_m4_m4m4(delta_mat, imat, pose_mat); } /* **************** Rotation Mode Conversions ****************************** */ /* Used for Objects and Pose Channels, since both can have multiple rotation representations */ /* Called from RNA when rotation mode changes * - the result should be that the rotations given in the provided pointers have had conversions * applied (as appropriate), such that the rotation of the element hasn't 'visually' changed */ void BKE_rotMode_change_values( float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode) { /* check if any change - if so, need to convert data */ if (newMode > 0) { /* to euler */ if (oldMode == ROT_MODE_AXISANGLE) { /* axis-angle to euler */ axis_angle_to_eulO(eul, newMode, axis, *angle); } else if (oldMode == ROT_MODE_QUAT) { /* quat to euler */ normalize_qt(quat); quat_to_eulO(eul, newMode, quat); } /* else { no conversion needed } */ } else if (newMode == ROT_MODE_QUAT) { /* to quat */ if (oldMode == ROT_MODE_AXISANGLE) { /* axis angle to quat */ axis_angle_to_quat(quat, axis, *angle); } else if (oldMode > 0) { /* euler to quat */ eulO_to_quat(quat, eul, oldMode); } /* else { no conversion needed } */ } else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */ if (oldMode > 0) { /* euler to axis angle */ eulO_to_axis_angle(axis, angle, eul, oldMode); } else if (oldMode == ROT_MODE_QUAT) { /* quat to axis angle */ normalize_qt(quat); quat_to_axis_angle(axis, angle, quat); } /* When converting to axis-angle, * we need a special exception for the case when there is no axis. */ if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) { /* for now, rotate around y-axis then (so that it simply becomes the roll) */ axis[1] = 1.0f; } } } /* **************** The new & simple (but OK!) armature evaluation ********* */ /* ****************** And how it works! **************************************** * * This is the bone transformation trick; they're hierarchical so each bone(b) * is in the coord system of bone(b-1): * * arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * * -> yoffs is just the y axis translation in parent's coord system * -> d_root is the translation of the bone root, also in parent's coord system * * pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) * * we then - in init deform - store the deform in chan_mat, such that: * * pose_mat(b)= arm_mat(b) * chan_mat(b) * * *************************************************************************** */ /* Computes vector and roll based on a rotation. * "mat" must contain only a rotation, and no scaling. */ void mat3_to_vec_roll(const float mat[3][3], float r_vec[3], float *r_roll) { if (r_vec) { copy_v3_v3(r_vec, mat[1]); } if (r_roll) { mat3_vec_to_roll(mat, mat[1], r_roll); } } /* Computes roll around the vector that best approximates the matrix. * If vec is the Y vector from purely rotational mat, result should be exact. */ void mat3_vec_to_roll(const float mat[3][3], const float vec[3], float *r_roll) { float vecmat[3][3], vecmatinv[3][3], rollmat[3][3]; vec_roll_to_mat3(vec, 0.0f, vecmat); invert_m3_m3(vecmatinv, vecmat); mul_m3_m3m3(rollmat, vecmatinv, mat); *r_roll = atan2f(rollmat[2][0], rollmat[2][2]); } /* Calculates the rest matrix of a bone based on its vector and a roll around that vector. */ /** * Given `v = (v.x, v.y, v.z)` our (normalized) bone vector, we want the rotation matrix M * from the Y axis (so that `M * (0, 1, 0) = v`). * - The rotation axis a lays on XZ plane, and it is orthonormal to v, * hence to the projection of v onto XZ plane. * - `a = (v.z, 0, -v.x)` * * We know a is eigenvector of M (so M * a = a). * Finally, we have w, such that M * w = (0, 1, 0) * (i.e. the vector that will be aligned with Y axis once transformed). * We know w is symmetric to v by the Y axis. * - `w = (-v.x, v.y, -v.z)` * * Solving this, we get (x, y and z being the components of v): *
 *     ┌ (x^2 * y + z^2) / (x^2 + z^2),   x,   x * z * (y - 1) / (x^2 + z^2) ┐
 * M = │  x * (y^2 - 1)  / (x^2 + z^2),   y,    z * (y^2 - 1)  / (x^2 + z^2) │
 *     └ x * z * (y - 1) / (x^2 + z^2),   z,   (x^2 + z^2 * y) / (x^2 + z^2) ┘
 * 
* * This is stable as long as v (the bone) is not too much aligned with +/-Y * (i.e. x and z components are not too close to 0). * * Since v is normalized, we have `x^2 + y^2 + z^2 = 1`, * hence `x^2 + z^2 = 1 - y^2 = (1 - y)(1 + y)`. * * This allows to simplifies M like this: *
 *     ┌ 1 - x^2 / (1 + y),   x,     -x * z / (1 + y) ┐
 * M = │                -x,   y,                   -z │
 *     └  -x * z / (1 + y),   z,    1 - z^2 / (1 + y) ┘
 * 
* * Written this way, we see the case v = +Y is no more a singularity. * The only one * remaining is the bone being aligned with -Y. * * Let's handle * the asymptotic behavior when bone vector is reaching the limit of y = -1. * Each of the four corner elements can vary from -1 to 1, * depending on the axis a chosen for doing the rotation. * And the "rotation" here is in fact established by mirroring XZ plane by that given axis, * then inversing the Y-axis. * For sufficiently small x and z, and with y approaching -1, * all elements but the four corner ones of M will degenerate. * So let's now focus on these corner elements. * * We rewrite M so that it only contains its four corner elements, * and combine the `1 / (1 + y)` factor: *
 *                    ┌ 1 + y - x^2,        -x * z ┐
 * M* = 1 / (1 + y) * │                            │
 *                    └      -x * z,   1 + y - z^2 ┘
 * 
* * When y is close to -1, computing 1 / (1 + y) will cause severe numerical instability, * so we ignore it and normalize M instead. * We know `y^2 = 1 - (x^2 + z^2)`, and `y < 0`, hence `y = -sqrt(1 - (x^2 + z^2))`. * * Since x and z are both close to 0, we apply the binomial expansion to the first order: * `y = -sqrt(1 - (x^2 + z^2)) = -1 + (x^2 + z^2) / 2`. Which gives: *
 *                        ┌  z^2 - x^2,  -2 * x * z ┐
 * M* = 1 / (x^2 + z^2) * │                         │
 *                        └ -2 * x * z,   x^2 - z^2 ┘
 * 
*/ void vec_roll_to_mat3_normalized(const float nor[3], const float roll, float mat[3][3]) { #define THETA_THRESHOLD_NEGY 1.0e-9f #define THETA_THRESHOLD_NEGY_CLOSE 1.0e-5f float theta; float rMatrix[3][3], bMatrix[3][3]; BLI_ASSERT_UNIT_V3(nor); theta = 1.0f + nor[1]; /* With old algo, 1.0e-13f caused T23954 and T31333, 1.0e-6f caused T27675 and T30438, * so using 1.0e-9f as best compromise. * * New algo is supposed much more precise, since less complex computations are performed, * but it uses two different threshold values... * * Note: When theta is close to zero, we have to check we do have non-null X/Z components as well * (due to float precision errors, we can have nor = (0.0, 0.99999994, 0.0)...). */ if (theta > THETA_THRESHOLD_NEGY_CLOSE || ((nor[0] || nor[2]) && theta > THETA_THRESHOLD_NEGY)) { /* nor is *not* -Y. * We got these values for free... so be happy with it... ;) */ bMatrix[0][1] = -nor[0]; bMatrix[1][0] = nor[0]; bMatrix[1][1] = nor[1]; bMatrix[1][2] = nor[2]; bMatrix[2][1] = -nor[2]; if (theta > THETA_THRESHOLD_NEGY_CLOSE) { /* If nor is far enough from -Y, apply the general case. */ bMatrix[0][0] = 1 - nor[0] * nor[0] / theta; bMatrix[2][2] = 1 - nor[2] * nor[2] / theta; bMatrix[2][0] = bMatrix[0][2] = -nor[0] * nor[2] / theta; } else { /* If nor is too close to -Y, apply the special case. */ theta = nor[0] * nor[0] + nor[2] * nor[2]; bMatrix[0][0] = (nor[0] + nor[2]) * (nor[0] - nor[2]) / -theta; bMatrix[2][2] = -bMatrix[0][0]; bMatrix[2][0] = bMatrix[0][2] = 2.0f * nor[0] * nor[2] / theta; } } else { /* If nor is -Y, simple symmetry by Z axis. */ unit_m3(bMatrix); bMatrix[0][0] = bMatrix[1][1] = -1.0; } /* Make Roll matrix */ axis_angle_normalized_to_mat3(rMatrix, nor, roll); /* Combine and output result */ mul_m3_m3m3(mat, rMatrix, bMatrix); #undef THETA_THRESHOLD_NEGY #undef THETA_THRESHOLD_NEGY_CLOSE } void vec_roll_to_mat3(const float vec[3], const float roll, float mat[3][3]) { float nor[3]; normalize_v3_v3(nor, vec); vec_roll_to_mat3_normalized(nor, roll, mat); } /* recursive part, calculates restposition of entire tree of children */ /* used by exiting editmode too */ void BKE_armature_where_is_bone(Bone *bone, const Bone *bone_parent, const bool use_recursion) { float vec[3]; /* Bone Space */ sub_v3_v3v3(vec, bone->tail, bone->head); bone->length = len_v3(vec); vec_roll_to_mat3(vec, bone->roll, bone->bone_mat); /* this is called on old file reading too... */ if (bone->xwidth == 0.0f) { bone->xwidth = 0.1f; bone->zwidth = 0.1f; bone->segments = 1; } if (bone_parent) { float offs_bone[4][4]; /* yoffs(b-1) + root(b) + bonemat(b) */ BKE_bone_offset_matrix_get(bone, offs_bone); /* Compose the matrix for this bone */ mul_m4_m4m4(bone->arm_mat, bone_parent->arm_mat, offs_bone); } else { copy_m4_m3(bone->arm_mat, bone->bone_mat); copy_v3_v3(bone->arm_mat[3], bone->head); } /* and the kiddies */ if (use_recursion) { bone_parent = bone; for (bone = bone->childbase.first; bone; bone = bone->next) { BKE_armature_where_is_bone(bone, bone_parent, use_recursion); } } } /* updates vectors and matrices on rest-position level, only needed * after editing armature itself, now only on reading file */ void BKE_armature_where_is(bArmature *arm) { Bone *bone; /* hierarchical from root to children */ for (bone = arm->bonebase.first; bone; bone = bone->next) { BKE_armature_where_is_bone(bone, NULL, true); } } /* if bone layer is protected, copy the data from from->pose * when used with linked libraries this copies from the linked pose into the local pose */ static void pose_proxy_synchronize(Object *ob, Object *from, int layer_protected) { bPose *pose = ob->pose, *frompose = from->pose; bPoseChannel *pchan, *pchanp; bConstraint *con; int error = 0; if (frompose == NULL) { return; } /* in some cases when rigs change, we cant synchronize * to avoid crashing check for possible errors here */ for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) { if (pchan->bone->layer & layer_protected) { if (BKE_pose_channel_find_name(frompose, pchan->name) == NULL) { CLOG_ERROR(&LOG, "failed to sync proxy armature because '%s' is missing pose channel '%s'", from->id.name, pchan->name); error = 1; } } } if (error) { return; } /* clear all transformation values from library */ BKE_pose_rest(frompose); /* copy over all of the proxy's bone groups */ /* TODO for later * - implement 'local' bone groups as for constraints * Note: this isn't trivial, as bones reference groups by index not by pointer, * so syncing things correctly needs careful attention */ BLI_freelistN(&pose->agroups); BLI_duplicatelist(&pose->agroups, &frompose->agroups); pose->active_group = frompose->active_group; for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) { pchanp = BKE_pose_channel_find_name(frompose, pchan->name); if (UNLIKELY(pchanp == NULL)) { /* happens for proxies that become invalid because of a missing link * for regular cases it shouldn't happen at all */ } else if (pchan->bone->layer & layer_protected) { ListBase proxylocal_constraints = {NULL, NULL}; bPoseChannel pchanw; /* copy posechannel to temp, but restore important pointers */ pchanw = *pchanp; pchanw.bone = pchan->bone; pchanw.prev = pchan->prev; pchanw.next = pchan->next; pchanw.parent = pchan->parent; pchanw.child = pchan->child; pchanw.custom_tx = pchan->custom_tx; pchanw.bbone_prev = pchan->bbone_prev; pchanw.bbone_next = pchan->bbone_next; pchanw.mpath = pchan->mpath; pchan->mpath = NULL; /* Reset runtime data, we don't want to share that with the proxy. */ BKE_pose_channel_runtime_reset(&pchanw.runtime); /* this is freed so copy a copy, else undo crashes */ if (pchanw.prop) { pchanw.prop = IDP_CopyProperty(pchanw.prop); /* use the values from the existing props */ if (pchan->prop) { IDP_SyncGroupValues(pchanw.prop, pchan->prop); } } /* Constraints - proxy constraints are flushed... local ones are added after * 1: extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints. * 2: copy proxy-pchan's constraints on-to new. * 3: add extracted local constraints back on top. * * Note for BKE_constraints_copy: * When copying constraints, disable 'do_extern' otherwise * we get the libs direct linked in this blend. */ BKE_constraints_proxylocal_extract(&proxylocal_constraints, &pchan->constraints); BKE_constraints_copy(&pchanw.constraints, &pchanp->constraints, false); BLI_movelisttolist(&pchanw.constraints, &proxylocal_constraints); /* constraints - set target ob pointer to own object */ for (con = pchanw.constraints.first; con; con = con->next) { const bConstraintTypeInfo *cti = BKE_constraint_typeinfo_get(con); ListBase targets = {NULL, NULL}; bConstraintTarget *ct; if (cti && cti->get_constraint_targets) { cti->get_constraint_targets(con, &targets); for (ct = targets.first; ct; ct = ct->next) { if (ct->tar == from) { ct->tar = ob; } } if (cti->flush_constraint_targets) { cti->flush_constraint_targets(con, &targets, 0); } } } /* free stuff from current channel */ BKE_pose_channel_free(pchan); /* copy data in temp back over to the cleaned-out (but still allocated) original channel */ *pchan = pchanw; if (pchan->custom) { id_us_plus(&pchan->custom->id); } } else { /* always copy custom shape */ pchan->custom = pchanp->custom; if (pchan->custom) { id_us_plus(&pchan->custom->id); } if (pchanp->custom_tx) { pchan->custom_tx = BKE_pose_channel_find_name(pose, pchanp->custom_tx->name); } /* ID-Property Syncing */ { IDProperty *prop_orig = pchan->prop; if (pchanp->prop) { pchan->prop = IDP_CopyProperty(pchanp->prop); if (prop_orig) { /* copy existing values across when types match */ IDP_SyncGroupValues(pchan->prop, prop_orig); } } else { pchan->prop = NULL; } if (prop_orig) { IDP_FreeProperty(prop_orig); } } } } } static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter) { bPoseChannel *pchan = BKE_pose_channel_verify(pose, bone->name); /* verify checks and/or adds */ pchan->bone = bone; pchan->parent = parchan; counter++; for (bone = bone->childbase.first; bone; bone = bone->next) { counter = rebuild_pose_bone(pose, bone, pchan, counter); /* for quick detecting of next bone in chain, only b-bone uses it now */ if (bone->flag & BONE_CONNECTED) { pchan->child = BKE_pose_channel_find_name(pose, bone->name); } } return counter; } /** * Clear pointers of object's pose * (needed in remap case, since we cannot always wait for a complete pose rebuild). */ void BKE_pose_clear_pointers(bPose *pose) { for (bPoseChannel *pchan = pose->chanbase.first; pchan; pchan = pchan->next) { pchan->bone = NULL; pchan->child = NULL; } } void BKE_pose_remap_bone_pointers(bArmature *armature, bPose *pose) { for (bPoseChannel *pchan = pose->chanbase.first; pchan; pchan = pchan->next) { pchan->bone = BKE_armature_find_bone_name(armature, pchan->name); } } /** Find the matching pose channel using the bone name, if not NULL. */ static bPoseChannel *pose_channel_find_bone(bPose *pose, Bone *bone) { return (bone != NULL) ? BKE_pose_channel_find_name(pose, bone->name) : NULL; } /** Update the links for the B-Bone handles from Bone data. */ void BKE_pchan_rebuild_bbone_handles(bPose *pose, bPoseChannel *pchan) { pchan->bbone_prev = pose_channel_find_bone(pose, pchan->bone->bbone_prev); pchan->bbone_next = pose_channel_find_bone(pose, pchan->bone->bbone_next); } /** * Only after leave editmode, duplicating, validating older files, library syncing. * * \note pose->flag is set for it. * * \param bmain: May be NULL, only used to tag depsgraph as being dirty... */ void BKE_pose_rebuild(Main *bmain, Object *ob, bArmature *arm, const bool do_id_user) { Bone *bone; bPose *pose; bPoseChannel *pchan, *next; int counter = 0; /* only done here */ if (ob->pose == NULL) { /* create new pose */ ob->pose = MEM_callocN(sizeof(bPose), "new pose"); /* set default settings for animviz */ animviz_settings_init(&ob->pose->avs); } pose = ob->pose; /* clear */ BKE_pose_clear_pointers(pose); /* first step, check if all channels are there */ for (bone = arm->bonebase.first; bone; bone = bone->next) { counter = rebuild_pose_bone(pose, bone, NULL, counter); } /* and a check for garbage */ for (pchan = pose->chanbase.first; pchan; pchan = next) { next = pchan->next; if (pchan->bone == NULL) { BKE_pose_channel_free_ex(pchan, do_id_user); BKE_pose_channels_hash_free(pose); BLI_freelinkN(&pose->chanbase, pchan); } } BKE_pose_channels_hash_make(pose); for (pchan = pose->chanbase.first; pchan; pchan = pchan->next) { /* Find the custom B-Bone handles. */ BKE_pchan_rebuild_bbone_handles(pose, pchan); } /* printf("rebuild pose %s, %d bones\n", ob->id.name, counter); */ /* synchronize protected layers with proxy */ /* HACK! To preserve 2.7x behavior that you always can pose even locked bones, * do not do any restoration if this is a COW temp copy! */ /* Switched back to just NO_MAIN tag, for some reasons (c) * using COW tag was working this morning, but not anymore... */ if (ob->proxy != NULL && (ob->id.tag & LIB_TAG_NO_MAIN) == 0) { BKE_object_copy_proxy_drivers(ob, ob->proxy); pose_proxy_synchronize(ob, ob->proxy, arm->layer_protected); } BKE_pose_update_constraint_flags(pose); /* for IK detection for example */ pose->flag &= ~POSE_RECALC; pose->flag |= POSE_WAS_REBUILT; /* Rebuilding poses forces us to also rebuild the dependency graph, * since there is one node per pose/bone. */ if (bmain != NULL) { DEG_relations_tag_update(bmain); } } /* ********************** THE POSE SOLVER ******************* */ /* loc/rot/size to given mat4 */ void BKE_pchan_to_mat4(const bPoseChannel *pchan, float chan_mat[4][4]) { float smat[3][3]; float rmat[3][3]; float tmat[3][3]; /* get scaling matrix */ size_to_mat3(smat, pchan->size); /* get rotation matrix */ BKE_pchan_rot_to_mat3(pchan, rmat); /* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */ mul_m3_m3m3(tmat, rmat, smat); copy_m4_m3(chan_mat, tmat); /* prevent action channels breaking chains */ /* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */ if ((pchan->bone == NULL) || !(pchan->bone->flag & BONE_CONNECTED)) { copy_v3_v3(chan_mat[3], pchan->loc); } } /* loc/rot/size to mat4 */ /* used in constraint.c too */ void BKE_pchan_calc_mat(bPoseChannel *pchan) { /* this is just a wrapper around the copy of this function which calculates the matrix * and stores the result in any given channel */ BKE_pchan_to_mat4(pchan, pchan->chan_mat); } /* calculate tail of posechannel */ void BKE_pose_where_is_bone_tail(bPoseChannel *pchan) { float vec[3]; copy_v3_v3(vec, pchan->pose_mat[1]); mul_v3_fl(vec, pchan->bone->length); add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec); } /* The main armature solver, does all constraints excluding IK */ /* pchan is validated, as having bone and parent pointer * 'do_extra': when zero skips loc/size/rot, constraints and strip modifiers. */ void BKE_pose_where_is_bone(struct Depsgraph *depsgraph, Scene *scene, Object *ob, bPoseChannel *pchan, float ctime, bool do_extra) { /* This gives a chan_mat with actions (ipos) results. */ if (do_extra) { BKE_pchan_calc_mat(pchan); } else { unit_m4(pchan->chan_mat); } /* Construct the posemat based on PoseChannels, that we do before applying constraints. */ /* pose_mat(b) = pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */ BKE_armature_mat_bone_to_pose(pchan, pchan->chan_mat, pchan->pose_mat); /* Only rootbones get the cyclic offset (unless user doesn't want that). */ /* XXX That could be a problem for snapping and other "reverse transform" features... */ if (!pchan->parent) { if ((pchan->bone->flag & BONE_NO_CYCLICOFFSET) == 0) { add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset); } } if (do_extra) { /* Do constraints */ if (pchan->constraints.first) { bConstraintOb *cob; float vec[3]; /* make a copy of location of PoseChannel for later */ copy_v3_v3(vec, pchan->pose_mat[3]); /* prepare PoseChannel for Constraint solving * - makes a copy of matrix, and creates temporary struct to use */ cob = BKE_constraints_make_evalob(depsgraph, scene, ob, pchan, CONSTRAINT_OBTYPE_BONE); /* Solve PoseChannel's Constraints */ /* ctime doesn't alter objects. */ BKE_constraints_solve(depsgraph, &pchan->constraints, cob, ctime); /* cleanup after Constraint Solving * - applies matrix back to pchan, and frees temporary struct used */ BKE_constraints_clear_evalob(cob); /* prevent constraints breaking a chain */ if (pchan->bone->flag & BONE_CONNECTED) { copy_v3_v3(pchan->pose_mat[3], vec); } } } /* calculate head */ copy_v3_v3(pchan->pose_head, pchan->pose_mat[3]); /* calculate tail */ BKE_pose_where_is_bone_tail(pchan); } /* This only reads anim data from channels, and writes to channels */ /* This is the only function adding poses */ void BKE_pose_where_is(struct Depsgraph *depsgraph, Scene *scene, Object *ob) { bArmature *arm; Bone *bone; bPoseChannel *pchan; float imat[4][4]; float ctime; if (ob->type != OB_ARMATURE) { return; } arm = ob->data; if (ELEM(NULL, arm, scene)) { return; } if ((ob->pose == NULL) || (ob->pose->flag & POSE_RECALC)) { /* WARNING! passing NULL bmain here means we won't tag depsgraph's as dirty - * hopefully this is OK. */ BKE_pose_rebuild(NULL, ob, arm, true); } ctime = BKE_scene_frame_get(scene); /* not accurate... */ /* In editmode or restposition we read the data from the bones */ if (arm->edbo || (arm->flag & ARM_RESTPOS)) { for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) { bone = pchan->bone; if (bone) { copy_m4_m4(pchan->pose_mat, bone->arm_mat); copy_v3_v3(pchan->pose_head, bone->arm_head); copy_v3_v3(pchan->pose_tail, bone->arm_tail); } } } else { invert_m4_m4(ob->imat, ob->obmat); /* imat is needed */ /* 1. clear flags */ for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) { pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE); } /* 2a. construct the IK tree (standard IK) */ BIK_initialize_tree(depsgraph, scene, ob, ctime); /* 2b. construct the Spline IK trees * - this is not integrated as an IK plugin, since it should be able * to function in conjunction with standard IK */ BKE_pose_splineik_init_tree(scene, ob, ctime); /* 3. the main loop, channels are already hierarchical sorted from root to children */ for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) { /* 4a. if we find an IK root, we handle it separated */ if (pchan->flag & POSE_IKTREE) { BIK_execute_tree(depsgraph, scene, ob, pchan, ctime); } /* 4b. if we find a Spline IK root, we handle it separated too */ else if (pchan->flag & POSE_IKSPLINE) { BKE_splineik_execute_tree(depsgraph, scene, ob, pchan, ctime); } /* 5. otherwise just call the normal solver */ else if (!(pchan->flag & POSE_DONE)) { BKE_pose_where_is_bone(depsgraph, scene, ob, pchan, ctime, 1); } } /* 6. release the IK tree */ BIK_release_tree(scene, ob, ctime); } /* calculating deform matrices */ for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) { if (pchan->bone) { invert_m4_m4(imat, pchan->bone->arm_mat); mul_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat); } } } /************** Bounding box ********************/ static int minmax_armature(Object *ob, float r_min[3], float r_max[3]) { bPoseChannel *pchan; /* For now, we assume BKE_pose_where_is has already been called * (hence we have valid data in pachan). */ for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) { minmax_v3v3_v3(r_min, r_max, pchan->pose_head); minmax_v3v3_v3(r_min, r_max, pchan->pose_tail); } return (BLI_listbase_is_empty(&ob->pose->chanbase) == false); } static void boundbox_armature(Object *ob) { BoundBox *bb; float min[3], max[3]; if (ob->runtime.bb == NULL) { ob->runtime.bb = MEM_callocN(sizeof(BoundBox), "Armature boundbox"); } bb = ob->runtime.bb; INIT_MINMAX(min, max); if (!minmax_armature(ob, min, max)) { min[0] = min[1] = min[2] = -1.0f; max[0] = max[1] = max[2] = 1.0f; } BKE_boundbox_init_from_minmax(bb, min, max); bb->flag &= ~BOUNDBOX_DIRTY; } BoundBox *BKE_armature_boundbox_get(Object *ob) { boundbox_armature(ob); return ob->runtime.bb; } bool BKE_pose_minmax(Object *ob, float r_min[3], float r_max[3], bool use_hidden, bool use_select) { bool changed = false; if (ob->pose) { bArmature *arm = ob->data; bPoseChannel *pchan; for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) { /* XXX pchan->bone may be NULL for duplicated bones, see duplicateEditBoneObjects() comment * (editarmature.c:2592)... Skip in this case too! */ if (pchan->bone && (!((use_hidden == false) && (PBONE_VISIBLE(arm, pchan->bone) == false)) && !((use_select == true) && ((pchan->bone->flag & BONE_SELECTED) == 0)))) { bPoseChannel *pchan_tx = (pchan->custom && pchan->custom_tx) ? pchan->custom_tx : pchan; BoundBox *bb_custom = ((pchan->custom) && !(arm->flag & ARM_NO_CUSTOM)) ? BKE_object_boundbox_get(pchan->custom) : NULL; if (bb_custom) { float mat[4][4], smat[4][4]; scale_m4_fl(smat, PCHAN_CUSTOM_DRAW_SIZE(pchan)); mul_m4_series(mat, ob->obmat, pchan_tx->pose_mat, smat); BKE_boundbox_minmax(bb_custom, mat, r_min, r_max); } else { float vec[3]; mul_v3_m4v3(vec, ob->obmat, pchan_tx->pose_head); minmax_v3v3_v3(r_min, r_max, vec); mul_v3_m4v3(vec, ob->obmat, pchan_tx->pose_tail); minmax_v3v3_v3(r_min, r_max, vec); } changed = true; } } } return changed; } /************** Graph evaluation ********************/ bPoseChannel *BKE_armature_ik_solver_find_root(bPoseChannel *pchan, bKinematicConstraint *data) { bPoseChannel *rootchan = pchan; if (!(data->flag & CONSTRAINT_IK_TIP)) { /* Exclude tip from chain. */ rootchan = rootchan->parent; } if (rootchan != NULL) { int segcount = 0; while (rootchan->parent) { /* Continue up chain, until we reach target number of items. */ segcount++; if (segcount == data->rootbone) { break; } rootchan = rootchan->parent; } } return rootchan; } bPoseChannel *BKE_armature_splineik_solver_find_root(bPoseChannel *pchan, bSplineIKConstraint *data) { bPoseChannel *rootchan = pchan; int segcount = 0; BLI_assert(rootchan != NULL); while (rootchan->parent) { /* Continue up chain, until we reach target number of items. */ segcount++; if (segcount == data->chainlen) { break; } rootchan = rootchan->parent; } return rootchan; }