/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) Blender Foundation. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): Andr Pinto. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenkernel/intern/bvhutils.c * \ingroup bke */ #include #include #include #include #include "DNA_meshdata_types.h" #include "BLI_utildefines.h" #include "BLI_linklist.h" #include "BLI_math.h" #include "BLI_threads.h" #include "BKE_DerivedMesh.h" #include "BKE_editmesh.h" #include "MEM_guardedalloc.h" static ThreadRWMutex cache_rwlock = BLI_RWLOCK_INITIALIZER; /* -------------------------------------------------------------------- */ /** \name Local Callbacks * \{ */ /* Math stuff for ray casting on mesh faces and for nearest surface */ float bvhtree_ray_tri_intersection( const BVHTreeRay *ray, const float UNUSED(m_dist), const float v0[3], const float v1[3], const float v2[3]) { float dist; #ifdef USE_KDOPBVH_WATERTIGHT if (isect_ray_tri_watertight_v3(ray->origin, ray->isect_precalc, v0, v1, v2, &dist, NULL)) #else if (isect_ray_tri_epsilon_v3(ray->origin, ray->direction, v0, v1, v2, &dist, NULL, FLT_EPSILON)) #endif { return dist; } return FLT_MAX; } float bvhtree_sphereray_tri_intersection( const BVHTreeRay *ray, float radius, const float m_dist, const float v0[3], const float v1[3], const float v2[3]) { float idist; float p1[3]; float hit_point[3]; madd_v3_v3v3fl(p1, ray->origin, ray->direction, m_dist); if (isect_sweeping_sphere_tri_v3(ray->origin, p1, radius, v0, v1, v2, &idist, hit_point)) { return idist * m_dist; } return FLT_MAX; } /* * BVH from meshes callbacks */ /* Callback to bvh tree nearest point. The tree must have been built using bvhtree_from_mesh_faces. * userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree. */ static void mesh_faces_nearest_point(void *userdata, int index, const float co[3], BVHTreeNearest *nearest) { const BVHTreeFromMesh *data = (BVHTreeFromMesh *) userdata; const MVert *vert = data->vert; const MFace *face = data->face + index; const float *t0, *t1, *t2, *t3; t0 = vert[face->v1].co; t1 = vert[face->v2].co; t2 = vert[face->v3].co; t3 = face->v4 ? vert[face->v4].co : NULL; do { float nearest_tmp[3], dist_sq; closest_on_tri_to_point_v3(nearest_tmp, co, t0, t1, t2); dist_sq = len_squared_v3v3(co, nearest_tmp); if (dist_sq < nearest->dist_sq) { nearest->index = index; nearest->dist_sq = dist_sq; copy_v3_v3(nearest->co, nearest_tmp); normal_tri_v3(nearest->no, t0, t1, t2); } t1 = t2; t2 = t3; t3 = NULL; } while (t2); } /* copy of function above */ static void mesh_looptri_nearest_point(void *userdata, int index, const float co[3], BVHTreeNearest *nearest) { const BVHTreeFromMesh *data = (BVHTreeFromMesh *) userdata; const MVert *vert = data->vert; const MLoopTri *lt = &data->looptri[index]; const float *vtri_co[3] = { vert[data->loop[lt->tri[0]].v].co, vert[data->loop[lt->tri[1]].v].co, vert[data->loop[lt->tri[2]].v].co, }; float nearest_tmp[3], dist_sq; closest_on_tri_to_point_v3(nearest_tmp, co, UNPACK3(vtri_co)); dist_sq = len_squared_v3v3(co, nearest_tmp); if (dist_sq < nearest->dist_sq) { nearest->index = index; nearest->dist_sq = dist_sq; copy_v3_v3(nearest->co, nearest_tmp); normal_tri_v3(nearest->no, UNPACK3(vtri_co)); } } /* copy of function above (warning, should de-duplicate with editmesh_bvh.c) */ static void editmesh_faces_nearest_point(void *userdata, int index, const float co[3], BVHTreeNearest *nearest) { const BVHTreeFromMesh *data = (BVHTreeFromMesh *) userdata; BMEditMesh *em = data->em_evil; const BMLoop **ltri = (const BMLoop **)em->looptris[index]; const float *t0, *t1, *t2; t0 = ltri[0]->v->co; t1 = ltri[1]->v->co; t2 = ltri[2]->v->co; { float nearest_tmp[3], dist_sq; closest_on_tri_to_point_v3(nearest_tmp, co, t0, t1, t2); dist_sq = len_squared_v3v3(co, nearest_tmp); if (dist_sq < nearest->dist_sq) { nearest->index = index; nearest->dist_sq = dist_sq; copy_v3_v3(nearest->co, nearest_tmp); normal_tri_v3(nearest->no, t0, t1, t2); } } } /* Callback to bvh tree raycast. The tree must have been built using bvhtree_from_mesh_faces. * userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree. */ static void mesh_faces_spherecast(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit) { const BVHTreeFromMesh *data = (BVHTreeFromMesh *) userdata; const MVert *vert = data->vert; const MFace *face = &data->face[index]; const float *t0, *t1, *t2, *t3; t0 = vert[face->v1].co; t1 = vert[face->v2].co; t2 = vert[face->v3].co; t3 = face->v4 ? vert[face->v4].co : NULL; do { float dist; if (data->sphere_radius == 0.0f) dist = bvhtree_ray_tri_intersection(ray, hit->dist, t0, t1, t2); else dist = bvhtree_sphereray_tri_intersection(ray, data->sphere_radius, hit->dist, t0, t1, t2); if (dist >= 0 && dist < hit->dist) { hit->index = index; hit->dist = dist; madd_v3_v3v3fl(hit->co, ray->origin, ray->direction, dist); normal_tri_v3(hit->no, t0, t1, t2); } t1 = t2; t2 = t3; t3 = NULL; } while (t2); } /* copy of function above */ static void mesh_looptri_spherecast(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit) { const BVHTreeFromMesh *data = (BVHTreeFromMesh *) userdata; const MVert *vert = data->vert; const MLoopTri *lt = &data->looptri[index]; const float *vtri_co[3] = { vert[data->loop[lt->tri[0]].v].co, vert[data->loop[lt->tri[1]].v].co, vert[data->loop[lt->tri[2]].v].co, }; float dist; if (data->sphere_radius == 0.0f) dist = bvhtree_ray_tri_intersection(ray, hit->dist, UNPACK3(vtri_co)); else dist = bvhtree_sphereray_tri_intersection(ray, data->sphere_radius, hit->dist, UNPACK3(vtri_co)); if (dist >= 0 && dist < hit->dist) { hit->index = index; hit->dist = dist; madd_v3_v3v3fl(hit->co, ray->origin, ray->direction, dist); normal_tri_v3(hit->no, UNPACK3(vtri_co)); } } /* copy of function above (warning, should de-duplicate with editmesh_bvh.c) */ static void editmesh_faces_spherecast(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit) { const BVHTreeFromMesh *data = (BVHTreeFromMesh *) userdata; BMEditMesh *em = data->em_evil; const BMLoop **ltri = (const BMLoop **)em->looptris[index]; const float *t0, *t1, *t2; t0 = ltri[0]->v->co; t1 = ltri[1]->v->co; t2 = ltri[2]->v->co; { float dist; if (data->sphere_radius == 0.0f) dist = bvhtree_ray_tri_intersection(ray, hit->dist, t0, t1, t2); else dist = bvhtree_sphereray_tri_intersection(ray, data->sphere_radius, hit->dist, t0, t1, t2); if (dist >= 0 && dist < hit->dist) { hit->index = index; hit->dist = dist; madd_v3_v3v3fl(hit->co, ray->origin, ray->direction, dist); normal_tri_v3(hit->no, t0, t1, t2); } } } /* Callback to bvh tree nearest point. The tree must have been built using bvhtree_from_mesh_edges. * userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree. */ static void mesh_edges_nearest_point(void *userdata, int index, const float co[3], BVHTreeNearest *nearest) { const BVHTreeFromMesh *data = (BVHTreeFromMesh *) userdata; const MVert *vert = data->vert; const MEdge *edge = data->edge + index; float nearest_tmp[3], dist_sq; const float *t0, *t1; t0 = vert[edge->v1].co; t1 = vert[edge->v2].co; closest_to_line_segment_v3(nearest_tmp, co, t0, t1); dist_sq = len_squared_v3v3(nearest_tmp, co); if (dist_sq < nearest->dist_sq) { nearest->index = index; nearest->dist_sq = dist_sq; copy_v3_v3(nearest->co, nearest_tmp); sub_v3_v3v3(nearest->no, t0, t1); normalize_v3(nearest->no); } } /* Helper, does all the point-spherecast work actually. */ static void mesh_verts_spherecast_do( const BVHTreeFromMesh *UNUSED(data), int index, const float v[3], const BVHTreeRay *ray, BVHTreeRayHit *hit) { float dist; const float *r1; float r2[3], i1[3]; r1 = ray->origin; add_v3_v3v3(r2, r1, ray->direction); closest_to_line_segment_v3(i1, v, r1, r2); /* No hit if closest point is 'behind' the origin of the ray, or too far away from it. */ if ((dot_v3v3v3(r1, i1, r2) >= 0.0f) && ((dist = len_v3v3(r1, i1)) < hit->dist)) { hit->index = index; hit->dist = dist; copy_v3_v3(hit->co, i1); } } /* Callback to bvh tree raycast. The tree must have been built using bvhtree_from_mesh_verts. * userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree. */ static void mesh_verts_spherecast(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit) { const BVHTreeFromMesh *data = (BVHTreeFromMesh *)userdata; const float *v = data->vert[index].co; mesh_verts_spherecast_do(data, index, v, ray, hit); } /* Callback to bvh tree raycast. The tree must have been built using bvhtree_from_mesh_edges. * userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree. */ static void mesh_edges_spherecast(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit) { const BVHTreeFromMesh *data = (BVHTreeFromMesh *)userdata; const MVert *vert = data->vert; const MEdge *edge = &data->edge[index]; const float radius_sq = SQUARE(data->sphere_radius); float dist; const float *v1, *v2, *r1; float r2[3], i1[3], i2[3]; v1 = vert[edge->v1].co; v2 = vert[edge->v2].co; /* In case we get a zero-length edge, handle it as a point! */ if (equals_v3v3(v1, v2)) { mesh_verts_spherecast_do(data, index, v1, ray, hit); return; } r1 = ray->origin; add_v3_v3v3(r2, r1, ray->direction); if (isect_line_line_v3(v1, v2, r1, r2, i1, i2)) { /* No hit if intersection point is 'behind' the origin of the ray, or too far away from it. */ if ((dot_v3v3v3(r1, i2, r2) >= 0.0f) && ((dist = len_v3v3(r1, i2)) < hit->dist)) { const float e_fac = line_point_factor_v3(i1, v1, v2); if (e_fac < 0.0f) { copy_v3_v3(i1, v1); } else if (e_fac > 1.0f) { copy_v3_v3(i1, v2); } /* Ensure ray is really close enough from edge! */ if (len_squared_v3v3(i1, i2) <= radius_sq) { hit->index = index; hit->dist = dist; copy_v3_v3(hit->co, i2); } } } } /** \} */ /* * BVH builders */ /* -------------------------------------------------------------------- */ /** \name Vertex Builder * \{ */ static BVHTree *bvhtree_from_mesh_verts_create_tree( float epsilon, int tree_type, int axis, MVert *vert, const int numVerts, BLI_bitmap *mask, int numVerts_active) { BVHTree *tree = NULL; int i; if (vert) { if (mask && numVerts_active < 0) { numVerts_active = 0; for (i = 0; i < numVerts; i++) { if (BLI_BITMAP_TEST_BOOL(mask, i)) { numVerts_active++; } } } else if (!mask) { numVerts_active = numVerts; } tree = BLI_bvhtree_new(numVerts_active, epsilon, tree_type, axis); if (tree) { for (i = 0; i < numVerts; i++) { if (mask && !BLI_BITMAP_TEST_BOOL(mask, i)) { continue; } BLI_bvhtree_insert(tree, i, vert[i].co, 1); } BLI_bvhtree_balance(tree); } } return tree; } static void bvhtree_from_mesh_verts_setup_data( BVHTreeFromMesh *data, BVHTree *tree, const bool is_cached, float epsilon, MVert *vert, const bool vert_allocated) { memset(data, 0, sizeof(*data)); if (tree) { data->tree = tree; data->cached = is_cached; /* a NULL nearest callback works fine * remember the min distance to point is the same as the min distance to BV of point */ data->nearest_callback = NULL; data->raycast_callback = mesh_verts_spherecast; data->vert = vert; data->vert_allocated = vert_allocated; //data->face = DM_get_tessface_array(dm, &data->face_allocated); /* XXX WHY???? */ data->sphere_radius = epsilon; } else { if (vert_allocated) { MEM_freeN(vert); } } } /* Builds a bvh tree where nodes are the vertices of the given dm */ BVHTree *bvhtree_from_mesh_verts(BVHTreeFromMesh *data, DerivedMesh *dm, float epsilon, int tree_type, int axis) { BVHTree *tree; MVert *vert; bool vert_allocated; BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_READ); tree = bvhcache_find(&dm->bvhCache, BVHTREE_FROM_VERTS); BLI_rw_mutex_unlock(&cache_rwlock); vert = DM_get_vert_array(dm, &vert_allocated); /* Not in cache */ if (tree == NULL) { BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_WRITE); tree = bvhcache_find(&dm->bvhCache, BVHTREE_FROM_VERTS); if (tree == NULL) { tree = bvhtree_from_mesh_verts_create_tree(epsilon, tree_type, axis, vert, dm->getNumVerts(dm), NULL, -1); if (tree) { /* Save on cache for later use */ /* printf("BVHTree built and saved on cache\n"); */ bvhcache_insert(&dm->bvhCache, tree, BVHTREE_FROM_VERTS); } } BLI_rw_mutex_unlock(&cache_rwlock); } else { /* printf("BVHTree is already build, using cached tree\n"); */ } /* Setup BVHTreeFromMesh */ bvhtree_from_mesh_verts_setup_data(data, tree, true, epsilon, vert, vert_allocated); return data->tree; } /** * Builds a bvh tree where nodes are the given vertices (note: does not copy given mverts!). * \param vert_allocated if true, vert freeing will be done when freeing data. * \param mask if not null, true elements give which vert to add to BVH tree. * \param numVerts_active if >= 0, number of active verts to add to BVH tree (else will be computed from mask). */ BVHTree *bvhtree_from_mesh_verts_ex( BVHTreeFromMesh *data, MVert *vert, const int numVerts, const bool vert_allocated, BLI_bitmap *mask, int numVerts_active, float epsilon, int tree_type, int axis) { BVHTree *tree = bvhtree_from_mesh_verts_create_tree(epsilon, tree_type, axis, vert, numVerts, mask, numVerts_active); /* Setup BVHTreeFromMesh */ bvhtree_from_mesh_verts_setup_data(data, tree, false, epsilon, vert, vert_allocated); return data->tree; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Edge Builder * \{ */ /* Builds a bvh tree where nodes are the edges of the given dm */ BVHTree *bvhtree_from_mesh_edges(BVHTreeFromMesh *data, DerivedMesh *dm, float epsilon, int tree_type, int axis) { BVHTree *tree; MVert *vert; MEdge *edge; bool vert_allocated, edge_allocated; BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_READ); tree = bvhcache_find(&dm->bvhCache, BVHTREE_FROM_EDGES); BLI_rw_mutex_unlock(&cache_rwlock); vert = DM_get_vert_array(dm, &vert_allocated); edge = DM_get_edge_array(dm, &edge_allocated); /* Not in cache */ if (tree == NULL) { BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_WRITE); tree = bvhcache_find(&dm->bvhCache, BVHTREE_FROM_EDGES); if (tree == NULL) { int i; int numEdges = dm->getNumEdges(dm); if (vert != NULL && edge != NULL) { /* Create a bvh-tree of the given target */ tree = BLI_bvhtree_new(numEdges, epsilon, tree_type, axis); if (tree != NULL) { for (i = 0; i < numEdges; i++) { float co[2][3]; copy_v3_v3(co[0], vert[edge[i].v1].co); copy_v3_v3(co[1], vert[edge[i].v2].co); BLI_bvhtree_insert(tree, i, co[0], 2); } BLI_bvhtree_balance(tree); /* Save on cache for later use */ /* printf("BVHTree built and saved on cache\n"); */ bvhcache_insert(&dm->bvhCache, tree, BVHTREE_FROM_EDGES); } } } BLI_rw_mutex_unlock(&cache_rwlock); } else { /* printf("BVHTree is already build, using cached tree\n"); */ } /* Setup BVHTreeFromMesh */ memset(data, 0, sizeof(*data)); data->tree = tree; if (data->tree) { data->cached = true; data->nearest_callback = mesh_edges_nearest_point; data->raycast_callback = mesh_edges_spherecast; data->vert = vert; data->vert_allocated = vert_allocated; data->edge = edge; data->edge_allocated = edge_allocated; data->sphere_radius = epsilon; } else { if (vert_allocated) { MEM_freeN(vert); } if (edge_allocated) { MEM_freeN(edge); } } return data->tree; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Tessellated Face Builder * \{ */ static BVHTree *bvhtree_from_mesh_faces_create_tree( float epsilon, int tree_type, int axis, BMEditMesh *em, MVert *vert, MFace *face, const int numFaces, BLI_bitmap *mask, int numFaces_active) { BVHTree *tree = NULL; int i; if (numFaces) { if (mask && numFaces_active < 0) { numFaces_active = 0; for (i = 0; i < numFaces; i++) { if (BLI_BITMAP_TEST_BOOL(mask, i)) { numFaces_active++; } } } else if (!mask) { numFaces_active = numFaces; } /* Create a bvh-tree of the given target */ /* printf("%s: building BVH, total=%d\n", __func__, numFaces); */ tree = BLI_bvhtree_new(numFaces_active, epsilon, tree_type, axis); if (tree) { if (em) { const struct BMLoop *(*looptris)[3] = (void *)em->looptris; /* avoid double-up on face searches for quads-ngons */ bool insert_prev = false; BMFace *f_prev = NULL; /* data->em_evil is only set for snapping, and only for the mesh of the object * which is currently open in edit mode. When set, the bvhtree should not contain * faces that will interfere with snapping (e.g. faces that are hidden/selected * or faces that have selected verts). */ /* Insert BMesh-tessellation triangles into the bvh tree, unless they are hidden * and/or selected. Even if the faces themselves are not selected for the snapped * transform, having a vertex selected means the face (and thus it's tessellated * triangles) will be moving and will not be a good snap targets. */ for (i = 0; i < numFaces; i++) { const BMLoop **ltri = looptris[i]; BMFace *f = ltri[0]->f; bool insert = mask ? BLI_BITMAP_TEST_BOOL(mask, i) : true; /* Start with the assumption the triangle should be included for snapping. */ if (f == f_prev) { insert = insert_prev; } else if (insert) { if (BM_elem_flag_test(f, BM_ELEM_SELECT) || BM_elem_flag_test(f, BM_ELEM_HIDDEN)) { /* Don't insert triangles tessellated from faces that are hidden or selected */ insert = false; } else { BMLoop *l_iter, *l_first; l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { if (BM_elem_flag_test(l_iter->v, BM_ELEM_SELECT)) { /* Don't insert triangles tessellated from faces that have any selected verts */ insert = false; break; } } while ((l_iter = l_iter->next) != l_first); } /* skip if face doesn't change */ f_prev = f; insert_prev = insert; } if (insert) { /* No reason found to block hit-testing the triangle for snap, so insert it now.*/ float co[3][3]; copy_v3_v3(co[0], ltri[0]->v->co); copy_v3_v3(co[1], ltri[1]->v->co); copy_v3_v3(co[2], ltri[2]->v->co); BLI_bvhtree_insert(tree, i, co[0], 3); } } } else { if (vert && face) { for (i = 0; i < numFaces; i++) { float co[4][3]; if (mask && !BLI_BITMAP_TEST_BOOL(mask, i)) { continue; } copy_v3_v3(co[0], vert[face[i].v1].co); copy_v3_v3(co[1], vert[face[i].v2].co); copy_v3_v3(co[2], vert[face[i].v3].co); if (face[i].v4) copy_v3_v3(co[3], vert[face[i].v4].co); BLI_bvhtree_insert(tree, i, co[0], face[i].v4 ? 4 : 3); } } } BLI_bvhtree_balance(tree); } } return tree; } static void bvhtree_from_mesh_faces_setup_data( BVHTreeFromMesh *data, BVHTree *tree, const bool is_cached, float epsilon, BMEditMesh *em, MVert *vert, const bool vert_allocated, MFace *face, const bool face_allocated) { memset(data, 0, sizeof(*data)); data->em_evil = em; if (tree) { data->tree = tree; data->cached = is_cached; if (em) { data->nearest_callback = editmesh_faces_nearest_point; data->raycast_callback = editmesh_faces_spherecast; } else { data->nearest_callback = mesh_faces_nearest_point; data->raycast_callback = mesh_faces_spherecast; data->vert = vert; data->vert_allocated = vert_allocated; data->face = face; data->face_allocated = face_allocated; } data->sphere_radius = epsilon; } else { if (vert_allocated) { MEM_freeN(vert); } if (face_allocated) { MEM_freeN(face); } } } /* Builds a bvh tree where nodes are the tesselated faces of the given dm */ BVHTree *bvhtree_from_mesh_faces(BVHTreeFromMesh *data, DerivedMesh *dm, float epsilon, int tree_type, int axis) { BMEditMesh *em = data->em_evil; const int bvhcache_type = em ? BVHTREE_FROM_FACES_EDITMESH : BVHTREE_FROM_FACES; BVHTree *tree; MVert *vert = NULL; MFace *face = NULL; bool vert_allocated = false, face_allocated = false; BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_READ); tree = bvhcache_find(&dm->bvhCache, bvhcache_type); BLI_rw_mutex_unlock(&cache_rwlock); if (em == NULL) { vert = DM_get_vert_array(dm, &vert_allocated); face = DM_get_tessface_array(dm, &face_allocated); } /* Not in cache */ if (tree == NULL) { BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_WRITE); tree = bvhcache_find(&dm->bvhCache, bvhcache_type); if (tree == NULL) { int numFaces; /* BMESH specific check that we have tessfaces, * we _could_ tessellate here but rather not - campbell * * this assert checks we have tessfaces, * if not caller should use DM_ensure_tessface() */ if (em) { numFaces = em->tottri; } else { numFaces = dm->getNumTessFaces(dm); BLI_assert(!(numFaces == 0 && dm->getNumPolys(dm) != 0)); } tree = bvhtree_from_mesh_faces_create_tree(epsilon, tree_type, axis, em, vert, face, numFaces, NULL, -1); if (tree) { /* Save on cache for later use */ /* printf("BVHTree built and saved on cache\n"); */ bvhcache_insert(&dm->bvhCache, tree, bvhcache_type); } } BLI_rw_mutex_unlock(&cache_rwlock); } else { /* printf("BVHTree is already build, using cached tree\n"); */ } /* Setup BVHTreeFromMesh */ bvhtree_from_mesh_faces_setup_data(data, tree, true, epsilon, em, vert, vert_allocated, face, face_allocated); return data->tree; } /** * Builds a bvh tree where nodes are the given tessellated faces (note: does not copy given mfaces!). * \param vert_allocated if true, vert freeing will be done when freeing data. * \param face_allocated if true, face freeing will be done when freeing data. * \param mask if not null, true elements give which faces to add to BVH tree. * \param numFaces_active if >= 0, number of active faces to add to BVH tree (else will be computed from mask). */ BVHTree *bvhtree_from_mesh_faces_ex( BVHTreeFromMesh *data, MVert *vert, const bool vert_allocated, MFace *face, const int numFaces, const bool face_allocated, BLI_bitmap *mask, int numFaces_active, float epsilon, int tree_type, int axis) { BVHTree *tree = bvhtree_from_mesh_faces_create_tree( epsilon, tree_type, axis, NULL, vert, face, numFaces, mask, numFaces_active); /* Setup BVHTreeFromMesh */ bvhtree_from_mesh_faces_setup_data(data, tree, false, epsilon, NULL, vert, vert_allocated, face, face_allocated); return data->tree; } /** \} */ /* -------------------------------------------------------------------- */ /** \name LoopTri Face Builder * \{ */ static BVHTree *bvhtree_from_mesh_looptri_create_tree( float epsilon, int tree_type, int axis, BMEditMesh *em, const MVert *vert, const MLoop *mloop, const MLoopTri *looptri, const int looptri_num, BLI_bitmap *mask, int looptri_num_active) { BVHTree *tree = NULL; int i; if (looptri_num) { if (mask && looptri_num_active < 0) { looptri_num_active = 0; for (i = 0; i < looptri_num; i++) { if (BLI_BITMAP_TEST_BOOL(mask, i)) { looptri_num_active++; } } } else if (!mask) { looptri_num_active = looptri_num; } /* Create a bvh-tree of the given target */ /* printf("%s: building BVH, total=%d\n", __func__, numFaces); */ tree = BLI_bvhtree_new(looptri_num_active, epsilon, tree_type, axis); if (tree) { if (em) { const struct BMLoop *(*looptris)[3] = (void *)em->looptris; /* avoid double-up on face searches for quads-ngons */ bool insert_prev = false; BMFace *f_prev = NULL; /* data->em_evil is only set for snapping, and only for the mesh of the object * which is currently open in edit mode. When set, the bvhtree should not contain * faces that will interfere with snapping (e.g. faces that are hidden/selected * or faces that have selected verts). */ /* Insert BMesh-tessellation triangles into the bvh tree, unless they are hidden * and/or selected. Even if the faces themselves are not selected for the snapped * transform, having a vertex selected means the face (and thus it's tessellated * triangles) will be moving and will not be a good snap targets. */ for (i = 0; i < looptri_num; i++) { const BMLoop **ltri = looptris[i]; BMFace *f = ltri[0]->f; bool insert = mask ? BLI_BITMAP_TEST_BOOL(mask, i) : true; /* Start with the assumption the triangle should be included for snapping. */ if (f == f_prev) { insert = insert_prev; } else if (insert) { if (BM_elem_flag_test(f, BM_ELEM_SELECT) || BM_elem_flag_test(f, BM_ELEM_HIDDEN)) { /* Don't insert triangles tessellated from faces that are hidden or selected */ insert = false; } else { BMLoop *l_iter, *l_first; l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { if (BM_elem_flag_test(l_iter->v, BM_ELEM_SELECT)) { /* Don't insert triangles tessellated from faces that have any selected verts */ insert = false; break; } } while ((l_iter = l_iter->next) != l_first); } /* skip if face doesn't change */ f_prev = f; insert_prev = insert; } if (insert) { /* No reason found to block hit-testing the triangle for snap, so insert it now.*/ float co[3][3]; copy_v3_v3(co[0], ltri[0]->v->co); copy_v3_v3(co[1], ltri[1]->v->co); copy_v3_v3(co[2], ltri[2]->v->co); BLI_bvhtree_insert(tree, i, co[0], 3); } } } else { if (vert && looptri) { for (i = 0; i < looptri_num; i++) { float co[3][3]; if (mask && !BLI_BITMAP_TEST_BOOL(mask, i)) { continue; } copy_v3_v3(co[0], vert[mloop[looptri[i].tri[0]].v].co); copy_v3_v3(co[1], vert[mloop[looptri[i].tri[1]].v].co); copy_v3_v3(co[2], vert[mloop[looptri[i].tri[2]].v].co); BLI_bvhtree_insert(tree, i, co[0], 3); } } } BLI_bvhtree_balance(tree); } } return tree; } static void bvhtree_from_mesh_looptri_setup_data( BVHTreeFromMesh *data, BVHTree *tree, const bool is_cached, float epsilon, BMEditMesh *em, const MVert *vert, const bool vert_allocated, const MLoop *mloop, const bool loop_allocated, const MLoopTri *looptri, const bool looptri_allocated) { memset(data, 0, sizeof(*data)); data->em_evil = em; if (tree) { data->tree = tree; data->cached = is_cached; if (em) { data->nearest_callback = editmesh_faces_nearest_point; data->raycast_callback = editmesh_faces_spherecast; } else { data->nearest_callback = mesh_looptri_nearest_point; data->raycast_callback = mesh_looptri_spherecast; data->vert = vert; data->vert_allocated = vert_allocated; data->loop = mloop; data->loop_allocated = loop_allocated; data->looptri = looptri; data->looptri_allocated = looptri_allocated; } data->sphere_radius = epsilon; } else { if (vert_allocated) { MEM_freeN((void *)vert); } if (looptri_allocated) { MEM_freeN((void *)looptri); } } } /** * Builds a bvh tree where nodes are the looptri faces of the given dm * * \note for editmesh this is currently a duplicate of bvhtree_from_mesh_faces */ BVHTree *bvhtree_from_mesh_looptri(BVHTreeFromMesh *data, DerivedMesh *dm, float epsilon, int tree_type, int axis) { BMEditMesh *em = data->em_evil; const int bvhcache_type = em ? BVHTREE_FROM_FACES_EDITMESH : BVHTREE_FROM_LOOPTRI; BVHTree *tree; MVert *mvert = NULL; MLoop *mloop = NULL; const MLoopTri *looptri = NULL; bool vert_allocated = false; bool loop_allocated = false; bool looptri_allocated = false; BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_READ); tree = bvhcache_find(&dm->bvhCache, bvhcache_type); BLI_rw_mutex_unlock(&cache_rwlock); if (em == NULL) { MPoly *mpoly; bool poly_allocated = false; mvert = DM_get_vert_array(dm, &vert_allocated); mpoly = DM_get_poly_array(dm, &poly_allocated); mloop = DM_get_loop_array(dm, &loop_allocated); looptri = DM_get_looptri_array( dm, mvert, mpoly, dm->getNumPolys(dm), mloop, dm->getNumLoops(dm), &looptri_allocated); if (poly_allocated) { MEM_freeN(mpoly); } } /* Not in cache */ if (tree == NULL) { BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_WRITE); tree = bvhcache_find(&dm->bvhCache, bvhcache_type); if (tree == NULL) { int looptri_num; /* BMESH specific check that we have tessfaces, * we _could_ tessellate here but rather not - campbell * * this assert checks we have tessfaces, * if not caller should use DM_ensure_tessface() */ if (em) { looptri_num = em->tottri; } else { looptri_num = dm->getNumLoopTri(dm); BLI_assert(!(looptri_num == 0 && dm->getNumPolys(dm) != 0)); } tree = bvhtree_from_mesh_looptri_create_tree( epsilon, tree_type, axis, em, mvert, mloop, looptri, looptri_num, NULL, -1); if (tree) { /* Save on cache for later use */ /* printf("BVHTree built and saved on cache\n"); */ bvhcache_insert(&dm->bvhCache, tree, bvhcache_type); } } BLI_rw_mutex_unlock(&cache_rwlock); } else { /* printf("BVHTree is already build, using cached tree\n"); */ } /* Setup BVHTreeFromMesh */ bvhtree_from_mesh_looptri_setup_data( data, tree, true, epsilon, em, mvert, vert_allocated, mloop, loop_allocated, looptri, looptri_allocated); return data->tree; } BVHTree *bvhtree_from_mesh_looptri_ex( BVHTreeFromMesh *data, const struct MVert *vert, const bool vert_allocated, const struct MLoop *mloop, const bool loop_allocated, const struct MLoopTri *looptri, const int looptri_num, const bool looptri_allocated, BLI_bitmap *mask, int looptri_num_active, float epsilon, int tree_type, int axis) { BVHTree *tree = bvhtree_from_mesh_looptri_create_tree( epsilon, tree_type, axis, NULL, vert, mloop, looptri, looptri_num, mask, looptri_num_active); /* Setup BVHTreeFromMesh */ bvhtree_from_mesh_looptri_setup_data( data, tree, false, epsilon, NULL, vert, vert_allocated, mloop, loop_allocated, looptri, looptri_allocated); return data->tree; } /** \} */ /* Frees data allocated by a call to bvhtree_from_mesh_*. */ void free_bvhtree_from_mesh(struct BVHTreeFromMesh *data) { if (data->tree) { if (!data->cached) { BLI_bvhtree_free(data->tree); } if (data->vert_allocated) { MEM_freeN((void *)data->vert); } if (data->edge_allocated) { MEM_freeN((void *)data->edge); } if (data->face_allocated) { MEM_freeN((void *)data->face); } if (data->loop_allocated) { MEM_freeN((void *)data->loop); } if (data->looptri_allocated) { MEM_freeN((void *)data->looptri); } memset(data, 0, sizeof(*data)); } } /* -------------------------------------------------------------------- */ /** \name BVHCache * \{ */ typedef struct BVHCacheItem { int type; BVHTree *tree; } BVHCacheItem; static void bvhcacheitem_set_if_match(void *_cached, void *_search) { BVHCacheItem *cached = (BVHCacheItem *)_cached; BVHCacheItem *search = (BVHCacheItem *)_search; if (search->type == cached->type) { search->tree = cached->tree; } } BVHTree *bvhcache_find(BVHCache *cache, int type) { BVHCacheItem item; item.type = type; item.tree = NULL; BLI_linklist_apply(*cache, bvhcacheitem_set_if_match, &item); return item.tree; } void bvhcache_insert(BVHCache *cache, BVHTree *tree, int type) { BVHCacheItem *item = NULL; assert(tree != NULL); assert(bvhcache_find(cache, type) == NULL); item = MEM_mallocN(sizeof(BVHCacheItem), "BVHCacheItem"); assert(item != NULL); item->type = type; item->tree = tree; BLI_linklist_prepend(cache, item); } void bvhcache_init(BVHCache *cache) { *cache = NULL; } static void bvhcacheitem_free(void *_item) { BVHCacheItem *item = (BVHCacheItem *)_item; BLI_bvhtree_free(item->tree); MEM_freeN(item); } void bvhcache_free(BVHCache *cache) { BLI_linklist_free(*cache, (LinkNodeFreeFP)bvhcacheitem_free); *cache = NULL; } /** \} */