/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/blenkernel/intern/camera.c * \ingroup bke */ #include #include #include "DNA_camera_types.h" #include "DNA_lamp_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "DNA_view3d_types.h" #include "DNA_ID.h" #include "BLI_math.h" #include "BLI_rect.h" #include "BLI_string.h" #include "BLI_utildefines.h" #include "BKE_animsys.h" #include "BKE_camera.h" #include "BKE_object.h" #include "BKE_global.h" #include "BKE_library.h" #include "BKE_library_query.h" #include "BKE_library_remap.h" #include "BKE_main.h" #include "BKE_scene.h" #include "BKE_screen.h" #include "GPU_compositing.h" /****************************** Camera Datablock *****************************/ void BKE_camera_init(Camera *cam) { BLI_assert(MEMCMP_STRUCT_OFS_IS_ZERO(cam, id)); cam->lens = 35.0f; cam->sensor_x = DEFAULT_SENSOR_WIDTH; cam->sensor_y = DEFAULT_SENSOR_HEIGHT; cam->clipsta = 0.1f; cam->clipend = 100.0f; cam->drawsize = 0.5f; cam->ortho_scale = 6.0; cam->flag |= CAM_SHOWPASSEPARTOUT; cam->passepartalpha = 0.5f; GPU_fx_compositor_init_dof_settings(&cam->gpu_dof); /* stereoscopy 3d */ cam->stereo.interocular_distance = 0.065f; cam->stereo.convergence_distance = 30.f * 0.065f; cam->stereo.pole_merge_angle_from = DEG2RADF(60.0f); cam->stereo.pole_merge_angle_to = DEG2RADF(75.0f); } void *BKE_camera_add(Main *bmain, const char *name) { Camera *cam; cam = BKE_libblock_alloc(bmain, ID_CA, name); BKE_camera_init(cam); return cam; } Camera *BKE_camera_copy(Main *bmain, Camera *cam) { Camera *camn; camn = BKE_libblock_copy(bmain, &cam->id); BKE_id_copy_ensure_local(bmain, &cam->id, &camn->id); return camn; } void BKE_camera_make_local(Main *bmain, Camera *cam, const bool lib_local) { BKE_id_make_local_generic(bmain, &cam->id, true, lib_local); } /** Free (or release) any data used by this camera (does not free the camera itself). */ void BKE_camera_free(Camera *ca) { BKE_animdata_free((ID *)ca, false); } /******************************** Camera Usage *******************************/ void BKE_camera_object_mode(RenderData *rd, Object *cam_ob) { rd->mode &= ~(R_ORTHO | R_PANORAMA); if (cam_ob && cam_ob->type == OB_CAMERA) { Camera *cam = cam_ob->data; if (cam->type == CAM_ORTHO) rd->mode |= R_ORTHO; if (cam->type == CAM_PANO) rd->mode |= R_PANORAMA; } } /* get the camera's dof value, takes the dof object into account */ float BKE_camera_object_dof_distance(Object *ob) { Camera *cam = (Camera *)ob->data; if (ob->type != OB_CAMERA) return 0.0f; if (cam->dof_ob) { #if 0 /* too simple, better to return the distance on the view axis only */ return len_v3v3(ob->obmat[3], cam->dof_ob->obmat[3]); #else float view_dir[3], dof_dir[3]; normalize_v3_v3(view_dir, ob->obmat[2]); sub_v3_v3v3(dof_dir, ob->obmat[3], cam->dof_ob->obmat[3]); return fabsf(dot_v3v3(view_dir, dof_dir)); #endif } return cam->YF_dofdist; } float BKE_camera_sensor_size(int sensor_fit, float sensor_x, float sensor_y) { /* sensor size used to fit to. for auto, sensor_x is both x and y. */ if (sensor_fit == CAMERA_SENSOR_FIT_VERT) return sensor_y; return sensor_x; } int BKE_camera_sensor_fit(int sensor_fit, float sizex, float sizey) { if (sensor_fit == CAMERA_SENSOR_FIT_AUTO) { if (sizex >= sizey) return CAMERA_SENSOR_FIT_HOR; else return CAMERA_SENSOR_FIT_VERT; } return sensor_fit; } /******************************** Camera Params *******************************/ void BKE_camera_params_init(CameraParams *params) { memset(params, 0, sizeof(CameraParams)); /* defaults */ params->sensor_x = DEFAULT_SENSOR_WIDTH; params->sensor_y = DEFAULT_SENSOR_HEIGHT; params->sensor_fit = CAMERA_SENSOR_FIT_AUTO; params->zoom = 1.0f; /* fallback for non camera objects */ params->clipsta = 0.1f; params->clipend = 100.0f; } void BKE_camera_params_from_object(CameraParams *params, const Object *ob) { if (!ob) return; if (ob->type == OB_CAMERA) { /* camera object */ Camera *cam = ob->data; if (cam->type == CAM_ORTHO) params->is_ortho = true; params->lens = cam->lens; params->ortho_scale = cam->ortho_scale; params->shiftx = cam->shiftx; params->shifty = cam->shifty; params->sensor_x = cam->sensor_x; params->sensor_y = cam->sensor_y; params->sensor_fit = cam->sensor_fit; params->clipsta = cam->clipsta; params->clipend = cam->clipend; } else if (ob->type == OB_LAMP) { /* lamp object */ Lamp *la = ob->data; float fac = cosf(la->spotsize * 0.5f); float phi = acosf(fac); params->lens = 16.0f * fac / sinf(phi); if (params->lens == 0.0f) params->lens = 35.0f; params->clipsta = la->clipsta; params->clipend = la->clipend; } else { params->lens = 35.0f; } } void BKE_camera_params_from_view3d(CameraParams *params, const View3D *v3d, const RegionView3D *rv3d) { /* common */ params->lens = v3d->lens; params->clipsta = v3d->near; params->clipend = v3d->far; if (rv3d->persp == RV3D_CAMOB) { /* camera view */ BKE_camera_params_from_object(params, v3d->camera); params->zoom = BKE_screen_view3d_zoom_to_fac(rv3d->camzoom); params->offsetx = 2.0f * rv3d->camdx * params->zoom; params->offsety = 2.0f * rv3d->camdy * params->zoom; params->shiftx *= params->zoom; params->shifty *= params->zoom; params->zoom = CAMERA_PARAM_ZOOM_INIT_CAMOB / params->zoom; } else if (rv3d->persp == RV3D_ORTHO) { /* orthographic view */ float sensor_size = BKE_camera_sensor_size(params->sensor_fit, params->sensor_x, params->sensor_y); params->clipend *= 0.5f; // otherwise too extreme low zbuffer quality params->clipsta = -params->clipend; params->is_ortho = true; /* make sure any changes to this match ED_view3d_radius_to_dist_ortho() */ params->ortho_scale = rv3d->dist * sensor_size / v3d->lens; params->zoom = CAMERA_PARAM_ZOOM_INIT_PERSP; } else { /* perspective view */ params->zoom = CAMERA_PARAM_ZOOM_INIT_PERSP; } } void BKE_camera_params_compute_viewplane(CameraParams *params, int winx, int winy, float xasp, float yasp) { rctf viewplane; float pixsize, viewfac, sensor_size, dx, dy; int sensor_fit; /* fields rendering */ params->ycor = yasp / xasp; if (params->use_fields) params->ycor *= 2.0f; if (params->is_ortho) { /* orthographic camera */ /* scale == 1.0 means exact 1 to 1 mapping */ pixsize = params->ortho_scale; } else { /* perspective camera */ sensor_size = BKE_camera_sensor_size(params->sensor_fit, params->sensor_x, params->sensor_y); pixsize = (sensor_size * params->clipsta) / params->lens; } /* determine sensor fit */ sensor_fit = BKE_camera_sensor_fit(params->sensor_fit, xasp * winx, yasp * winy); if (sensor_fit == CAMERA_SENSOR_FIT_HOR) viewfac = winx; else viewfac = params->ycor * winy; pixsize /= viewfac; /* extra zoom factor */ pixsize *= params->zoom; /* compute view plane: * fully centered, zbuffer fills in jittered between -.5 and +.5 */ viewplane.xmin = -0.5f * (float)winx; viewplane.ymin = -0.5f * params->ycor * (float)winy; viewplane.xmax = 0.5f * (float)winx; viewplane.ymax = 0.5f * params->ycor * (float)winy; /* lens shift and offset */ dx = params->shiftx * viewfac + winx * params->offsetx; dy = params->shifty * viewfac + winy * params->offsety; viewplane.xmin += dx; viewplane.ymin += dy; viewplane.xmax += dx; viewplane.ymax += dy; /* fields offset */ if (params->field_second) { if (params->field_odd) { viewplane.ymin -= 0.5f * params->ycor; viewplane.ymax -= 0.5f * params->ycor; } else { viewplane.ymin += 0.5f * params->ycor; viewplane.ymax += 0.5f * params->ycor; } } /* the window matrix is used for clipping, and not changed during OSA steps */ /* using an offset of +0.5 here would give clip errors on edges */ viewplane.xmin *= pixsize; viewplane.xmax *= pixsize; viewplane.ymin *= pixsize; viewplane.ymax *= pixsize; /* Used for rendering (offset by near-clip with perspective views), passed to RE_SetPixelSize. * For viewport drawing 'RegionView3D.pixsize'. */ params->viewdx = pixsize; params->viewdy = params->ycor * pixsize; params->viewplane = viewplane; } /* viewplane is assumed to be already computed */ void BKE_camera_params_compute_matrix(CameraParams *params) { rctf viewplane = params->viewplane; /* compute projection matrix */ if (params->is_ortho) orthographic_m4(params->winmat, viewplane.xmin, viewplane.xmax, viewplane.ymin, viewplane.ymax, params->clipsta, params->clipend); else perspective_m4(params->winmat, viewplane.xmin, viewplane.xmax, viewplane.ymin, viewplane.ymax, params->clipsta, params->clipend); } /***************************** Camera View Frame *****************************/ void BKE_camera_view_frame_ex( const Scene *scene, const Camera *camera, const float drawsize, const bool do_clip, const float scale[3], float r_asp[2], float r_shift[2], float *r_drawsize, float r_vec[4][3]) { float facx, facy; float depth; /* aspect correcton */ if (scene) { float aspx = (float) scene->r.xsch * scene->r.xasp; float aspy = (float) scene->r.ysch * scene->r.yasp; int sensor_fit = BKE_camera_sensor_fit(camera->sensor_fit, aspx, aspy); if (sensor_fit == CAMERA_SENSOR_FIT_HOR) { r_asp[0] = 1.0; r_asp[1] = aspy / aspx; } else { r_asp[0] = aspx / aspy; r_asp[1] = 1.0; } } else { r_asp[0] = 1.0f; r_asp[1] = 1.0f; } if (camera->type == CAM_ORTHO) { facx = 0.5f * camera->ortho_scale * r_asp[0] * scale[0]; facy = 0.5f * camera->ortho_scale * r_asp[1] * scale[1]; r_shift[0] = camera->shiftx * camera->ortho_scale * scale[0]; r_shift[1] = camera->shifty * camera->ortho_scale * scale[1]; depth = do_clip ? -((camera->clipsta * scale[2]) + 0.1f) : -drawsize * camera->ortho_scale * scale[2]; *r_drawsize = 0.5f * camera->ortho_scale; } else { /* that way it's always visible - clipsta+0.1 */ float fac, scale_x, scale_y; float half_sensor = 0.5f * ((camera->sensor_fit == CAMERA_SENSOR_FIT_VERT) ? (camera->sensor_y) : (camera->sensor_x)); if (do_clip) { /* fixed depth, variable size (avoids exceeding clipping range) */ /* r_drawsize shouldn't be used in this case, set to dummy value */ *r_drawsize = 1.0f; depth = -(camera->clipsta + 0.1f) * scale[2]; fac = depth / (camera->lens / (-half_sensor)); scale_x = scale[0] / scale[2]; scale_y = scale[1] / scale[2]; } else { /* fixed size, variable depth (stays a reasonable size in the 3D view) */ *r_drawsize = drawsize / ((scale[0] + scale[1] + scale[2]) / 3.0f); depth = *r_drawsize * camera->lens / (-half_sensor) * scale[2]; fac = *r_drawsize; scale_x = scale[0]; scale_y = scale[1]; } facx = fac * r_asp[0] * scale_x; facy = fac * r_asp[1] * scale_y; r_shift[0] = camera->shiftx * fac * 2.0f * scale_x; r_shift[1] = camera->shifty * fac * 2.0f * scale_y; } r_vec[0][0] = r_shift[0] + facx; r_vec[0][1] = r_shift[1] + facy; r_vec[0][2] = depth; r_vec[1][0] = r_shift[0] + facx; r_vec[1][1] = r_shift[1] - facy; r_vec[1][2] = depth; r_vec[2][0] = r_shift[0] - facx; r_vec[2][1] = r_shift[1] - facy; r_vec[2][2] = depth; r_vec[3][0] = r_shift[0] - facx; r_vec[3][1] = r_shift[1] + facy; r_vec[3][2] = depth; } void BKE_camera_view_frame(const Scene *scene, const Camera *camera, float r_vec[4][3]) { float dummy_asp[2]; float dummy_shift[2]; float dummy_drawsize; const float dummy_scale[3] = {1.0f, 1.0f, 1.0f}; BKE_camera_view_frame_ex(scene, camera, 0.0, true, dummy_scale, dummy_asp, dummy_shift, &dummy_drawsize, r_vec); } #define CAMERA_VIEWFRAME_NUM_PLANES 4 typedef struct CameraViewFrameData { float plane_tx[CAMERA_VIEWFRAME_NUM_PLANES][4]; /* 4 planes */ float normal_tx[CAMERA_VIEWFRAME_NUM_PLANES][3]; float dist_vals_sq[CAMERA_VIEWFRAME_NUM_PLANES]; /* distance squared (signed) */ unsigned int tot; /* Ortho camera only. */ bool is_ortho; float camera_no[3]; float dist_to_cam; /* Not used by callbacks... */ float camera_rotmat[3][3]; } CameraViewFrameData; static void camera_to_frame_view_cb(const float co[3], void *user_data) { CameraViewFrameData *data = (CameraViewFrameData *)user_data; unsigned int i; for (i = 0; i < CAMERA_VIEWFRAME_NUM_PLANES; i++) { const float nd = dist_signed_squared_to_plane_v3(co, data->plane_tx[i]); CLAMP_MAX(data->dist_vals_sq[i], nd); } if (data->is_ortho) { const float d = dot_v3v3(data->camera_no, co); CLAMP_MAX(data->dist_to_cam, d); } data->tot++; } static void camera_frame_fit_data_init( const Scene *scene, const Object *ob, CameraParams *params, CameraViewFrameData *data) { float camera_rotmat_transposed_inversed[4][4]; unsigned int i; /* setup parameters */ BKE_camera_params_init(params); BKE_camera_params_from_object(params, ob); /* compute matrix, viewplane, .. */ if (scene) { BKE_camera_params_compute_viewplane(params, scene->r.xsch, scene->r.ysch, scene->r.xasp, scene->r.yasp); } else { BKE_camera_params_compute_viewplane(params, 1, 1, 1.0f, 1.0f); } BKE_camera_params_compute_matrix(params); /* initialize callback data */ copy_m3_m4(data->camera_rotmat, (float (*)[4])ob->obmat); normalize_m3(data->camera_rotmat); /* To transform a plane which is in its homogeneous representation (4d vector), * we need the inverse of the transpose of the transform matrix... */ copy_m4_m3(camera_rotmat_transposed_inversed, data->camera_rotmat); transpose_m4(camera_rotmat_transposed_inversed); invert_m4(camera_rotmat_transposed_inversed); /* Extract frustum planes from projection matrix. */ planes_from_projmat(params->winmat, /* left right top bottom near far */ data->plane_tx[2], data->plane_tx[0], data->plane_tx[3], data->plane_tx[1], NULL, NULL); /* Rotate planes and get normals from them */ for (i = 0; i < CAMERA_VIEWFRAME_NUM_PLANES; i++) { mul_m4_v4(camera_rotmat_transposed_inversed, data->plane_tx[i]); normalize_v3_v3(data->normal_tx[i], data->plane_tx[i]); } copy_v4_fl(data->dist_vals_sq, FLT_MAX); data->tot = 0; data->is_ortho = params->is_ortho; if (params->is_ortho) { /* we want (0, 0, -1) transformed by camera_rotmat, this is a quicker shortcut. */ negate_v3_v3(data->camera_no, data->camera_rotmat[2]); data->dist_to_cam = FLT_MAX; } } static bool camera_frame_fit_calc_from_data( CameraParams *params, CameraViewFrameData *data, float r_co[3], float *r_scale) { float plane_tx[CAMERA_VIEWFRAME_NUM_PLANES][4]; unsigned int i; if (data->tot <= 1) { return false; } if (params->is_ortho) { const float *cam_axis_x = data->camera_rotmat[0]; const float *cam_axis_y = data->camera_rotmat[1]; const float *cam_axis_z = data->camera_rotmat[2]; float dists[CAMERA_VIEWFRAME_NUM_PLANES]; float scale_diff; /* apply the dist-from-plane's to the transformed plane points */ for (i = 0; i < CAMERA_VIEWFRAME_NUM_PLANES; i++) { dists[i] = sqrtf_signed(data->dist_vals_sq[i]); } if ((dists[0] + dists[2]) > (dists[1] + dists[3])) { scale_diff = (dists[1] + dists[3]) * (BLI_rctf_size_x(¶ms->viewplane) / BLI_rctf_size_y(¶ms->viewplane)); } else { scale_diff = (dists[0] + dists[2]) * (BLI_rctf_size_y(¶ms->viewplane) / BLI_rctf_size_x(¶ms->viewplane)); } *r_scale = params->ortho_scale - scale_diff; zero_v3(r_co); madd_v3_v3fl(r_co, cam_axis_x, (dists[2] - dists[0]) * 0.5f + params->shiftx * scale_diff); madd_v3_v3fl(r_co, cam_axis_y, (dists[1] - dists[3]) * 0.5f + params->shifty * scale_diff); madd_v3_v3fl(r_co, cam_axis_z, -(data->dist_to_cam - 1.0f - params->clipsta)); return true; } else { float plane_isect_1[3], plane_isect_1_no[3], plane_isect_1_other[3]; float plane_isect_2[3], plane_isect_2_no[3], plane_isect_2_other[3]; float plane_isect_pt_1[3], plane_isect_pt_2[3]; /* apply the dist-from-plane's to the transformed plane points */ for (i = 0; i < CAMERA_VIEWFRAME_NUM_PLANES; i++) { float co[3]; mul_v3_v3fl(co, data->normal_tx[i], sqrtf_signed(data->dist_vals_sq[i])); plane_from_point_normal_v3(plane_tx[i], co, data->normal_tx[i]); } if ((!isect_plane_plane_v3(plane_tx[0], plane_tx[2], plane_isect_1, plane_isect_1_no)) || (!isect_plane_plane_v3(plane_tx[1], plane_tx[3], plane_isect_2, plane_isect_2_no))) { return false; } add_v3_v3v3(plane_isect_1_other, plane_isect_1, plane_isect_1_no); add_v3_v3v3(plane_isect_2_other, plane_isect_2, plane_isect_2_no); if (isect_line_line_v3(plane_isect_1, plane_isect_1_other, plane_isect_2, plane_isect_2_other, plane_isect_pt_1, plane_isect_pt_2) != 0) { float cam_plane_no[3]; float plane_isect_delta[3]; float plane_isect_delta_len; float shift_fac = BKE_camera_sensor_size(params->sensor_fit, params->sensor_x, params->sensor_y) / params->lens; /* we want (0, 0, -1) transformed by camera_rotmat, this is a quicker shortcut. */ negate_v3_v3(cam_plane_no, data->camera_rotmat[2]); sub_v3_v3v3(plane_isect_delta, plane_isect_pt_2, plane_isect_pt_1); plane_isect_delta_len = len_v3(plane_isect_delta); if (dot_v3v3(plane_isect_delta, cam_plane_no) > 0.0f) { copy_v3_v3(r_co, plane_isect_pt_1); /* offset shift */ normalize_v3(plane_isect_1_no); madd_v3_v3fl(r_co, plane_isect_1_no, params->shifty * plane_isect_delta_len * shift_fac); } else { copy_v3_v3(r_co, plane_isect_pt_2); /* offset shift */ normalize_v3(plane_isect_2_no); madd_v3_v3fl(r_co, plane_isect_2_no, params->shiftx * plane_isect_delta_len * shift_fac); } return true; } } return false; } /* don't move the camera, just yield the fit location */ /* r_scale only valid/useful for ortho cameras */ bool BKE_camera_view_frame_fit_to_scene( Scene *scene, struct View3D *v3d, Object *camera_ob, float r_co[3], float *r_scale) { CameraParams params; CameraViewFrameData data_cb; /* just in case */ *r_scale = 1.0f; camera_frame_fit_data_init(scene, camera_ob, ¶ms, &data_cb); /* run callback on all visible points */ BKE_scene_foreach_display_point(scene, v3d, BA_SELECT, camera_to_frame_view_cb, &data_cb); return camera_frame_fit_calc_from_data(¶ms, &data_cb, r_co, r_scale); } bool BKE_camera_view_frame_fit_to_coords( const Scene *scene, const float (*cos)[3], int num_cos, const Object *camera_ob, float r_co[3], float *r_scale) { CameraParams params; CameraViewFrameData data_cb; /* just in case */ *r_scale = 1.0f; camera_frame_fit_data_init(scene, camera_ob, ¶ms, &data_cb); /* run callback on all given coordinates */ while (num_cos--) { camera_to_frame_view_cb(cos[num_cos], &data_cb); } return camera_frame_fit_calc_from_data(¶ms, &data_cb, r_co, r_scale); } /******************* multiview matrix functions ***********************/ static void camera_model_matrix(Object *camera, float r_modelmat[4][4]) { copy_m4_m4(r_modelmat, camera->obmat); } static void camera_stereo3d_model_matrix(Object *camera, const bool is_left, float r_modelmat[4][4]) { Camera *data = (Camera *)camera->data; float interocular_distance, convergence_distance; short convergence_mode, pivot; float sizemat[4][4]; float fac = 1.0f; float fac_signed; interocular_distance = data->stereo.interocular_distance; convergence_distance = data->stereo.convergence_distance; convergence_mode = data->stereo.convergence_mode; pivot = data->stereo.pivot; if (((pivot == CAM_S3D_PIVOT_LEFT) && is_left) || ((pivot == CAM_S3D_PIVOT_RIGHT) && !is_left)) { camera_model_matrix(camera, r_modelmat); return; } else { float size[3]; mat4_to_size(size, camera->obmat); size_to_mat4(sizemat, size); } if (pivot == CAM_S3D_PIVOT_CENTER) fac = 0.5f; fac_signed = is_left ? fac : -fac; /* rotation */ if (convergence_mode == CAM_S3D_TOE) { float angle; float angle_sin, angle_cos; float toeinmat[4][4]; float rotmat[4][4]; unit_m4(rotmat); if (pivot == CAM_S3D_PIVOT_CENTER) { fac = -fac; fac_signed = -fac_signed; } angle = atanf((interocular_distance * 0.5f) / convergence_distance) / fac; angle_cos = cosf(angle * fac_signed); angle_sin = sinf(angle * fac_signed); rotmat[0][0] = angle_cos; rotmat[2][0] = -angle_sin; rotmat[0][2] = angle_sin; rotmat[2][2] = angle_cos; if (pivot == CAM_S3D_PIVOT_CENTER) { /* set the rotation */ copy_m4_m4(toeinmat, rotmat); /* set the translation */ toeinmat[3][0] = interocular_distance * fac_signed; /* transform */ normalize_m4_m4(r_modelmat, camera->obmat); mul_m4_m4m4(r_modelmat, r_modelmat, toeinmat); /* scale back to the original size */ mul_m4_m4m4(r_modelmat, r_modelmat, sizemat); } else { /* CAM_S3D_PIVOT_LEFT, CAM_S3D_PIVOT_RIGHT */ /* rotate perpendicular to the interocular line */ normalize_m4_m4(r_modelmat, camera->obmat); mul_m4_m4m4(r_modelmat, r_modelmat, rotmat); /* translate along the interocular line */ unit_m4(toeinmat); toeinmat[3][0] = -interocular_distance * fac_signed; mul_m4_m4m4(r_modelmat, r_modelmat, toeinmat); /* rotate to toe-in angle */ mul_m4_m4m4(r_modelmat, r_modelmat, rotmat); /* scale back to the original size */ mul_m4_m4m4(r_modelmat, r_modelmat, sizemat); } } else { normalize_m4_m4(r_modelmat, camera->obmat); /* translate - no rotation in CAM_S3D_OFFAXIS, CAM_S3D_PARALLEL */ translate_m4(r_modelmat, -interocular_distance * fac_signed, 0.0f, 0.0f); /* scale back to the original size */ mul_m4_m4m4(r_modelmat, r_modelmat, sizemat); } } /* the view matrix is used by the viewport drawing, it is basically the inverted model matrix */ void BKE_camera_multiview_view_matrix(RenderData *rd, Object *camera, const bool is_left, float r_viewmat[4][4]) { BKE_camera_multiview_model_matrix(rd, camera, is_left ? STEREO_LEFT_NAME : STEREO_RIGHT_NAME, r_viewmat); invert_m4(r_viewmat); } /* left is the default */ static bool camera_is_left(const char *viewname) { if (viewname && viewname[0] != '\0') { return !STREQ(viewname, STEREO_RIGHT_NAME); } return true; } void BKE_camera_multiview_model_matrix(RenderData *rd, Object *camera, const char *viewname, float r_modelmat[4][4]) { const bool is_multiview = (rd && rd->scemode & R_MULTIVIEW) != 0; if (!is_multiview) { camera_model_matrix(camera, r_modelmat); } else if (rd->views_format == SCE_VIEWS_FORMAT_MULTIVIEW) { camera_model_matrix(camera, r_modelmat); } else { /* SCE_VIEWS_SETUP_BASIC */ const bool is_left = camera_is_left(viewname); camera_stereo3d_model_matrix(camera, is_left, r_modelmat); } normalize_m4(r_modelmat); } bool BKE_camera_multiview_spherical_stereo(RenderData *rd, Object *camera) { Camera *cam; const bool is_multiview = (rd && rd->scemode & R_MULTIVIEW) != 0; if (!is_multiview) return false; if (camera->type != OB_CAMERA) return false; else cam = camera->data; if ((rd->views_format == SCE_VIEWS_FORMAT_STEREO_3D) && ELEM(cam->type, CAM_PANO, CAM_PERSP) && ((cam->stereo.flag & CAM_S3D_SPHERICAL) != 0)) { return true; } return false; } static Object *camera_multiview_advanced(Scene *scene, Object *camera, const char *suffix) { SceneRenderView *srv; char name[MAX_NAME]; const char *camera_name = camera->id.name + 2; const int len_name = strlen(camera_name); int len_suffix_max = -1; name[0] = '\0'; /* we need to take the better match, thus the len_suffix_max test */ for (srv = scene->r.views.first; srv; srv = srv->next) { const int len_suffix = strlen(srv->suffix); if ((len_suffix < len_suffix_max) || (len_name < len_suffix)) continue; if (STREQ(camera_name + (len_name - len_suffix), srv->suffix)) { BLI_snprintf(name, sizeof(name), "%.*s%s", (len_name - len_suffix), camera_name, suffix); len_suffix_max = len_suffix; } } if (name[0] != '\0') { Base *base = BKE_scene_base_find_by_name(scene, name); if (base) { return base->object; } } return camera; } /* returns the camera to be used for render */ Object *BKE_camera_multiview_render(Scene *scene, Object *camera, const char *viewname) { const bool is_multiview = (camera != NULL) && (scene->r.scemode & R_MULTIVIEW) != 0; if (!is_multiview) { return camera; } else if (scene->r.views_format == SCE_VIEWS_FORMAT_STEREO_3D) { return camera; } else { /* SCE_VIEWS_FORMAT_MULTIVIEW */ const char *suffix = BKE_scene_multiview_view_suffix_get(&scene->r, viewname); return camera_multiview_advanced(scene, camera, suffix); } } static float camera_stereo3d_shift_x(Object *camera, const char *viewname) { Camera *data = camera->data; float shift = data->shiftx; float interocular_distance, convergence_distance; short convergence_mode, pivot; bool is_left = true; float fac = 1.0f; float fac_signed; if (viewname && viewname[0]) { is_left = STREQ(viewname, STEREO_LEFT_NAME); } interocular_distance = data->stereo.interocular_distance; convergence_distance = data->stereo.convergence_distance; convergence_mode = data->stereo.convergence_mode; pivot = data->stereo.pivot; if (convergence_mode != CAM_S3D_OFFAXIS) return shift; if (((pivot == CAM_S3D_PIVOT_LEFT) && is_left) || ((pivot == CAM_S3D_PIVOT_RIGHT) && !is_left)) { return shift; } if (pivot == CAM_S3D_PIVOT_CENTER) fac = 0.5f; fac_signed = is_left ? fac : -fac; shift += ((interocular_distance / data->sensor_x) * (data->lens / convergence_distance)) * fac_signed; return shift; } float BKE_camera_multiview_shift_x(RenderData *rd, Object *camera, const char *viewname) { const bool is_multiview = (rd && rd->scemode & R_MULTIVIEW) != 0; Camera *data = camera->data; BLI_assert(camera->type == OB_CAMERA); if (!is_multiview) { return data->shiftx; } else if (rd->views_format == SCE_VIEWS_FORMAT_MULTIVIEW) { return data->shiftx; } else { /* SCE_VIEWS_SETUP_BASIC */ return camera_stereo3d_shift_x(camera, viewname); } } void BKE_camera_multiview_params(RenderData *rd, CameraParams *params, Object *camera, const char *viewname) { if (camera->type == OB_CAMERA) { params->shiftx = BKE_camera_multiview_shift_x(rd, camera, viewname); } } void BKE_camera_to_gpu_dof(struct Object *camera, struct GPUFXSettings *r_fx_settings) { if (camera->type == OB_CAMERA) { Camera *cam = camera->data; r_fx_settings->dof = &cam->gpu_dof; r_fx_settings->dof->focal_length = cam->lens; r_fx_settings->dof->sensor = BKE_camera_sensor_size(cam->sensor_fit, cam->sensor_x, cam->sensor_y); r_fx_settings->dof->focus_distance = BKE_camera_object_dof_distance(camera); } }