/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2006 Blender Foundation. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): Ben Batt * * ***** END GPL LICENSE BLOCK ***** * * Implementation of CDDerivedMesh. * * BKE_cdderivedmesh.h contains the function prototypes for this file. * */ /** \file blender/blenkernel/intern/cdderivedmesh.c * \ingroup bke */ #include "BLI_math.h" #include "BLI_edgehash.h" #include "BLI_utildefines.h" #include "BLI_stackdefines.h" #include "BKE_pbvh.h" #include "BKE_cdderivedmesh.h" #include "BKE_global.h" #include "BKE_mesh.h" #include "BKE_mesh_mapping.h" #include "BKE_paint.h" #include "BKE_editmesh.h" #include "BKE_curve.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_object_types.h" #include "DNA_curve_types.h" /* for Curve */ #include "MEM_guardedalloc.h" #include "GPU_buffers.h" #include "GPU_draw.h" #include "GPU_extensions.h" #include "GPU_glew.h" #include #include #include extern GLubyte stipple_quarttone[128]; /* glutil.c, bad level data */ typedef struct { DerivedMesh dm; /* these point to data in the DerivedMesh custom data layers, * they are only here for efficiency and convenience **/ MVert *mvert; MEdge *medge; MFace *mface; MLoop *mloop; MPoly *mpoly; /* Cached */ struct PBVH *pbvh; bool pbvh_draw; /* Mesh connectivity */ MeshElemMap *pmap; int *pmap_mem; } CDDerivedMesh; /**************** DerivedMesh interface functions ****************/ static int cdDM_getNumVerts(DerivedMesh *dm) { return dm->numVertData; } static int cdDM_getNumEdges(DerivedMesh *dm) { return dm->numEdgeData; } static int cdDM_getNumTessFaces(DerivedMesh *dm) { /* uncomment and add a breakpoint on the printf() * to help debug tessfaces issues since BMESH merge. */ #if 0 if (dm->numTessFaceData == 0 && dm->numPolyData != 0) { printf("%s: has no faces!, call DM_ensure_tessface() if you need them\n"); } #endif return dm->numTessFaceData; } static int cdDM_getNumLoops(DerivedMesh *dm) { return dm->numLoopData; } static int cdDM_getNumPolys(DerivedMesh *dm) { return dm->numPolyData; } static void cdDM_getVert(DerivedMesh *dm, int index, MVert *r_vert) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; *r_vert = cddm->mvert[index]; } static void cdDM_getEdge(DerivedMesh *dm, int index, MEdge *r_edge) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; *r_edge = cddm->medge[index]; } static void cdDM_getTessFace(DerivedMesh *dm, int index, MFace *r_face) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; *r_face = cddm->mface[index]; } static void cdDM_copyVertArray(DerivedMesh *dm, MVert *r_vert) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; memcpy(r_vert, cddm->mvert, sizeof(*r_vert) * dm->numVertData); } static void cdDM_copyEdgeArray(DerivedMesh *dm, MEdge *r_edge) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; memcpy(r_edge, cddm->medge, sizeof(*r_edge) * dm->numEdgeData); } static void cdDM_copyTessFaceArray(DerivedMesh *dm, MFace *r_face) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; memcpy(r_face, cddm->mface, sizeof(*r_face) * dm->numTessFaceData); } static void cdDM_copyLoopArray(DerivedMesh *dm, MLoop *r_loop) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; memcpy(r_loop, cddm->mloop, sizeof(*r_loop) * dm->numLoopData); } static void cdDM_copyPolyArray(DerivedMesh *dm, MPoly *r_poly) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; memcpy(r_poly, cddm->mpoly, sizeof(*r_poly) * dm->numPolyData); } static void cdDM_getMinMax(DerivedMesh *dm, float r_min[3], float r_max[3]) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; int i; if (dm->numVertData) { for (i = 0; i < dm->numVertData; i++) { minmax_v3v3_v3(r_min, r_max, cddm->mvert[i].co); } } else { zero_v3(r_min); zero_v3(r_max); } } static void cdDM_getVertCo(DerivedMesh *dm, int index, float r_co[3]) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; copy_v3_v3(r_co, cddm->mvert[index].co); } static void cdDM_getVertCos(DerivedMesh *dm, float (*r_cos)[3]) { MVert *mv = CDDM_get_verts(dm); int i; for (i = 0; i < dm->numVertData; i++, mv++) copy_v3_v3(r_cos[i], mv->co); } static void cdDM_getVertNo(DerivedMesh *dm, int index, float r_no[3]) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; normal_short_to_float_v3(r_no, cddm->mvert[index].no); } static const MeshElemMap *cdDM_getPolyMap(Object *ob, DerivedMesh *dm) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; if (!cddm->pmap && ob->type == OB_MESH) { Mesh *me = ob->data; BKE_mesh_vert_poly_map_create(&cddm->pmap, &cddm->pmap_mem, me->mpoly, me->mloop, me->totvert, me->totpoly, me->totloop); } return cddm->pmap; } static bool check_sculpt_object_deformed(Object *object, bool for_construction) { bool deformed = false; /* Active modifiers means extra deformation, which can't be handled correct * on birth of PBVH and sculpt "layer" levels, so use PBVH only for internal brush * stuff and show final DerivedMesh so user would see actual object shape. */ deformed |= object->sculpt->modifiers_active; if (for_construction) { deformed |= object->sculpt->kb != NULL; } else { /* As in case with modifiers, we can't synchronize deformation made against * PBVH and non-locked keyblock, so also use PBVH only for brushes and * final DM to give final result to user. */ deformed |= object->sculpt->kb && (object->shapeflag & OB_SHAPE_LOCK) == 0; } return deformed; } static bool can_pbvh_draw(Object *ob, DerivedMesh *dm) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; Mesh *me = ob->data; bool deformed = check_sculpt_object_deformed(ob, false); if (deformed) { return false; } return cddm->mvert == me->mvert || ob->sculpt->kb; } static PBVH *cdDM_getPBVH(Object *ob, DerivedMesh *dm) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; if (!ob) { cddm->pbvh = NULL; return NULL; } if (!ob->sculpt) return NULL; if (ob->sculpt->pbvh) { cddm->pbvh = ob->sculpt->pbvh; cddm->pbvh_draw = can_pbvh_draw(ob, dm); } /* Sculpting on a BMesh (dynamic-topology) gets a special PBVH */ if (!cddm->pbvh && ob->sculpt->bm) { cddm->pbvh = BKE_pbvh_new(); cddm->pbvh_draw = true; BKE_pbvh_build_bmesh(cddm->pbvh, ob->sculpt->bm, ob->sculpt->bm_smooth_shading, ob->sculpt->bm_log, ob->sculpt->cd_vert_node_offset, ob->sculpt->cd_face_node_offset); pbvh_show_diffuse_color_set(cddm->pbvh, ob->sculpt->show_diffuse_color); } /* always build pbvh from original mesh, and only use it for drawing if * this derivedmesh is just original mesh. it's the multires subsurf dm * that this is actually for, to support a pbvh on a modified mesh */ if (!cddm->pbvh && ob->type == OB_MESH) { Mesh *me = ob->data; bool deformed; cddm->pbvh = BKE_pbvh_new(); cddm->pbvh_draw = can_pbvh_draw(ob, dm); BKE_mesh_tessface_ensure(me); BKE_pbvh_build_mesh(cddm->pbvh, me->mface, me->mvert, me->totface, me->totvert, &me->vdata); pbvh_show_diffuse_color_set(cddm->pbvh, ob->sculpt->show_diffuse_color); deformed = check_sculpt_object_deformed(ob, true); if (deformed && ob->derivedDeform) { DerivedMesh *deformdm = ob->derivedDeform; float (*vertCos)[3]; int totvert; totvert = deformdm->getNumVerts(deformdm); vertCos = MEM_mallocN(totvert * sizeof(float[3]), "cdDM_getPBVH vertCos"); deformdm->getVertCos(deformdm, vertCos); BKE_pbvh_apply_vertCos(cddm->pbvh, vertCos); MEM_freeN(vertCos); } } return cddm->pbvh; } /* update vertex normals so that drawing smooth faces works during sculpt * TODO: proper fix is to support the pbvh in all drawing modes */ static void cdDM_update_normals_from_pbvh(DerivedMesh *dm) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; float (*face_nors)[3]; if (!cddm->pbvh || !cddm->pbvh_draw || !dm->numTessFaceData) return; face_nors = CustomData_get_layer(&dm->faceData, CD_NORMAL); BKE_pbvh_update(cddm->pbvh, PBVH_UpdateNormals, face_nors); } static void cdDM_drawVerts(DerivedMesh *dm) { GPU_vertex_setup(dm); if (dm->drawObject->tot_triangle_point) glDrawArrays(GL_POINTS, 0, dm->drawObject->tot_triangle_point); else glDrawArrays(GL_POINTS, 0, dm->drawObject->tot_loose_point); GPU_buffer_unbind(); } static void cdDM_drawUVEdges(DerivedMesh *dm) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; MFace *mf = cddm->mface; int i; if (mf) { int prevstart = 0; int prevdraw = 1; int draw = 1; int curpos = 0; GPU_uvedge_setup(dm); for (i = 0; i < dm->numTessFaceData; i++, mf++) { if (!(mf->flag & ME_HIDE)) { draw = 1; } else { draw = 0; } if (prevdraw != draw) { if (prevdraw > 0 && (curpos - prevstart) > 0) { glDrawArrays(GL_LINES, prevstart, curpos - prevstart); } prevstart = curpos; } if (mf->v4) { curpos += 8; } else { curpos += 6; } prevdraw = draw; } if (prevdraw > 0 && (curpos - prevstart) > 0) { glDrawArrays(GL_LINES, prevstart, curpos - prevstart); } GPU_buffer_unbind(); } } static void cdDM_drawEdges(DerivedMesh *dm, bool drawLooseEdges, bool drawAllEdges) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; MEdge *medge = cddm->medge; int i; int prevstart = 0; int prevdraw = 1; bool draw = true; if (cddm->pbvh && cddm->pbvh_draw && BKE_pbvh_type(cddm->pbvh) == PBVH_BMESH) { BKE_pbvh_draw(cddm->pbvh, NULL, NULL, NULL, true); return; } GPU_edge_setup(dm); for (i = 0; i < dm->numEdgeData; i++, medge++) { if ((drawAllEdges || (medge->flag & ME_EDGEDRAW)) && (drawLooseEdges || !(medge->flag & ME_LOOSEEDGE))) { draw = true; } else { draw = false; } if (prevdraw != draw) { if (prevdraw > 0 && (i - prevstart) > 0) { GPU_buffer_draw_elements(dm->drawObject->edges, GL_LINES, prevstart * 2, (i - prevstart) * 2); } prevstart = i; } prevdraw = draw; } if (prevdraw > 0 && (i - prevstart) > 0) { GPU_buffer_draw_elements(dm->drawObject->edges, GL_LINES, prevstart * 2, (i - prevstart) * 2); } GPU_buffer_unbind(); } static void cdDM_drawLooseEdges(DerivedMesh *dm) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; MEdge *medge = cddm->medge; int i; int prevstart = 0; int prevdraw = 1; int draw = 1; GPU_edge_setup(dm); for (i = 0; i < dm->numEdgeData; i++, medge++) { if (medge->flag & ME_LOOSEEDGE) { draw = 1; } else { draw = 0; } if (prevdraw != draw) { if (prevdraw > 0 && (i - prevstart) > 0) { GPU_buffer_draw_elements(dm->drawObject->edges, GL_LINES, prevstart * 2, (i - prevstart) * 2); } prevstart = i; } prevdraw = draw; } if (prevdraw > 0 && (i - prevstart) > 0) { GPU_buffer_draw_elements(dm->drawObject->edges, GL_LINES, prevstart * 2, (i - prevstart) * 2); } GPU_buffer_unbind(); } static void cdDM_drawFacesSolid(DerivedMesh *dm, float (*partial_redraw_planes)[4], bool UNUSED(fast), DMSetMaterial setMaterial) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; int a; if (cddm->pbvh && cddm->pbvh_draw) { if (dm->numTessFaceData) { float (*face_nors)[3] = CustomData_get_layer(&dm->faceData, CD_NORMAL); BKE_pbvh_draw(cddm->pbvh, partial_redraw_planes, face_nors, setMaterial, false); glShadeModel(GL_FLAT); } return; } GPU_vertex_setup(dm); GPU_normal_setup(dm); glShadeModel(GL_SMOOTH); for (a = 0; a < dm->drawObject->totmaterial; a++) { if (!setMaterial || setMaterial(dm->drawObject->materials[a].mat_nr + 1, NULL)) { glDrawArrays(GL_TRIANGLES, dm->drawObject->materials[a].start, dm->drawObject->materials[a].totpoint); } } GPU_buffer_unbind(); glShadeModel(GL_FLAT); } static void cdDM_drawFacesTex_common(DerivedMesh *dm, DMSetDrawOptionsTex drawParams, DMSetDrawOptionsMappedTex drawParamsMapped, DMCompareDrawOptions compareDrawOptions, void *userData, DMDrawFlag uvflag) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; const MFace *mf = DM_get_tessface_data_layer(dm, CD_MFACE); MTFace *tf = DM_get_tessface_data_layer(dm, CD_MTFACE); MCol *mcol; int i, orig; int colType, startFace = 0; bool use_tface = (uvflag & DM_DRAW_USE_ACTIVE_UV) != 0; int tottri; int next_actualFace; /* double lookup */ const int *index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX); const int *index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX); if (index_mf_to_mpoly == NULL) { index_mp_to_orig = NULL; } /* TODO: not entirely correct, but currently dynamic topology will * destroy UVs anyway, so textured display wouldn't work anyway * * this will do more like solid view with lights set up for * textured view, but object itself will be displayed gray * (the same as it'll display without UV maps in textured view) */ if (cddm->pbvh && cddm->pbvh_draw && BKE_pbvh_type(cddm->pbvh) == PBVH_BMESH) { if (dm->numTessFaceData) { GPU_set_tpage(NULL, false, false); BKE_pbvh_draw(cddm->pbvh, NULL, NULL, NULL, false); } return; } colType = CD_TEXTURE_MCOL; mcol = dm->getTessFaceDataArray(dm, colType); if (!mcol) { colType = CD_PREVIEW_MCOL; mcol = dm->getTessFaceDataArray(dm, colType); } if (!mcol) { colType = CD_MCOL; mcol = dm->getTessFaceDataArray(dm, colType); } cdDM_update_normals_from_pbvh(dm); GPU_vertex_setup(dm); GPU_normal_setup(dm); if (uvflag & DM_DRAW_USE_TEXPAINT_UV) GPU_texpaint_uv_setup(dm); else GPU_uv_setup(dm); if (mcol) { GPU_color_setup(dm, colType); } tottri = dm->drawObject->tot_triangle_point / 3; next_actualFace = dm->drawObject->triangle_to_mface[0]; glShadeModel(GL_SMOOTH); /* lastFlag = 0; */ /* UNUSED */ for (i = 0; i < tottri; i++) { int actualFace = next_actualFace; DMDrawOption draw_option = DM_DRAW_OPTION_NORMAL; int flush = 0; if (i != tottri - 1) next_actualFace = dm->drawObject->triangle_to_mface[i + 1]; if (drawParams) { draw_option = drawParams(use_tface && tf ? &tf[actualFace] : NULL, (mcol != NULL), mf[actualFace].mat_nr); } else { if (index_mf_to_mpoly) { orig = DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, actualFace); if (orig == ORIGINDEX_NONE) { /* XXX, this is not really correct * it will draw the previous faces context for this one when we don't know its settings. * but better then skipping it altogether. - campbell */ draw_option = DM_DRAW_OPTION_NORMAL; } else if (drawParamsMapped) { draw_option = drawParamsMapped(userData, orig, mf[actualFace].mat_nr); } } else if (drawParamsMapped) { draw_option = drawParamsMapped(userData, actualFace, mf[actualFace].mat_nr); } } /* flush buffer if current triangle isn't drawable or it's last triangle */ flush = (draw_option == DM_DRAW_OPTION_SKIP) || (i == tottri - 1); if (!flush && compareDrawOptions) { /* also compare draw options and flush buffer if they're different * need for face selection highlight in edit mode */ flush |= compareDrawOptions(userData, actualFace, next_actualFace) == 0; } if (flush) { int first = startFace * 3; /* Add one to the length if we're drawing at the end of the array */ int count = (i - startFace + (draw_option != DM_DRAW_OPTION_SKIP ? 1 : 0)) * 3; if (count) { if (mcol && draw_option != DM_DRAW_OPTION_NO_MCOL) GPU_color_switch(1); else GPU_color_switch(0); glDrawArrays(GL_TRIANGLES, first, count); } startFace = i + 1; } } GPU_buffer_unbind(); glShadeModel(GL_FLAT); } static void cdDM_drawFacesTex(DerivedMesh *dm, DMSetDrawOptionsTex setDrawOptions, DMCompareDrawOptions compareDrawOptions, void *userData, DMDrawFlag uvflag) { cdDM_drawFacesTex_common(dm, setDrawOptions, NULL, compareDrawOptions, userData, uvflag); } static void cdDM_drawMappedFaces(DerivedMesh *dm, DMSetDrawOptions setDrawOptions, DMSetMaterial setMaterial, DMCompareDrawOptions compareDrawOptions, void *userData, DMDrawFlag flag) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; MVert *mv = cddm->mvert; MFace *mf = cddm->mface; MCol *mcol; const float *nors = DM_get_tessface_data_layer(dm, CD_NORMAL); const short (*lnors)[4][3] = dm->getTessFaceDataArray(dm, CD_TESSLOOPNORMAL); int colType, useColors = flag & DM_DRAW_USE_COLORS; int i, orig; /* double lookup */ const int *index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX); const int *index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX); if (index_mf_to_mpoly == NULL) { index_mp_to_orig = NULL; } colType = CD_ID_MCOL; mcol = DM_get_tessface_data_layer(dm, colType); if (!mcol) { colType = CD_PREVIEW_MCOL; mcol = DM_get_tessface_data_layer(dm, colType); } if (!mcol) { colType = CD_MCOL; mcol = DM_get_tessface_data_layer(dm, colType); } cdDM_update_normals_from_pbvh(dm); /* back-buffer always uses legacy since VBO's would need the * color array temporarily overwritten for drawing, then reset. */ if (G.f & G_BACKBUFSEL) { DEBUG_VBO("Using legacy code. cdDM_drawMappedFaces\n"); for (i = 0; i < dm->numTessFaceData; i++, mf++) { int drawSmooth = ((flag & DM_DRAW_ALWAYS_SMOOTH) || lnors) ? 1 : (mf->flag & ME_SMOOTH); DMDrawOption draw_option = DM_DRAW_OPTION_NORMAL; orig = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, i) : i; if (orig == ORIGINDEX_NONE) draw_option = setMaterial(mf->mat_nr + 1, NULL); else if (setDrawOptions != NULL) draw_option = setDrawOptions(userData, orig); if (draw_option != DM_DRAW_OPTION_SKIP) { unsigned char *cp = NULL; if (draw_option == DM_DRAW_OPTION_STIPPLE) { glEnable(GL_POLYGON_STIPPLE); glPolygonStipple(stipple_quarttone); } if (useColors && mcol) cp = (unsigned char *)&mcol[i * 4]; /* no need to set shading mode to flat because * normals are already used to change shading */ glShadeModel(GL_SMOOTH); glBegin(mf->v4 ? GL_QUADS : GL_TRIANGLES); if (lnors) { if (cp) glColor3ub(cp[3], cp[2], cp[1]); glNormal3sv((const GLshort *)lnors[0][0]); glVertex3fv(mv[mf->v1].co); if (cp) glColor3ub(cp[7], cp[6], cp[5]); glNormal3sv((const GLshort *)lnors[0][1]); glVertex3fv(mv[mf->v2].co); if (cp) glColor3ub(cp[11], cp[10], cp[9]); glNormal3sv((const GLshort *)lnors[0][2]); glVertex3fv(mv[mf->v3].co); if (mf->v4) { if (cp) glColor3ub(cp[15], cp[14], cp[13]); glNormal3sv((const GLshort *)lnors[0][3]); glVertex3fv(mv[mf->v4].co); } } else if (!drawSmooth) { if (nors) { glNormal3fv(nors); } else { float nor[3]; if (mf->v4) { normal_quad_v3(nor, mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co, mv[mf->v4].co); } else { normal_tri_v3(nor, mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co); } glNormal3fv(nor); } if (cp) glColor3ub(cp[3], cp[2], cp[1]); glVertex3fv(mv[mf->v1].co); if (cp) glColor3ub(cp[7], cp[6], cp[5]); glVertex3fv(mv[mf->v2].co); if (cp) glColor3ub(cp[11], cp[10], cp[9]); glVertex3fv(mv[mf->v3].co); if (mf->v4) { if (cp) glColor3ub(cp[15], cp[14], cp[13]); glVertex3fv(mv[mf->v4].co); } } else { if (cp) glColor3ub(cp[3], cp[2], cp[1]); glNormal3sv(mv[mf->v1].no); glVertex3fv(mv[mf->v1].co); if (cp) glColor3ub(cp[7], cp[6], cp[5]); glNormal3sv(mv[mf->v2].no); glVertex3fv(mv[mf->v2].co); if (cp) glColor3ub(cp[11], cp[10], cp[9]); glNormal3sv(mv[mf->v3].no); glVertex3fv(mv[mf->v3].co); if (mf->v4) { if (cp) glColor3ub(cp[15], cp[14], cp[13]); glNormal3sv(mv[mf->v4].no); glVertex3fv(mv[mf->v4].co); } } glEnd(); if (draw_option == DM_DRAW_OPTION_STIPPLE) glDisable(GL_POLYGON_STIPPLE); } if (nors) nors += 3; if (lnors) lnors++; } } else { /* use OpenGL VBOs or Vertex Arrays instead for better, faster rendering */ int prevstart = 0; int tottri; GPU_vertex_setup(dm); GPU_normal_setup(dm); if (useColors && mcol) { GPU_color_setup(dm, colType); } tottri = dm->drawObject->tot_triangle_point / 3; glShadeModel(GL_SMOOTH); if (tottri == 0) { /* avoid buffer problems in following code */ } if (setDrawOptions == NULL) { /* just draw the entire face array */ glDrawArrays(GL_TRIANGLES, 0, (tottri) * 3); } else { /* we need to check if the next material changes */ int next_actualFace = dm->drawObject->triangle_to_mface[0]; int prev_mat_nr = -1; for (i = 0; i < tottri; i++) { //int actualFace = dm->drawObject->triangle_to_mface[i]; int actualFace = next_actualFace; MFace *mface = mf + actualFace; /*int drawSmooth = (flag & DM_DRAW_ALWAYS_SMOOTH) ? 1 : (mface->flag & ME_SMOOTH);*/ /* UNUSED */ DMDrawOption draw_option = DM_DRAW_OPTION_NORMAL; int flush = 0; if (i != tottri - 1) next_actualFace = dm->drawObject->triangle_to_mface[i + 1]; orig = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, actualFace) : actualFace; if (mface->mat_nr != prev_mat_nr) { if (setMaterial) draw_option = setMaterial(mface->mat_nr + 1, NULL); prev_mat_nr = mface->mat_nr; } if (setDrawOptions != NULL && (orig != ORIGINDEX_NONE)) draw_option = setDrawOptions(userData, orig); if (draw_option == DM_DRAW_OPTION_STIPPLE) { glEnable(GL_POLYGON_STIPPLE); glPolygonStipple(stipple_quarttone); } /* Goal is to draw as long of a contiguous triangle * array as possible, so draw when we hit either an * invisible triangle or at the end of the array */ /* flush buffer if current triangle isn't drawable or it's last triangle... */ flush = (ELEM(draw_option, DM_DRAW_OPTION_SKIP, DM_DRAW_OPTION_STIPPLE)) || (i == tottri - 1); /* ... or when material setting is dissferent */ flush |= mf[actualFace].mat_nr != mf[next_actualFace].mat_nr; if (!flush && compareDrawOptions) { flush |= compareDrawOptions(userData, actualFace, next_actualFace) == 0; } if (flush) { int first = prevstart * 3; /* Add one to the length if we're drawing at the end of the array */ int count = (i - prevstart + (draw_option != DM_DRAW_OPTION_SKIP ? 1 : 0)) * 3; if (count) glDrawArrays(GL_TRIANGLES, first, count); prevstart = i + 1; if (draw_option == DM_DRAW_OPTION_STIPPLE) glDisable(GL_POLYGON_STIPPLE); } } glShadeModel(GL_FLAT); } GPU_buffer_unbind(); } } static void cdDM_drawMappedFacesTex(DerivedMesh *dm, DMSetDrawOptionsMappedTex setDrawOptions, DMCompareDrawOptions compareDrawOptions, void *userData, DMDrawFlag flag) { cdDM_drawFacesTex_common(dm, NULL, setDrawOptions, compareDrawOptions, userData, flag); } static void cddm_draw_attrib_vertex(DMVertexAttribs *attribs, const MVert *mvert, int a, int index, int vert, const short (*lnor)[3], const bool smoothnormal) { const float zero[4] = {0.0f, 0.0f, 0.0f, 0.0f}; int b; /* orco texture coordinates */ if (attribs->totorco) { /*const*/ float (*array)[3] = attribs->orco.array; const float *orco = (array) ? array[index] : zero; if (attribs->orco.gl_texco) glTexCoord3fv(orco); else glVertexAttrib3fvARB(attribs->orco.gl_index, orco); } /* uv texture coordinates */ for (b = 0; b < attribs->tottface; b++) { const float *uv; if (attribs->tface[b].array) { MTFace *tf = &attribs->tface[b].array[a]; uv = tf->uv[vert]; } else { uv = zero; } if (attribs->tface[b].gl_texco) glTexCoord2fv(uv); else glVertexAttrib2fvARB(attribs->tface[b].gl_index, uv); } /* vertex colors */ for (b = 0; b < attribs->totmcol; b++) { GLubyte col[4]; if (attribs->mcol[b].array) { MCol *cp = &attribs->mcol[b].array[a * 4 + vert]; col[0] = cp->b; col[1] = cp->g; col[2] = cp->r; col[3] = cp->a; } else { col[0] = 0; col[1] = 0; col[2] = 0; col[3] = 0; } glVertexAttrib4ubvARB(attribs->mcol[b].gl_index, col); } /* tangent for normal mapping */ if (attribs->tottang) { /*const*/ float (*array)[4] = attribs->tang.array; const float *tang = (array) ? array[a * 4 + vert] : zero; glVertexAttrib4fvARB(attribs->tang.gl_index, tang); } /* vertex normal */ if (lnor) { glNormal3sv((const GLshort *)lnor); } else if (smoothnormal) { glNormal3sv(mvert[index].no); } /* vertex coordinate */ glVertex3fv(mvert[index].co); } static void cdDM_drawMappedFacesGLSL(DerivedMesh *dm, DMSetMaterial setMaterial, DMSetDrawOptions setDrawOptions, void *userData) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; GPUVertexAttribs gattribs; DMVertexAttribs attribs; const MVert *mvert = cddm->mvert; const MFace *mface = cddm->mface; /* MTFace *tf = dm->getTessFaceDataArray(dm, CD_MTFACE); */ /* UNUSED */ const float (*nors)[3] = dm->getTessFaceDataArray(dm, CD_NORMAL); const short (*lnors)[4][3] = dm->getTessFaceDataArray(dm, CD_TESSLOOPNORMAL); int a, b, matnr, new_matnr; bool do_draw; int orig; /* double lookup */ const int *index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX); const int *index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX); if (index_mf_to_mpoly == NULL) { index_mp_to_orig = NULL; } /* TODO: same as for solid draw, not entirely correct, but works fine for now, * will skip using textures (dyntopo currently destroys UV anyway) and * works fine for matcap */ if (cddm->pbvh && cddm->pbvh_draw && BKE_pbvh_type(cddm->pbvh) == PBVH_BMESH) { if (dm->numTessFaceData) { setMaterial(1, &gattribs); BKE_pbvh_draw(cddm->pbvh, NULL, NULL, NULL, false); } return; } cdDM_update_normals_from_pbvh(dm); matnr = -1; do_draw = false; glShadeModel(GL_SMOOTH); if (setDrawOptions != NULL) { DEBUG_VBO("Using legacy code. cdDM_drawMappedFacesGLSL\n"); memset(&attribs, 0, sizeof(attribs)); glBegin(GL_QUADS); for (a = 0; a < dm->numTessFaceData; a++, mface++) { const bool smoothnormal = lnors || (mface->flag & ME_SMOOTH); const short (*ln1)[3] = NULL, (*ln2)[3] = NULL, (*ln3)[3] = NULL, (*ln4)[3] = NULL; new_matnr = mface->mat_nr + 1; if (new_matnr != matnr) { glEnd(); do_draw = setMaterial(matnr = new_matnr, &gattribs); if (do_draw) DM_vertex_attributes_from_gpu(dm, &gattribs, &attribs); glBegin(GL_QUADS); } if (!do_draw) { continue; } else if (setDrawOptions) { orig = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a) : a; if (orig == ORIGINDEX_NONE) { /* since the material is set by setMaterial(), faces with no * origin can be assumed to be generated by a modifier */ /* continue */ } else if (setDrawOptions(userData, orig) == DM_DRAW_OPTION_SKIP) continue; } if (!smoothnormal) { if (nors) { glNormal3fv(nors[a]); } else { /* TODO ideally a normal layer should always be available */ float nor[3]; if (mface->v4) { normal_quad_v3(nor, mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co, mvert[mface->v4].co); } else { normal_tri_v3(nor, mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co); } glNormal3fv(nor); } } else if (lnors) { ln1 = &lnors[a][0]; ln2 = &lnors[a][1]; ln3 = &lnors[a][2]; ln4 = &lnors[a][3]; } cddm_draw_attrib_vertex(&attribs, mvert, a, mface->v1, 0, ln1, smoothnormal); cddm_draw_attrib_vertex(&attribs, mvert, a, mface->v2, 1, ln2, smoothnormal); cddm_draw_attrib_vertex(&attribs, mvert, a, mface->v3, 2, ln3, smoothnormal); if (mface->v4) cddm_draw_attrib_vertex(&attribs, mvert, a, mface->v4, 3, ln4, smoothnormal); else cddm_draw_attrib_vertex(&attribs, mvert, a, mface->v3, 2, ln3, smoothnormal); } glEnd(); } else { GPUBuffer *buffer = NULL; const char *varray = NULL; int numdata = 0, elementsize = 0, offset; int start = 0, numfaces = 0 /* , prevdraw = 0 */ /* UNUSED */, curface = 0; int i; const MFace *mf = mface; GPUAttrib datatypes[GPU_MAX_ATTRIB]; /* TODO, messing up when switching materials many times - [#21056]*/ memset(&attribs, 0, sizeof(attribs)); GPU_vertex_setup(dm); GPU_normal_setup(dm); for (i = 0; i < dm->drawObject->tot_triangle_point / 3; i++) { a = dm->drawObject->triangle_to_mface[i]; mface = mf + a; new_matnr = mface->mat_nr + 1; if (new_matnr != matnr) { numfaces = curface - start; if (numfaces > 0) { if (do_draw) { if (numdata != 0) { GPU_buffer_unlock(buffer); GPU_interleaved_attrib_setup(buffer, datatypes, numdata); } glDrawArrays(GL_TRIANGLES, start * 3, numfaces * 3); if (numdata != 0) { GPU_buffer_free(buffer); buffer = NULL; } } } numdata = 0; start = curface; /* prevdraw = do_draw; */ /* UNUSED */ do_draw = setMaterial(matnr = new_matnr, &gattribs); if (do_draw) { DM_vertex_attributes_from_gpu(dm, &gattribs, &attribs); if (attribs.totorco && attribs.orco.array) { datatypes[numdata].index = attribs.orco.gl_index; datatypes[numdata].size = 3; datatypes[numdata].type = GL_FLOAT; numdata++; } for (b = 0; b < attribs.tottface; b++) { if (attribs.tface[b].array) { datatypes[numdata].index = attribs.tface[b].gl_index; datatypes[numdata].size = 2; datatypes[numdata].type = GL_FLOAT; numdata++; } } for (b = 0; b < attribs.totmcol; b++) { if (attribs.mcol[b].array) { datatypes[numdata].index = attribs.mcol[b].gl_index; datatypes[numdata].size = 4; datatypes[numdata].type = GL_UNSIGNED_BYTE; numdata++; } } if (attribs.tottang && attribs.tang.array) { datatypes[numdata].index = attribs.tang.gl_index; datatypes[numdata].size = 4; datatypes[numdata].type = GL_FLOAT; numdata++; } if (numdata != 0) { elementsize = GPU_attrib_element_size(datatypes, numdata); buffer = GPU_buffer_alloc(elementsize * dm->drawObject->tot_triangle_point, false); if (buffer == NULL) { GPU_buffer_unbind(); buffer = GPU_buffer_alloc(elementsize * dm->drawObject->tot_triangle_point, true); return; } varray = GPU_buffer_lock_stream(buffer); if (varray == NULL) { GPU_buffer_unbind(); GPU_buffer_free(buffer); fprintf(stderr, "Out of memory, can't draw object\n"); return; } } else { /* if the buffer was set, don't use it again. * prevdraw was assumed true but didnt run so set to false - [#21036] */ /* prevdraw = 0; */ /* UNUSED */ buffer = NULL; } } } if (do_draw && numdata != 0) { offset = 0; if (attribs.totorco && attribs.orco.array) { copy_v3_v3((float *)&varray[elementsize * curface * 3], (float *)attribs.orco.array[mface->v1]); copy_v3_v3((float *)&varray[elementsize * curface * 3 + elementsize], (float *)attribs.orco.array[mface->v2]); copy_v3_v3((float *)&varray[elementsize * curface * 3 + elementsize * 2], (float *)attribs.orco.array[mface->v3]); offset += sizeof(float) * 3; } for (b = 0; b < attribs.tottface; b++) { if (attribs.tface[b].array) { MTFace *tf = &attribs.tface[b].array[a]; copy_v2_v2((float *)&varray[elementsize * curface * 3 + offset], tf->uv[0]); copy_v2_v2((float *)&varray[elementsize * curface * 3 + offset + elementsize], tf->uv[1]); copy_v2_v2((float *)&varray[elementsize * curface * 3 + offset + elementsize * 2], tf->uv[2]); offset += sizeof(float) * 2; } } for (b = 0; b < attribs.totmcol; b++) { if (attribs.mcol[b].array) { MCol *cp = &attribs.mcol[b].array[a * 4 + 0]; GLubyte col[4]; col[0] = cp->b; col[1] = cp->g; col[2] = cp->r; col[3] = cp->a; copy_v4_v4_char((char *)&varray[elementsize * curface * 3 + offset], (char *)col); cp = &attribs.mcol[b].array[a * 4 + 1]; col[0] = cp->b; col[1] = cp->g; col[2] = cp->r; col[3] = cp->a; copy_v4_v4_char((char *)&varray[elementsize * curface * 3 + offset + elementsize], (char *)col); cp = &attribs.mcol[b].array[a * 4 + 2]; col[0] = cp->b; col[1] = cp->g; col[2] = cp->r; col[3] = cp->a; copy_v4_v4_char((char *)&varray[elementsize * curface * 3 + offset + elementsize * 2], (char *)col); offset += sizeof(unsigned char) * 4; } } if (attribs.tottang && attribs.tang.array) { const float *tang = attribs.tang.array[a * 4 + 0]; copy_v4_v4((float *)&varray[elementsize * curface * 3 + offset], tang); tang = attribs.tang.array[a * 4 + 1]; copy_v4_v4((float *)&varray[elementsize * curface * 3 + offset + elementsize], tang); tang = attribs.tang.array[a * 4 + 2]; copy_v4_v4((float *)&varray[elementsize * curface * 3 + offset + elementsize * 2], tang); offset += sizeof(float) * 4; } (void)offset; } curface++; if (mface->v4) { if (do_draw && numdata != 0) { offset = 0; if (attribs.totorco && attribs.orco.array) { copy_v3_v3((float *)&varray[elementsize * curface * 3], (float *)attribs.orco.array[mface->v3]); copy_v3_v3((float *)&varray[elementsize * curface * 3 + elementsize], (float *)attribs.orco.array[mface->v4]); copy_v3_v3((float *)&varray[elementsize * curface * 3 + elementsize * 2], (float *)attribs.orco.array[mface->v1]); offset += sizeof(float) * 3; } for (b = 0; b < attribs.tottface; b++) { if (attribs.tface[b].array) { MTFace *tf = &attribs.tface[b].array[a]; copy_v2_v2((float *)&varray[elementsize * curface * 3 + offset], tf->uv[2]); copy_v2_v2((float *)&varray[elementsize * curface * 3 + offset + elementsize], tf->uv[3]); copy_v2_v2((float *)&varray[elementsize * curface * 3 + offset + elementsize * 2], tf->uv[0]); offset += sizeof(float) * 2; } } for (b = 0; b < attribs.totmcol; b++) { if (attribs.mcol[b].array) { MCol *cp = &attribs.mcol[b].array[a * 4 + 2]; GLubyte col[4]; col[0] = cp->b; col[1] = cp->g; col[2] = cp->r; col[3] = cp->a; copy_v4_v4_char((char *)&varray[elementsize * curface * 3 + offset], (char *)col); cp = &attribs.mcol[b].array[a * 4 + 3]; col[0] = cp->b; col[1] = cp->g; col[2] = cp->r; col[3] = cp->a; copy_v4_v4_char((char *)&varray[elementsize * curface * 3 + offset + elementsize], (char *)col); cp = &attribs.mcol[b].array[a * 4 + 0]; col[0] = cp->b; col[1] = cp->g; col[2] = cp->r; col[3] = cp->a; copy_v4_v4_char((char *)&varray[elementsize * curface * 3 + offset + elementsize * 2], (char *)col); offset += sizeof(unsigned char) * 4; } } if (attribs.tottang && attribs.tang.array) { const float *tang = attribs.tang.array[a * 4 + 2]; copy_v4_v4((float *)&varray[elementsize * curface * 3 + offset], tang); tang = attribs.tang.array[a * 4 + 3]; copy_v4_v4((float *)&varray[elementsize * curface * 3 + offset + elementsize], tang); tang = attribs.tang.array[a * 4 + 0]; copy_v4_v4((float *)&varray[elementsize * curface * 3 + offset + elementsize * 2], tang); offset += sizeof(float) * 4; } (void)offset; } curface++; i++; } } numfaces = curface - start; if (numfaces > 0) { if (do_draw) { if (numdata != 0) { GPU_buffer_unlock(buffer); GPU_interleaved_attrib_setup(buffer, datatypes, numdata); } glDrawArrays(GL_TRIANGLES, start * 3, (curface - start) * 3); } } GPU_buffer_unbind(); GPU_buffer_free(buffer); } glShadeModel(GL_FLAT); } static void cdDM_drawFacesGLSL(DerivedMesh *dm, DMSetMaterial setMaterial) { dm->drawMappedFacesGLSL(dm, setMaterial, NULL, NULL); } static void cdDM_drawMappedFacesMat(DerivedMesh *dm, void (*setMaterial)(void *userData, int matnr, void *attribs), bool (*setFace)(void *userData, int index), void *userData) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; GPUVertexAttribs gattribs; DMVertexAttribs attribs; MVert *mvert = cddm->mvert; MFace *mf = cddm->mface; const float (*nors)[3] = dm->getTessFaceDataArray(dm, CD_NORMAL); const short (*lnors)[4][3] = dm->getTessFaceDataArray(dm, CD_TESSLOOPNORMAL); int a, matnr, new_matnr; int orig; /* double lookup */ const int *index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX); const int *index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX); if (index_mf_to_mpoly == NULL) { index_mp_to_orig = NULL; } /* TODO: same as for solid draw, not entirely correct, but works fine for now, * will skip using textures (dyntopo currently destroys UV anyway) and * works fine for matcap */ if (cddm->pbvh && cddm->pbvh_draw && BKE_pbvh_type(cddm->pbvh) == PBVH_BMESH) { if (dm->numTessFaceData) { setMaterial(userData, 1, &gattribs); BKE_pbvh_draw(cddm->pbvh, NULL, NULL, NULL, false); } return; } cdDM_update_normals_from_pbvh(dm); matnr = -1; glShadeModel(GL_SMOOTH); memset(&attribs, 0, sizeof(attribs)); glBegin(GL_QUADS); for (a = 0; a < dm->numTessFaceData; a++, mf++) { const bool smoothnormal = lnors || (mf->flag & ME_SMOOTH); const short (*ln1)[3] = NULL, (*ln2)[3] = NULL, (*ln3)[3] = NULL, (*ln4)[3] = NULL; /* material */ new_matnr = mf->mat_nr + 1; if (new_matnr != matnr) { glEnd(); setMaterial(userData, matnr = new_matnr, &gattribs); DM_vertex_attributes_from_gpu(dm, &gattribs, &attribs); glBegin(GL_QUADS); } /* skipping faces */ if (setFace) { orig = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a) : a; if (orig != ORIGINDEX_NONE && !setFace(userData, orig)) continue; } /* smooth normal */ if (!smoothnormal) { if (nors) { glNormal3fv(nors[a]); } else { /* TODO ideally a normal layer should always be available */ float nor[3]; if (mf->v4) normal_quad_v3(nor, mvert[mf->v1].co, mvert[mf->v2].co, mvert[mf->v3].co, mvert[mf->v4].co); else normal_tri_v3(nor, mvert[mf->v1].co, mvert[mf->v2].co, mvert[mf->v3].co); glNormal3fv(nor); } } else if (lnors) { ln1 = &lnors[a][0]; ln2 = &lnors[a][1]; ln3 = &lnors[a][2]; ln4 = &lnors[a][3]; } /* vertices */ cddm_draw_attrib_vertex(&attribs, mvert, a, mf->v1, 0, ln1, smoothnormal); cddm_draw_attrib_vertex(&attribs, mvert, a, mf->v2, 1, ln2, smoothnormal); cddm_draw_attrib_vertex(&attribs, mvert, a, mf->v3, 2, ln3, smoothnormal); if (mf->v4) cddm_draw_attrib_vertex(&attribs, mvert, a, mf->v4, 3, ln4, smoothnormal); else cddm_draw_attrib_vertex(&attribs, mvert, a, mf->v3, 2, ln3, smoothnormal); } glEnd(); glShadeModel(GL_FLAT); } static void cdDM_drawMappedEdges(DerivedMesh *dm, DMSetDrawOptions setDrawOptions, void *userData) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; MVert *vert = cddm->mvert; MEdge *edge = cddm->medge; int i, orig, *index = DM_get_edge_data_layer(dm, CD_ORIGINDEX); glBegin(GL_LINES); for (i = 0; i < dm->numEdgeData; i++, edge++) { if (index) { orig = *index++; if (setDrawOptions && orig == ORIGINDEX_NONE) continue; } else orig = i; if (!setDrawOptions || (setDrawOptions(userData, orig) != DM_DRAW_OPTION_SKIP)) { glVertex3fv(vert[edge->v1].co); glVertex3fv(vert[edge->v2].co); } } glEnd(); } static void cdDM_foreachMappedVert( DerivedMesh *dm, void (*func)(void *userData, int index, const float co[3], const float no_f[3], const short no_s[3]), void *userData, DMForeachFlag flag) { MVert *mv = CDDM_get_verts(dm); const int *index = DM_get_vert_data_layer(dm, CD_ORIGINDEX); int i; if (index) { for (i = 0; i < dm->numVertData; i++, mv++) { const short *no = (flag & DM_FOREACH_USE_NORMAL) ? mv->no : NULL; const int orig = *index++; if (orig == ORIGINDEX_NONE) continue; func(userData, orig, mv->co, NULL, no); } } else { for (i = 0; i < dm->numVertData; i++, mv++) { const short *no = (flag & DM_FOREACH_USE_NORMAL) ? mv->no : NULL; func(userData, i, mv->co, NULL, no); } } } static void cdDM_foreachMappedEdge( DerivedMesh *dm, void (*func)(void *userData, int index, const float v0co[3], const float v1co[3]), void *userData) { CDDerivedMesh *cddm = (CDDerivedMesh *) dm; MVert *mv = cddm->mvert; MEdge *med = cddm->medge; int i, orig, *index = DM_get_edge_data_layer(dm, CD_ORIGINDEX); for (i = 0; i < dm->numEdgeData; i++, med++) { if (index) { orig = *index++; if (orig == ORIGINDEX_NONE) continue; func(userData, orig, mv[med->v1].co, mv[med->v2].co); } else func(userData, i, mv[med->v1].co, mv[med->v2].co); } } static void cdDM_foreachMappedLoop( DerivedMesh *dm, void (*func)(void *userData, int vertex_index, int face_index, const float co[3], const float no[3]), void *userData, DMForeachFlag flag) { /* We can't use dm->getLoopDataLayout(dm) here, we want to always access dm->loopData, EditDerivedBMesh would * return loop data from bmesh itself. */ const float (*lnors)[3] = (flag & DM_FOREACH_USE_NORMAL) ? DM_get_loop_data_layer(dm, CD_NORMAL) : NULL; const MVert *mv = CDDM_get_verts(dm); const MLoop *ml = CDDM_get_loops(dm); const MPoly *mp = CDDM_get_polys(dm); const int *v_index = DM_get_vert_data_layer(dm, CD_ORIGINDEX); const int *f_index = DM_get_poly_data_layer(dm, CD_ORIGINDEX); int p_idx, i; for (p_idx = 0; p_idx < dm->numPolyData; ++p_idx, ++mp) { for (i = 0; i < mp->totloop; ++i, ++ml) { const int v_idx = v_index ? v_index[ml->v] : ml->v; const int f_idx = f_index ? f_index[p_idx] : p_idx; const float *no = lnors ? *lnors++ : NULL; if (!ELEM(ORIGINDEX_NONE, v_idx, f_idx)) { func(userData, v_idx, f_idx, mv[ml->v].co, no); } } } } static void cdDM_foreachMappedFaceCenter( DerivedMesh *dm, void (*func)(void *userData, int index, const float cent[3], const float no[3]), void *userData, DMForeachFlag flag) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; MVert *mvert = cddm->mvert; MPoly *mp; MLoop *ml; int i, orig, *index; index = CustomData_get_layer(&dm->polyData, CD_ORIGINDEX); mp = cddm->mpoly; for (i = 0; i < dm->numPolyData; i++, mp++) { float cent[3]; float *no, _no[3]; if (index) { orig = *index++; if (orig == ORIGINDEX_NONE) continue; } else { orig = i; } ml = &cddm->mloop[mp->loopstart]; BKE_mesh_calc_poly_center(mp, ml, mvert, cent); if (flag & DM_FOREACH_USE_NORMAL) { BKE_mesh_calc_poly_normal(mp, ml, mvert, (no = _no)); } else { no = NULL; } func(userData, orig, cent, no); } } void CDDM_recalc_tessellation_ex(DerivedMesh *dm, const bool do_face_nor_cpy) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; dm->numTessFaceData = BKE_mesh_recalc_tessellation(&dm->faceData, &dm->loopData, &dm->polyData, cddm->mvert, dm->numTessFaceData, dm->numLoopData, dm->numPolyData, do_face_nor_cpy); cddm->mface = CustomData_get_layer(&dm->faceData, CD_MFACE); /* Tessellation recreated faceData, and the active layer indices need to get re-propagated * from loops and polys to faces */ CustomData_bmesh_update_active_layers(&dm->faceData, &dm->polyData, &dm->loopData); } void CDDM_recalc_tessellation(DerivedMesh *dm) { CDDM_recalc_tessellation_ex(dm, true); } static void cdDM_free_internal(CDDerivedMesh *cddm) { if (cddm->pmap) MEM_freeN(cddm->pmap); if (cddm->pmap_mem) MEM_freeN(cddm->pmap_mem); } static void cdDM_release(DerivedMesh *dm) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; if (DM_release(dm)) { cdDM_free_internal(cddm); MEM_freeN(cddm); } } /**************** CDDM interface functions ****************/ static CDDerivedMesh *cdDM_create(const char *desc) { CDDerivedMesh *cddm; DerivedMesh *dm; cddm = MEM_callocN(sizeof(*cddm), desc); dm = &cddm->dm; dm->getMinMax = cdDM_getMinMax; dm->getNumVerts = cdDM_getNumVerts; dm->getNumEdges = cdDM_getNumEdges; dm->getNumTessFaces = cdDM_getNumTessFaces; dm->getNumLoops = cdDM_getNumLoops; dm->getNumPolys = cdDM_getNumPolys; dm->getVert = cdDM_getVert; dm->getEdge = cdDM_getEdge; dm->getTessFace = cdDM_getTessFace; dm->copyVertArray = cdDM_copyVertArray; dm->copyEdgeArray = cdDM_copyEdgeArray; dm->copyTessFaceArray = cdDM_copyTessFaceArray; dm->copyLoopArray = cdDM_copyLoopArray; dm->copyPolyArray = cdDM_copyPolyArray; dm->getVertData = DM_get_vert_data; dm->getEdgeData = DM_get_edge_data; dm->getTessFaceData = DM_get_tessface_data; dm->getVertDataArray = DM_get_vert_data_layer; dm->getEdgeDataArray = DM_get_edge_data_layer; dm->getTessFaceDataArray = DM_get_tessface_data_layer; dm->calcNormals = CDDM_calc_normals; dm->calcLoopNormals = CDDM_calc_loop_normals; dm->recalcTessellation = CDDM_recalc_tessellation; dm->getVertCos = cdDM_getVertCos; dm->getVertCo = cdDM_getVertCo; dm->getVertNo = cdDM_getVertNo; dm->getPBVH = cdDM_getPBVH; dm->getPolyMap = cdDM_getPolyMap; dm->drawVerts = cdDM_drawVerts; dm->drawUVEdges = cdDM_drawUVEdges; dm->drawEdges = cdDM_drawEdges; dm->drawLooseEdges = cdDM_drawLooseEdges; dm->drawMappedEdges = cdDM_drawMappedEdges; dm->drawFacesSolid = cdDM_drawFacesSolid; dm->drawFacesTex = cdDM_drawFacesTex; dm->drawFacesGLSL = cdDM_drawFacesGLSL; dm->drawMappedFaces = cdDM_drawMappedFaces; dm->drawMappedFacesTex = cdDM_drawMappedFacesTex; dm->drawMappedFacesGLSL = cdDM_drawMappedFacesGLSL; dm->drawMappedFacesMat = cdDM_drawMappedFacesMat; dm->foreachMappedVert = cdDM_foreachMappedVert; dm->foreachMappedEdge = cdDM_foreachMappedEdge; dm->foreachMappedLoop = cdDM_foreachMappedLoop; dm->foreachMappedFaceCenter = cdDM_foreachMappedFaceCenter; dm->release = cdDM_release; return cddm; } DerivedMesh *CDDM_new(int numVerts, int numEdges, int numTessFaces, int numLoops, int numPolys) { CDDerivedMesh *cddm = cdDM_create("CDDM_new dm"); DerivedMesh *dm = &cddm->dm; DM_init(dm, DM_TYPE_CDDM, numVerts, numEdges, numTessFaces, numLoops, numPolys); CustomData_add_layer(&dm->vertData, CD_ORIGINDEX, CD_CALLOC, NULL, numVerts); CustomData_add_layer(&dm->edgeData, CD_ORIGINDEX, CD_CALLOC, NULL, numEdges); CustomData_add_layer(&dm->faceData, CD_ORIGINDEX, CD_CALLOC, NULL, numTessFaces); CustomData_add_layer(&dm->polyData, CD_ORIGINDEX, CD_CALLOC, NULL, numPolys); CustomData_add_layer(&dm->vertData, CD_MVERT, CD_CALLOC, NULL, numVerts); CustomData_add_layer(&dm->edgeData, CD_MEDGE, CD_CALLOC, NULL, numEdges); CustomData_add_layer(&dm->faceData, CD_MFACE, CD_CALLOC, NULL, numTessFaces); CustomData_add_layer(&dm->loopData, CD_MLOOP, CD_CALLOC, NULL, numLoops); CustomData_add_layer(&dm->polyData, CD_MPOLY, CD_CALLOC, NULL, numPolys); cddm->mvert = CustomData_get_layer(&dm->vertData, CD_MVERT); cddm->medge = CustomData_get_layer(&dm->edgeData, CD_MEDGE); cddm->mface = CustomData_get_layer(&dm->faceData, CD_MFACE); cddm->mloop = CustomData_get_layer(&dm->loopData, CD_MLOOP); cddm->mpoly = CustomData_get_layer(&dm->polyData, CD_MPOLY); return dm; } DerivedMesh *CDDM_from_mesh(Mesh *mesh) { CDDerivedMesh *cddm = cdDM_create(__func__); DerivedMesh *dm = &cddm->dm; CustomDataMask mask = CD_MASK_MESH & (~CD_MASK_MDISPS); int alloctype; /* this does a referenced copy, with an exception for fluidsim */ DM_init(dm, DM_TYPE_CDDM, mesh->totvert, mesh->totedge, mesh->totface, mesh->totloop, mesh->totpoly); dm->deformedOnly = 1; dm->cd_flag = mesh->cd_flag; alloctype = CD_REFERENCE; CustomData_merge(&mesh->vdata, &dm->vertData, mask, alloctype, mesh->totvert); CustomData_merge(&mesh->edata, &dm->edgeData, mask, alloctype, mesh->totedge); CustomData_merge(&mesh->fdata, &dm->faceData, mask | CD_MASK_ORIGINDEX, alloctype, mesh->totface); CustomData_merge(&mesh->ldata, &dm->loopData, mask, alloctype, mesh->totloop); CustomData_merge(&mesh->pdata, &dm->polyData, mask, alloctype, mesh->totpoly); cddm->mvert = CustomData_get_layer(&dm->vertData, CD_MVERT); cddm->medge = CustomData_get_layer(&dm->edgeData, CD_MEDGE); cddm->mloop = CustomData_get_layer(&dm->loopData, CD_MLOOP); cddm->mpoly = CustomData_get_layer(&dm->polyData, CD_MPOLY); cddm->mface = CustomData_get_layer(&dm->faceData, CD_MFACE); /* commented since even when CD_ORIGINDEX was first added this line fails * on the default cube, (after editmode toggle too) - campbell */ #if 0 BLI_assert(CustomData_has_layer(&cddm->dm.faceData, CD_ORIGINDEX)); #endif return dm; } DerivedMesh *CDDM_from_curve(Object *ob) { ListBase disp = {NULL, NULL}; if (ob->curve_cache) { disp = ob->curve_cache->disp; } return CDDM_from_curve_displist(ob, &disp); } DerivedMesh *CDDM_from_curve_displist(Object *ob, ListBase *dispbase) { Curve *cu = (Curve *) ob->data; DerivedMesh *dm; CDDerivedMesh *cddm; MVert *allvert; MEdge *alledge; MLoop *allloop; MPoly *allpoly; MLoopUV *alluv = NULL; int totvert, totedge, totloop, totpoly; bool use_orco_uv = (cu->flag & CU_UV_ORCO) != 0; if (BKE_mesh_nurbs_displist_to_mdata(ob, dispbase, &allvert, &totvert, &alledge, &totedge, &allloop, &allpoly, (use_orco_uv) ? &alluv : NULL, &totloop, &totpoly) != 0) { /* Error initializing mdata. This often happens when curve is empty */ return CDDM_new(0, 0, 0, 0, 0); } dm = CDDM_new(totvert, totedge, 0, totloop, totpoly); dm->deformedOnly = 1; dm->dirty |= DM_DIRTY_NORMALS; cddm = (CDDerivedMesh *)dm; memcpy(cddm->mvert, allvert, totvert * sizeof(MVert)); memcpy(cddm->medge, alledge, totedge * sizeof(MEdge)); memcpy(cddm->mloop, allloop, totloop * sizeof(MLoop)); memcpy(cddm->mpoly, allpoly, totpoly * sizeof(MPoly)); if (alluv) { const char *uvname = "Orco"; CustomData_add_layer_named(&cddm->dm.polyData, CD_MTEXPOLY, CD_DEFAULT, NULL, totpoly, uvname); CustomData_add_layer_named(&cddm->dm.loopData, CD_MLOOPUV, CD_ASSIGN, alluv, totloop, uvname); } MEM_freeN(allvert); MEM_freeN(alledge); MEM_freeN(allloop); MEM_freeN(allpoly); return dm; } static void loops_to_customdata_corners(BMesh *bm, CustomData *facedata, int cdindex, const BMLoop *l3[3], int numCol, int numTex) { const BMLoop *l; BMFace *f = l3[0]->f; MTFace *texface; MTexPoly *texpoly; MCol *mcol; MLoopCol *mloopcol; MLoopUV *mloopuv; int i, j, hasPCol = CustomData_has_layer(&bm->ldata, CD_PREVIEW_MLOOPCOL); for (i = 0; i < numTex; i++) { texface = CustomData_get_n(facedata, CD_MTFACE, cdindex, i); texpoly = CustomData_bmesh_get_n(&bm->pdata, f->head.data, CD_MTEXPOLY, i); ME_MTEXFACE_CPY(texface, texpoly); for (j = 0; j < 3; j++) { l = l3[j]; mloopuv = CustomData_bmesh_get_n(&bm->ldata, l->head.data, CD_MLOOPUV, i); copy_v2_v2(texface->uv[j], mloopuv->uv); } } for (i = 0; i < numCol; i++) { mcol = CustomData_get_n(facedata, CD_MCOL, cdindex, i); for (j = 0; j < 3; j++) { l = l3[j]; mloopcol = CustomData_bmesh_get_n(&bm->ldata, l->head.data, CD_MLOOPCOL, i); MESH_MLOOPCOL_TO_MCOL(mloopcol, &mcol[j]); } } if (hasPCol) { mcol = CustomData_get(facedata, cdindex, CD_PREVIEW_MCOL); for (j = 0; j < 3; j++) { l = l3[j]; mloopcol = CustomData_bmesh_get(&bm->ldata, l->head.data, CD_PREVIEW_MLOOPCOL); MESH_MLOOPCOL_TO_MCOL(mloopcol, &mcol[j]); } } } /* used for both editbmesh and bmesh */ static DerivedMesh *cddm_from_bmesh_ex(struct BMesh *bm, const bool use_mdisps, /* EditBMesh vars for use_tessface */ const bool use_tessface, const int em_tottri, const BMLoop *(*em_looptris)[3] ) { DerivedMesh *dm = CDDM_new(bm->totvert, bm->totedge, use_tessface ? em_tottri : 0, bm->totloop, bm->totface); CDDerivedMesh *cddm = (CDDerivedMesh *)dm; BMIter iter; BMVert *eve; BMEdge *eed; BMFace *efa; MVert *mvert = cddm->mvert; MEdge *medge = cddm->medge; MFace *mface = cddm->mface; MLoop *mloop = cddm->mloop; MPoly *mpoly = cddm->mpoly; int numCol = CustomData_number_of_layers(&bm->ldata, CD_MLOOPCOL); int numTex = CustomData_number_of_layers(&bm->pdata, CD_MTEXPOLY); int *index, add_orig; CustomDataMask mask; unsigned int i, j; const int cd_vert_bweight_offset = CustomData_get_offset(&bm->vdata, CD_BWEIGHT); const int cd_edge_bweight_offset = CustomData_get_offset(&bm->edata, CD_BWEIGHT); const int cd_edge_crease_offset = CustomData_get_offset(&bm->edata, CD_CREASE); dm->deformedOnly = 1; /* don't add origindex layer if one already exists */ add_orig = !CustomData_has_layer(&bm->pdata, CD_ORIGINDEX); mask = use_mdisps ? CD_MASK_DERIVEDMESH | CD_MASK_MDISPS : CD_MASK_DERIVEDMESH; /* don't process shapekeys, we only feed them through the modifier stack as needed, * e.g. for applying modifiers or the like*/ mask &= ~CD_MASK_SHAPEKEY; CustomData_merge(&bm->vdata, &dm->vertData, mask, CD_CALLOC, dm->numVertData); CustomData_merge(&bm->edata, &dm->edgeData, mask, CD_CALLOC, dm->numEdgeData); CustomData_merge(&bm->ldata, &dm->loopData, mask, CD_CALLOC, dm->numLoopData); CustomData_merge(&bm->pdata, &dm->polyData, mask, CD_CALLOC, dm->numPolyData); /* add tessellation mface layers */ if (use_tessface) { CustomData_from_bmeshpoly(&dm->faceData, &dm->polyData, &dm->loopData, em_tottri); } index = dm->getVertDataArray(dm, CD_ORIGINDEX); BM_ITER_MESH_INDEX (eve, &iter, bm, BM_VERTS_OF_MESH, i) { MVert *mv = &mvert[i]; copy_v3_v3(mv->co, eve->co); BM_elem_index_set(eve, i); /* set_inline */ normal_float_to_short_v3(mv->no, eve->no); mv->flag = BM_vert_flag_to_mflag(eve); if (cd_vert_bweight_offset != -1) mv->bweight = BM_ELEM_CD_GET_FLOAT_AS_UCHAR(eve, cd_vert_bweight_offset); if (add_orig) *index++ = i; CustomData_from_bmesh_block(&bm->vdata, &dm->vertData, eve->head.data, i); } bm->elem_index_dirty &= ~BM_VERT; index = dm->getEdgeDataArray(dm, CD_ORIGINDEX); BM_ITER_MESH_INDEX (eed, &iter, bm, BM_EDGES_OF_MESH, i) { MEdge *med = &medge[i]; BM_elem_index_set(eed, i); /* set_inline */ med->v1 = BM_elem_index_get(eed->v1); med->v2 = BM_elem_index_get(eed->v2); med->flag = BM_edge_flag_to_mflag(eed); /* handle this differently to editmode switching, * only enable draw for single user edges rather then calculating angle */ if ((med->flag & ME_EDGEDRAW) == 0) { if (eed->l && eed->l == eed->l->radial_next) { med->flag |= ME_EDGEDRAW; } } if (cd_edge_crease_offset != -1) med->crease = BM_ELEM_CD_GET_FLOAT_AS_UCHAR(eed, cd_edge_crease_offset); if (cd_edge_bweight_offset != -1) med->bweight = BM_ELEM_CD_GET_FLOAT_AS_UCHAR(eed, cd_edge_bweight_offset); CustomData_from_bmesh_block(&bm->edata, &dm->edgeData, eed->head.data, i); if (add_orig) *index++ = i; } bm->elem_index_dirty &= ~BM_EDGE; /* avoid this where possiblem, takes extra memory */ if (use_tessface) { BM_mesh_elem_index_ensure(bm, BM_FACE); index = dm->getTessFaceDataArray(dm, CD_ORIGINDEX); for (i = 0; i < dm->numTessFaceData; i++) { MFace *mf = &mface[i]; const BMLoop **l = em_looptris[i]; efa = l[0]->f; mf->v1 = BM_elem_index_get(l[0]->v); mf->v2 = BM_elem_index_get(l[1]->v); mf->v3 = BM_elem_index_get(l[2]->v); mf->v4 = 0; mf->mat_nr = efa->mat_nr; mf->flag = BM_face_flag_to_mflag(efa); /* map mfaces to polygons in the same cddm intentionally */ *index++ = BM_elem_index_get(efa); loops_to_customdata_corners(bm, &dm->faceData, i, l, numCol, numTex); test_index_face(mf, &dm->faceData, i, 3); } } index = CustomData_get_layer(&dm->polyData, CD_ORIGINDEX); j = 0; BM_ITER_MESH_INDEX (efa, &iter, bm, BM_FACES_OF_MESH, i) { BMLoop *l_iter; BMLoop *l_first; MPoly *mp = &mpoly[i]; BM_elem_index_set(efa, i); /* set_inline */ mp->totloop = efa->len; mp->flag = BM_face_flag_to_mflag(efa); mp->loopstart = j; mp->mat_nr = efa->mat_nr; l_iter = l_first = BM_FACE_FIRST_LOOP(efa); do { mloop->v = BM_elem_index_get(l_iter->v); mloop->e = BM_elem_index_get(l_iter->e); CustomData_from_bmesh_block(&bm->ldata, &dm->loopData, l_iter->head.data, j); BM_elem_index_set(l_iter, j); /* set_inline */ j++; mloop++; } while ((l_iter = l_iter->next) != l_first); CustomData_from_bmesh_block(&bm->pdata, &dm->polyData, efa->head.data, i); if (add_orig) *index++ = i; } bm->elem_index_dirty &= ~(BM_FACE | BM_LOOP); dm->cd_flag = BM_mesh_cd_flag_from_bmesh(bm); return dm; } struct DerivedMesh *CDDM_from_bmesh(struct BMesh *bm, const bool use_mdisps) { return cddm_from_bmesh_ex(bm, use_mdisps, false, /* these vars are for editmesh only */ 0, NULL); } DerivedMesh *CDDM_from_editbmesh(BMEditMesh *em, const bool use_mdisps, const bool use_tessface) { return cddm_from_bmesh_ex(em->bm, use_mdisps, /* editmesh */ use_tessface, em->tottri, (const BMLoop *(*)[3])em->looptris); } static DerivedMesh *cddm_copy_ex(DerivedMesh *source, int faces_from_tessfaces) { CDDerivedMesh *cddm = cdDM_create("CDDM_copy cddm"); DerivedMesh *dm = &cddm->dm; int numVerts = source->numVertData; int numEdges = source->numEdgeData; int numTessFaces = source->numTessFaceData; int numLoops = source->numLoopData; int numPolys = source->numPolyData; /* ensure these are created if they are made on demand */ source->getVertDataArray(source, CD_ORIGINDEX); source->getEdgeDataArray(source, CD_ORIGINDEX); source->getTessFaceDataArray(source, CD_ORIGINDEX); source->getPolyDataArray(source, CD_ORIGINDEX); /* this initializes dm, and copies all non mvert/medge/mface layers */ DM_from_template(dm, source, DM_TYPE_CDDM, numVerts, numEdges, numTessFaces, numLoops, numPolys); dm->deformedOnly = source->deformedOnly; dm->cd_flag = source->cd_flag; dm->dirty = source->dirty; CustomData_copy_data(&source->vertData, &dm->vertData, 0, 0, numVerts); CustomData_copy_data(&source->edgeData, &dm->edgeData, 0, 0, numEdges); CustomData_copy_data(&source->faceData, &dm->faceData, 0, 0, numTessFaces); /* now add mvert/medge/mface layers */ cddm->mvert = source->dupVertArray(source); cddm->medge = source->dupEdgeArray(source); cddm->mface = source->dupTessFaceArray(source); CustomData_add_layer(&dm->vertData, CD_MVERT, CD_ASSIGN, cddm->mvert, numVerts); CustomData_add_layer(&dm->edgeData, CD_MEDGE, CD_ASSIGN, cddm->medge, numEdges); CustomData_add_layer(&dm->faceData, CD_MFACE, CD_ASSIGN, cddm->mface, numTessFaces); if (!faces_from_tessfaces) DM_DupPolys(source, dm); else CDDM_tessfaces_to_faces(dm); cddm->mloop = CustomData_get_layer(&dm->loopData, CD_MLOOP); cddm->mpoly = CustomData_get_layer(&dm->polyData, CD_MPOLY); return dm; } DerivedMesh *CDDM_copy(DerivedMesh *source) { return cddm_copy_ex(source, 0); } DerivedMesh *CDDM_copy_from_tessface(DerivedMesh *source) { return cddm_copy_ex(source, 1); } /* note, the CD_ORIGINDEX layers are all 0, so if there is a direct * relationship between mesh data this needs to be set by the caller. */ DerivedMesh *CDDM_from_template(DerivedMesh *source, int numVerts, int numEdges, int numTessFaces, int numLoops, int numPolys) { CDDerivedMesh *cddm = cdDM_create("CDDM_from_template dest"); DerivedMesh *dm = &cddm->dm; /* ensure these are created if they are made on demand */ source->getVertDataArray(source, CD_ORIGINDEX); source->getEdgeDataArray(source, CD_ORIGINDEX); source->getTessFaceDataArray(source, CD_ORIGINDEX); source->getPolyDataArray(source, CD_ORIGINDEX); /* this does a copy of all non mvert/medge/mface layers */ DM_from_template(dm, source, DM_TYPE_CDDM, numVerts, numEdges, numTessFaces, numLoops, numPolys); /* now add mvert/medge/mface layers */ CustomData_add_layer(&dm->vertData, CD_MVERT, CD_CALLOC, NULL, numVerts); CustomData_add_layer(&dm->edgeData, CD_MEDGE, CD_CALLOC, NULL, numEdges); CustomData_add_layer(&dm->faceData, CD_MFACE, CD_CALLOC, NULL, numTessFaces); CustomData_add_layer(&dm->loopData, CD_MLOOP, CD_CALLOC, NULL, numLoops); CustomData_add_layer(&dm->polyData, CD_MPOLY, CD_CALLOC, NULL, numPolys); if (!CustomData_get_layer(&dm->vertData, CD_ORIGINDEX)) CustomData_add_layer(&dm->vertData, CD_ORIGINDEX, CD_CALLOC, NULL, numVerts); if (!CustomData_get_layer(&dm->edgeData, CD_ORIGINDEX)) CustomData_add_layer(&dm->edgeData, CD_ORIGINDEX, CD_CALLOC, NULL, numEdges); if (!CustomData_get_layer(&dm->faceData, CD_ORIGINDEX)) CustomData_add_layer(&dm->faceData, CD_ORIGINDEX, CD_CALLOC, NULL, numTessFaces); cddm->mvert = CustomData_get_layer(&dm->vertData, CD_MVERT); cddm->medge = CustomData_get_layer(&dm->edgeData, CD_MEDGE); cddm->mface = CustomData_get_layer(&dm->faceData, CD_MFACE); cddm->mloop = CustomData_get_layer(&dm->loopData, CD_MLOOP); cddm->mpoly = CustomData_get_layer(&dm->polyData, CD_MPOLY); return dm; } void CDDM_apply_vert_coords(DerivedMesh *dm, float (*vertCoords)[3]) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; MVert *vert; int i; /* this will just return the pointer if it wasn't a referenced layer */ vert = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, dm->numVertData); cddm->mvert = vert; for (i = 0; i < dm->numVertData; ++i, ++vert) copy_v3_v3(vert->co, vertCoords[i]); cddm->dm.dirty |= DM_DIRTY_NORMALS; } void CDDM_apply_vert_normals(DerivedMesh *dm, short (*vertNormals)[3]) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; MVert *vert; int i; /* this will just return the pointer if it wasn't a referenced layer */ vert = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, dm->numVertData); cddm->mvert = vert; for (i = 0; i < dm->numVertData; ++i, ++vert) copy_v3_v3_short(vert->no, vertNormals[i]); cddm->dm.dirty &= ~DM_DIRTY_NORMALS; } void CDDM_calc_normals_mapping_ex(DerivedMesh *dm, const bool only_face_normals) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; float (*face_nors)[3] = NULL; if (dm->numVertData == 0) { cddm->dm.dirty &= ~DM_DIRTY_NORMALS; return; } /* now we skip calculating vertex normals for referenced layer, * no need to duplicate verts. * WATCH THIS, bmesh only change!, * need to take care of the side effects here - campbell */ #if 0 /* we don't want to overwrite any referenced layers */ cddm->mvert = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, dm->numVertData); #endif if (dm->numTessFaceData == 0) { /* No tessellation on this mesh yet, need to calculate one. * * Important not to update face normals from polys since it * interferes with assigning the new normal layer in the following code. */ CDDM_recalc_tessellation_ex(dm, false); } else { /* A tessellation already exists, it should always have a CD_ORIGINDEX */ BLI_assert(CustomData_has_layer(&dm->faceData, CD_ORIGINDEX)); CustomData_free_layers(&dm->faceData, CD_NORMAL, dm->numTessFaceData); } face_nors = MEM_mallocN(sizeof(*face_nors) * dm->numTessFaceData, "face_nors"); /* calculate face normals */ BKE_mesh_calc_normals_mapping_ex(cddm->mvert, dm->numVertData, CDDM_get_loops(dm), CDDM_get_polys(dm), dm->numLoopData, dm->numPolyData, NULL, cddm->mface, dm->numTessFaceData, CustomData_get_layer(&dm->faceData, CD_ORIGINDEX), face_nors, only_face_normals); CustomData_add_layer(&dm->faceData, CD_NORMAL, CD_ASSIGN, face_nors, dm->numTessFaceData); cddm->dm.dirty &= ~DM_DIRTY_NORMALS; } void CDDM_calc_normals_mapping(DerivedMesh *dm) { /* use this to skip calculating normals on original vert's, this may need to be changed */ const bool only_face_normals = CustomData_is_referenced_layer(&dm->vertData, CD_MVERT); CDDM_calc_normals_mapping_ex(dm, only_face_normals); } #if 0 /* bmesh note: this matches what we have in trunk */ void CDDM_calc_normals(DerivedMesh *dm) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; float (*poly_nors)[3]; if (dm->numVertData == 0) return; /* we don't want to overwrite any referenced layers */ cddm->mvert = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, dm->numVertData); /* fill in if it exists */ poly_nors = CustomData_get_layer(&dm->polyData, CD_NORMAL); if (!poly_nors) { poly_nors = CustomData_add_layer(&dm->polyData, CD_NORMAL, CD_CALLOC, NULL, dm->numPolyData); } BKE_mesh_calc_normals_poly(cddm->mvert, dm->numVertData, CDDM_get_loops(dm), CDDM_get_polys(dm), dm->numLoopData, dm->numPolyData, poly_nors, false); cddm->dm.dirty &= ~DM_DIRTY_NORMALS; } #else /* poly normal layer is now only for final display */ void CDDM_calc_normals(DerivedMesh *dm) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; /* we don't want to overwrite any referenced layers */ cddm->mvert = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, dm->numVertData); BKE_mesh_calc_normals_poly(cddm->mvert, dm->numVertData, CDDM_get_loops(dm), CDDM_get_polys(dm), dm->numLoopData, dm->numPolyData, NULL, false); cddm->dm.dirty &= ~DM_DIRTY_NORMALS; } #endif void CDDM_calc_loop_normals(DerivedMesh *dm, const float split_angle) { MVert *mverts = dm->getVertArray(dm); MEdge *medges = dm->getEdgeArray(dm); MLoop *mloops = dm->getLoopArray(dm); MPoly *mpolys = dm->getPolyArray(dm); CustomData *ldata, *pdata; float (*lnors)[3]; float (*pnors)[3]; const int numVerts = dm->getNumVerts(dm); const int numEdges = dm->getNumEdges(dm); const int numLoops = dm->getNumLoops(dm); const int numPolys = dm->getNumPolys(dm); ldata = dm->getLoopDataLayout(dm); if (CustomData_has_layer(ldata, CD_NORMAL)) { lnors = CustomData_get_layer(ldata, CD_NORMAL); } else { lnors = CustomData_add_layer(ldata, CD_NORMAL, CD_CALLOC, NULL, numLoops); } /* Compute poly (always needed) and vert normals. */ /* Note we can't use DM_ensure_normals, since it won't keep computed poly nors... */ pdata = dm->getPolyDataLayout(dm); pnors = CustomData_get_layer(pdata, CD_NORMAL); if (!pnors) { pnors = CustomData_add_layer(pdata, CD_NORMAL, CD_CALLOC, NULL, numPolys); } BKE_mesh_calc_normals_poly(mverts, numVerts, mloops, mpolys, numLoops, numPolys, pnors, (dm->dirty & DM_DIRTY_NORMALS) ? false : true); dm->dirty &= ~DM_DIRTY_NORMALS; BKE_mesh_normals_loop_split(mverts, numVerts, medges, numEdges, mloops, lnors, numLoops, mpolys, pnors, numPolys, split_angle); } void CDDM_calc_normals_tessface(DerivedMesh *dm) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; float (*face_nors)[3]; if (dm->numVertData == 0) return; /* we don't want to overwrite any referenced layers */ cddm->mvert = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, dm->numVertData); /* fill in if it exists */ face_nors = CustomData_get_layer(&dm->faceData, CD_NORMAL); if (!face_nors) { face_nors = CustomData_add_layer(&dm->faceData, CD_NORMAL, CD_CALLOC, NULL, dm->numTessFaceData); } BKE_mesh_calc_normals_tessface(cddm->mvert, dm->numVertData, cddm->mface, dm->numTessFaceData, face_nors); cddm->dm.dirty &= ~DM_DIRTY_NORMALS; } #if 1 /** * Poly compare with vtargetmap * Function used by #CDDM_merge_verts. * The function compares poly_source after applying vtargetmap, with poly_target. * The two polys are identical if they share the same vertices in the same order, or in reverse order, * but starting position loopstart may be different. * The function is called with direct_reverse=1 for same order (i.e. same normal), * and may be called again with direct_reverse=-1 for reverse order. * \return 1 if polys are identical, 0 if polys are different. */ static int cddm_poly_compare(MLoop *mloop_array, MPoly *mpoly_source, MPoly *mpoly_target, const int *vtargetmap, const int direct_reverse) { int vert_source, first_vert_source, vert_target; int i_loop_source; int i_loop_target, i_loop_target_start, i_loop_target_offset, i_loop_target_adjusted; bool compare_completed = false; bool same_loops = false; MLoop *mloop_source, *mloop_target; BLI_assert(direct_reverse == 1 || direct_reverse == -1); i_loop_source = 0; mloop_source = mloop_array + mpoly_source->loopstart; vert_source = mloop_source->v; if (vtargetmap[vert_source] != -1) { vert_source = vtargetmap[vert_source]; } else { /* All source loop vertices should be mapped */ BLI_assert(false); } /* Find same vertex within mpoly_target's loops */ mloop_target = mloop_array + mpoly_target->loopstart; for (i_loop_target = 0; i_loop_target < mpoly_target->totloop; i_loop_target++, mloop_target++) { if (mloop_target->v == vert_source) { break; } } /* If same vertex not found, then polys cannot be equal */ if (i_loop_target >= mpoly_target->totloop) { return false; } /* Now mloop_source and m_loop_target have one identical vertex */ /* mloop_source is at position 0, while m_loop_target has advanced to find identical vertex */ /* Go around the loop and check that all vertices match in same order */ /* Skipping source loops when consecutive source vertices are mapped to same target vertex */ i_loop_target_start = i_loop_target; i_loop_target_offset = 0; first_vert_source = vert_source; compare_completed = false; same_loops = false; while (!compare_completed) { vert_target = mloop_target->v; /* First advance i_loop_source, until it points to different vertex, after mapping applied */ do { i_loop_source++; if (i_loop_source == mpoly_source->totloop) { /* End of loops for source, must match end of loop for target. */ if (i_loop_target_offset == mpoly_target->totloop - 1) { compare_completed = true; same_loops = true; break; /* Polys are identical */ } else { compare_completed = true; same_loops = false; break; /* Polys are different */ } } mloop_source++; vert_source = mloop_source->v; if (vtargetmap[vert_source] != -1) { vert_source = vtargetmap[vert_source]; } else { /* All source loop vertices should be mapped */ BLI_assert(false); } } while (vert_source == vert_target); if (compare_completed) { break; } /* Now advance i_loop_target as well */ i_loop_target_offset++; if (i_loop_target_offset == mpoly_target->totloop) { /* End of loops for target only, that means no match */ /* except if all remaining source vertices are mapped to first target */ for (; i_loop_source < mpoly_source->totloop; i_loop_source++, mloop_source++) { vert_source = vtargetmap[mloop_source->v]; if (vert_source != first_vert_source) { compare_completed = true; same_loops = false; break; } } if (!compare_completed) { same_loops = true; } break; } /* Adjust i_loop_target for cycling around and for direct/reverse order defined by delta = +1 or -1 */ i_loop_target_adjusted = (i_loop_target_start + direct_reverse * i_loop_target_offset) % mpoly_target->totloop; if (i_loop_target_adjusted < 0) { i_loop_target_adjusted += mpoly_target->totloop; } mloop_target = mloop_array + mpoly_target->loopstart + i_loop_target_adjusted; vert_target = mloop_target->v; if (vert_target != vert_source) { same_loops = false; /* Polys are different */ break; } } return same_loops; } /* Utility stuff for using GHash with polys */ typedef struct PolyKey { int poly_index; /* index of the MPoly within the derived mesh */ int totloops; /* number of loops in the poly */ unsigned int hash_sum; /* Sum of all vertices indices */ unsigned int hash_xor; /* Xor of all vertices indices */ } PolyKey; static unsigned int poly_gset_hash_fn(const void *key) { const PolyKey *pk = key; return pk->hash_sum; } static bool poly_gset_compare_fn(const void *k1, const void *k2) { const PolyKey *pk1 = k1; const PolyKey *pk2 = k2; if ((pk1->hash_sum == pk2->hash_sum) && (pk1->hash_xor == pk2->hash_xor) && (pk1->totloops == pk2->totloops)) { /* Equality - note that this does not mean equality of polys */ return false; } else { return true; } } /** * Merge Verts * * This frees dm, and returns a new one. * * \param vtargetmap The table that maps vertices to target vertices. a value of -1 * indicates a vertex is a target, and is to be kept. * This array is aligned with 'dm->numVertData' * * \param tot_vtargetmap The number of non '-1' values in vtargetmap. (not the size) * * \param merge_mode enum with two modes. * - #CDDM_MERGE_VERTS_DUMP_IF_MAPPED * When called by the Mirror Modifier, * In this mode it skips any faces that have all vertices merged (to avoid creating pairs * of faces sharing the same set of vertices) * - #CDDM_MERGE_VERTS_DUMP_IF_EQUAL * When called by the Array Modifier, * In this mode, faces where all vertices are merged are double-checked, * to see whether all target vertices actually make up a poly already. * Indeed it could be that all of a poly's vertices are merged, * but merged to vertices that do not make up a single poly, * in which case the original poly should not be dumped. * Actually this later behavior could apply to the Mirror Modifier as well, but the additional checks are * costly and not necessary in the case of mirror, because each vertex is only merged to its own mirror. * * \note #CDDM_recalc_tessellation has to run on the returned DM if you want to access tessfaces. */ DerivedMesh *CDDM_merge_verts(DerivedMesh *dm, const int *vtargetmap, const int tot_vtargetmap, const int merge_mode) { // #define USE_LOOPS CDDerivedMesh *cddm = (CDDerivedMesh *)dm; CDDerivedMesh *cddm2 = NULL; const int totvert = dm->numVertData; const int totedge = dm->numEdgeData; const int totloop = dm->numLoopData; const int totpoly = dm->numPolyData; const int totvert_final = totvert - tot_vtargetmap; MVert *mv, *mvert = MEM_mallocN(sizeof(*mvert) * totvert_final, __func__); int *oldv = MEM_mallocN(sizeof(*oldv) * totvert_final, __func__); int *newv = MEM_mallocN(sizeof(*newv) * totvert, __func__); STACK_DECLARE(mvert); STACK_DECLARE(oldv); MEdge *med, *medge = MEM_mallocN(sizeof(*medge) * totedge, __func__); int *olde = MEM_mallocN(sizeof(*olde) * totedge, __func__); int *newe = MEM_mallocN(sizeof(*newe) * totedge, __func__); STACK_DECLARE(medge); STACK_DECLARE(olde); MLoop *ml, *mloop = MEM_mallocN(sizeof(*mloop) * totloop, __func__); int *oldl = MEM_mallocN(sizeof(*oldl) * totloop, __func__); #ifdef USE_LOOPS int newl = MEM_mallocN(sizeof(*newl) * totloop, __func__); #endif STACK_DECLARE(mloop); STACK_DECLARE(oldl); MPoly *mp, *mpoly = MEM_mallocN(sizeof(*medge) * totpoly, __func__); int *oldp = MEM_mallocN(sizeof(*oldp) * totpoly, __func__); STACK_DECLARE(mpoly); STACK_DECLARE(oldp); EdgeHash *ehash = BLI_edgehash_new_ex(__func__, totedge); int i, j, c; PolyKey *poly_keys; GSet *poly_gset = NULL; STACK_INIT(oldv, totvert_final); STACK_INIT(olde, totedge); STACK_INIT(oldl, totloop); STACK_INIT(oldp, totpoly); STACK_INIT(mvert, totvert_final); STACK_INIT(medge, totedge); STACK_INIT(mloop, totloop); STACK_INIT(mpoly, totpoly); /* fill newl with destination vertex indices */ mv = cddm->mvert; c = 0; for (i = 0; i < totvert; i++, mv++) { if (vtargetmap[i] == -1) { STACK_PUSH(oldv, i); STACK_PUSH(mvert, *mv); newv[i] = c++; } else { /* dummy value */ newv[i] = 0; } } /* now link target vertices to destination indices */ for (i = 0; i < totvert; i++) { if (vtargetmap[i] != -1) { newv[i] = newv[vtargetmap[i]]; } } /* Don't remap vertices in cddm->mloop, because we need to know the original * indices in order to skip faces with all vertices merged. * The "update loop indices..." section further down remaps vertices in mloop. */ /* now go through and fix edges and faces */ med = cddm->medge; c = 0; for (i = 0; i < totedge; i++, med++) { const unsigned int v1 = (vtargetmap[med->v1] != -1) ? vtargetmap[med->v1] : med->v1; const unsigned int v2 = (vtargetmap[med->v2] != -1) ? vtargetmap[med->v2] : med->v2; if (LIKELY(v1 != v2)) { void **eh_p = BLI_edgehash_lookup_p(ehash, v1, v2); if (eh_p) { newe[i] = GET_INT_FROM_POINTER(*eh_p); } else { STACK_PUSH(olde, i); STACK_PUSH(medge, *med); newe[i] = c; BLI_edgehash_insert(ehash, v1, v2, SET_INT_IN_POINTER(c)); c++; } } else { newe[i] = -1; } } if (merge_mode == CDDM_MERGE_VERTS_DUMP_IF_EQUAL) { /* In this mode, we need to determine, whenever a poly' vertices are all mapped */ /* if the targets already make up a poly, in which case the new poly is dropped */ /* This poly equality check is rather complex. We use a BLI_ghash to speed it up with a first level check */ PolyKey *mpgh; poly_keys = MEM_mallocN(sizeof(PolyKey) * totpoly, __func__); poly_gset = BLI_gset_new_ex(poly_gset_hash_fn, poly_gset_compare_fn, __func__, totpoly); /* Duplicates allowed because our compare function is not pure equality */ BLI_gset_flag_set(poly_gset, GHASH_FLAG_ALLOW_DUPES); mp = cddm->mpoly; mpgh = poly_keys; for (i = 0; i < totpoly; i++, mp++, mpgh++) { mpgh->poly_index = i; mpgh->totloops = mp->totloop; ml = cddm->mloop + mp->loopstart; mpgh->hash_sum = mpgh->hash_xor = 0; for (j = 0; j < mp->totloop; j++, ml++) { mpgh->hash_sum += ml->v; mpgh->hash_xor ^= ml->v; } BLI_gset_insert(poly_gset, mpgh); } if (cddm->pmap) { MEM_freeN(cddm->pmap); MEM_freeN(cddm->pmap_mem); } /* Can we optimise by reusing an old pmap ? How do we know an old pmap is stale ? */ /* When called by MOD_array.c, the cddm has just been created, so it has no valid pmap. */ BKE_mesh_vert_poly_map_create(&cddm->pmap, &cddm->pmap_mem, cddm->mpoly, cddm->mloop, totvert, totpoly, totloop); } /* done preparing for fast poly compare */ mp = cddm->mpoly; for (i = 0; i < totpoly; i++, mp++) { MPoly *mp_new; ml = cddm->mloop + mp->loopstart; /* check faces with all vertices merged */ { bool all_vertices_merged = true; for (j = 0; j < mp->totloop; j++, ml++) { if (vtargetmap[ml->v] == -1) { all_vertices_merged = false; break; } } if (UNLIKELY(all_vertices_merged)) { if (merge_mode == CDDM_MERGE_VERTS_DUMP_IF_MAPPED) { /* In this mode, all vertices merged is enough to dump face */ continue; } else if (merge_mode == CDDM_MERGE_VERTS_DUMP_IF_EQUAL) { /* Additional condition for face dump: target vertices must make up an identical face */ /* The test has 2 steps: (1) first step is fast ghash lookup, but not failproof */ /* (2) second step is thorough but more costly poly compare */ int i_poly, v_target, v_prev; bool found = false; PolyKey pkey; /* Use poly_gset for fast (although not 100% certain) identification of same poly */ /* First, make up a poly_summary structure */ ml = cddm->mloop + mp->loopstart; pkey.hash_sum = pkey.hash_xor = 0; pkey.totloops = 0; v_prev = vtargetmap[(ml + mp->totloop -1)->v]; /* since it loops around, the prev of first is the last */ for (j = 0; j < mp->totloop; j++, ml++) { v_target = vtargetmap[ml->v]; /* Cannot be -1, they are all mapped */ if (v_target == v_prev) { /* consecutive vertices in loop map to the same target: discard */ /* but what about last to first ? */ continue; } pkey.hash_sum += v_target; pkey.hash_xor ^= v_target; pkey.totloops++; v_prev = v_target; } if (BLI_gset_haskey(poly_gset, &pkey)) { /* There might be a poly that matches this one. * We could just leave it there and say there is, and do a "continue". * ... but we are checking whether there is an exact poly match. * It's not so costly in terms of CPU since it's very rare, just a lot of complex code. */ /* Consider current loop again */ ml = cddm->mloop + mp->loopstart; /* Consider the target of the loop's first vert */ v_target = vtargetmap[ml->v]; /* Now see if v_target belongs to a poly that shares all vertices with source poly, * in same order, or reverse order */ for (i_poly = 0; i_poly < cddm->pmap[v_target].count; i_poly++) { MPoly *target_poly = cddm->mpoly + *(cddm->pmap[v_target].indices + i_poly); if (cddm_poly_compare(cddm->mloop, mp, target_poly, vtargetmap, +1) || cddm_poly_compare(cddm->mloop, mp, target_poly, vtargetmap, -1)) { found = true; break; } } if (found) { /* Current poly's vertices are mapped to a poly that is strictly identical */ /* Current poly is dumped */ continue; } } } } } /* Here either the poly's vertices were not all merged * or they were all merged, but targets do not make up an identical poly, * the poly is retained. */ ml = cddm->mloop + mp->loopstart; c = 0; for (j = 0; j < mp->totloop; j++, ml++) { unsigned int v1, v2; med = cddm->medge + ml->e; v1 = (vtargetmap[med->v1] != -1) ? vtargetmap[med->v1] : med->v1; v2 = (vtargetmap[med->v2] != -1) ? vtargetmap[med->v2] : med->v2; if (LIKELY(v1 != v2)) { #ifdef USE_LOOPS newl[j + mp->loopstart] = STACK_SIZE(mloop); #endif STACK_PUSH(oldl, j + mp->loopstart); STACK_PUSH(mloop, *ml); c++; } } if (UNLIKELY(c == 0)) { continue; } else if (UNLIKELY(c < 3)) { STACK_DISCARD(oldl, c); STACK_DISCARD(mloop, c); continue; } mp_new = STACK_PUSH_RET_PTR(mpoly); *mp_new = *mp; mp_new->totloop = c; BLI_assert(mp_new->totloop >= 3); mp_new->loopstart = STACK_SIZE(mloop) - c; STACK_PUSH(oldp, i); } /* end of the loop that tests polys */ if (poly_gset) { // printf("hash quality %.6f\n", BLI_gset_calc_quality(poly_gset)); BLI_gset_free(poly_gset, NULL); MEM_freeN(poly_keys); } /*create new cddm*/ cddm2 = (CDDerivedMesh *) CDDM_from_template((DerivedMesh *)cddm, STACK_SIZE(mvert), STACK_SIZE(medge), 0, STACK_SIZE(mloop), STACK_SIZE(mpoly)); /*update edge indices and copy customdata*/ med = medge; for (i = 0; i < cddm2->dm.numEdgeData; i++, med++) { if (newv[med->v1] != -1) med->v1 = newv[med->v1]; if (newv[med->v2] != -1) med->v2 = newv[med->v2]; CustomData_copy_data(&dm->edgeData, &cddm2->dm.edgeData, olde[i], i, 1); } /*update loop indices and copy customdata*/ ml = mloop; for (i = 0; i < cddm2->dm.numLoopData; i++, ml++) { if (newe[ml->e] != -1) ml->e = newe[ml->e]; if (newv[ml->v] != -1) ml->v = newv[ml->v]; CustomData_copy_data(&dm->loopData, &cddm2->dm.loopData, oldl[i], i, 1); } /*copy vertex customdata*/ mv = mvert; for (i = 0; i < cddm2->dm.numVertData; i++, mv++) { CustomData_copy_data(&dm->vertData, &cddm2->dm.vertData, oldv[i], i, 1); } /*copy poly customdata*/ mp = mpoly; for (i = 0; i < cddm2->dm.numPolyData; i++, mp++) { CustomData_copy_data(&dm->polyData, &cddm2->dm.polyData, oldp[i], i, 1); } /*copy over data. CustomData_add_layer can do this, need to look it up.*/ memcpy(cddm2->mvert, mvert, sizeof(MVert) * STACK_SIZE(mvert)); memcpy(cddm2->medge, medge, sizeof(MEdge) * STACK_SIZE(medge)); memcpy(cddm2->mloop, mloop, sizeof(MLoop) * STACK_SIZE(mloop)); memcpy(cddm2->mpoly, mpoly, sizeof(MPoly) * STACK_SIZE(mpoly)); MEM_freeN(mvert); MEM_freeN(medge); MEM_freeN(mloop); MEM_freeN(mpoly); MEM_freeN(newv); MEM_freeN(newe); #ifdef USE_LOOPS MEM_freeN(newl); #endif MEM_freeN(oldv); MEM_freeN(olde); MEM_freeN(oldl); MEM_freeN(oldp); BLI_edgehash_free(ehash, NULL); /*free old derivedmesh*/ dm->needsFree = 1; dm->release(dm); return (DerivedMesh *)cddm2; } #endif void CDDM_calc_edges_tessface(DerivedMesh *dm) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; CustomData edgeData; EdgeSetIterator *ehi; MFace *mf = cddm->mface; MEdge *med; EdgeSet *eh; int i, *index, numEdges, numFaces = dm->numTessFaceData; eh = BLI_edgeset_new_ex(__func__, BLI_EDGEHASH_SIZE_GUESS_FROM_POLYS(numFaces)); for (i = 0; i < numFaces; i++, mf++) { BLI_edgeset_add(eh, mf->v1, mf->v2); BLI_edgeset_add(eh, mf->v2, mf->v3); if (mf->v4) { BLI_edgeset_add(eh, mf->v3, mf->v4); BLI_edgeset_add(eh, mf->v4, mf->v1); } else { BLI_edgeset_add(eh, mf->v3, mf->v1); } } numEdges = BLI_edgeset_size(eh); /* write new edges into a temporary CustomData */ CustomData_reset(&edgeData); CustomData_add_layer(&edgeData, CD_MEDGE, CD_CALLOC, NULL, numEdges); CustomData_add_layer(&edgeData, CD_ORIGINDEX, CD_CALLOC, NULL, numEdges); med = CustomData_get_layer(&edgeData, CD_MEDGE); index = CustomData_get_layer(&edgeData, CD_ORIGINDEX); for (ehi = BLI_edgesetIterator_new(eh), i = 0; BLI_edgesetIterator_isDone(ehi) == false; BLI_edgesetIterator_step(ehi), i++, med++, index++) { BLI_edgesetIterator_getKey(ehi, &med->v1, &med->v2); med->flag = ME_EDGEDRAW | ME_EDGERENDER; *index = ORIGINDEX_NONE; } BLI_edgesetIterator_free(ehi); /* free old CustomData and assign new one */ CustomData_free(&dm->edgeData, dm->numEdgeData); dm->edgeData = edgeData; dm->numEdgeData = numEdges; cddm->medge = CustomData_get_layer(&dm->edgeData, CD_MEDGE); BLI_edgeset_free(eh); } /* warning, this uses existing edges but CDDM_calc_edges_tessface() doesn't */ void CDDM_calc_edges(DerivedMesh *dm) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; CustomData edgeData; EdgeHashIterator *ehi; MPoly *mp = cddm->mpoly; MLoop *ml; MEdge *med, *origmed; EdgeHash *eh; unsigned int eh_reserve; int v1, v2; const int *eindex; int i, j, *index; const int numFaces = dm->numPolyData; const int numLoops = dm->numLoopData; int numEdges = dm->numEdgeData; eindex = DM_get_edge_data_layer(dm, CD_ORIGINDEX); med = cddm->medge; eh_reserve = max_ii(med ? numEdges : 0, BLI_EDGEHASH_SIZE_GUESS_FROM_LOOPS(numLoops)); eh = BLI_edgehash_new_ex(__func__, eh_reserve); if (med) { for (i = 0; i < numEdges; i++, med++) { BLI_edgehash_insert(eh, med->v1, med->v2, SET_INT_IN_POINTER(i + 1)); } } for (i = 0; i < numFaces; i++, mp++) { ml = cddm->mloop + mp->loopstart; for (j = 0; j < mp->totloop; j++, ml++) { v1 = ml->v; v2 = ME_POLY_LOOP_NEXT(cddm->mloop, mp, j)->v; BLI_edgehash_reinsert(eh, v1, v2, NULL); } } numEdges = BLI_edgehash_size(eh); /* write new edges into a temporary CustomData */ CustomData_reset(&edgeData); CustomData_add_layer(&edgeData, CD_MEDGE, CD_CALLOC, NULL, numEdges); CustomData_add_layer(&edgeData, CD_ORIGINDEX, CD_CALLOC, NULL, numEdges); origmed = cddm->medge; med = CustomData_get_layer(&edgeData, CD_MEDGE); index = CustomData_get_layer(&edgeData, CD_ORIGINDEX); for (ehi = BLI_edgehashIterator_new(eh), i = 0; BLI_edgehashIterator_isDone(ehi) == false; BLI_edgehashIterator_step(ehi), ++i, ++med, ++index) { BLI_edgehashIterator_getKey(ehi, &med->v1, &med->v2); j = GET_INT_FROM_POINTER(BLI_edgehashIterator_getValue(ehi)); if (j == 0) { med->flag = ME_EDGEDRAW | ME_EDGERENDER; *index = ORIGINDEX_NONE; } else { med->flag = ME_EDGEDRAW | ME_EDGERENDER | origmed[j - 1].flag; *index = eindex[j - 1]; } BLI_edgehashIterator_setValue(ehi, SET_INT_IN_POINTER(i)); } BLI_edgehashIterator_free(ehi); /* free old CustomData and assign new one */ CustomData_free(&dm->edgeData, dm->numEdgeData); dm->edgeData = edgeData; dm->numEdgeData = numEdges; cddm->medge = CustomData_get_layer(&dm->edgeData, CD_MEDGE); mp = cddm->mpoly; for (i = 0; i < numFaces; i++, mp++) { ml = cddm->mloop + mp->loopstart; for (j = 0; j < mp->totloop; j++, ml++) { v1 = ml->v; v2 = ME_POLY_LOOP_NEXT(cddm->mloop, mp, j)->v; ml->e = GET_INT_FROM_POINTER(BLI_edgehash_lookup(eh, v1, v2)); } } BLI_edgehash_free(eh, NULL); } void CDDM_lower_num_verts(DerivedMesh *dm, int numVerts) { BLI_assert(numVerts >= 0); if (numVerts < dm->numVertData) CustomData_free_elem(&dm->vertData, numVerts, dm->numVertData - numVerts); dm->numVertData = numVerts; } void CDDM_lower_num_edges(DerivedMesh *dm, int numEdges) { BLI_assert(numEdges >= 0); if (numEdges < dm->numEdgeData) CustomData_free_elem(&dm->edgeData, numEdges, dm->numEdgeData - numEdges); dm->numEdgeData = numEdges; } void CDDM_lower_num_tessfaces(DerivedMesh *dm, int numTessFaces) { BLI_assert(numTessFaces >= 0); if (numTessFaces < dm->numTessFaceData) CustomData_free_elem(&dm->faceData, numTessFaces, dm->numTessFaceData - numTessFaces); dm->numTessFaceData = numTessFaces; } void CDDM_lower_num_loops(DerivedMesh *dm, int numLoops) { BLI_assert(numLoops >= 0); if (numLoops < dm->numLoopData) CustomData_free_elem(&dm->loopData, numLoops, dm->numLoopData - numLoops); dm->numLoopData = numLoops; } void CDDM_lower_num_polys(DerivedMesh *dm, int numPolys) { BLI_assert(numPolys >= 0); if (numPolys < dm->numPolyData) CustomData_free_elem(&dm->polyData, numPolys, dm->numPolyData - numPolys); dm->numPolyData = numPolys; } /* mesh element access functions */ MVert *CDDM_get_vert(DerivedMesh *dm, int index) { return &((CDDerivedMesh *)dm)->mvert[index]; } MEdge *CDDM_get_edge(DerivedMesh *dm, int index) { return &((CDDerivedMesh *)dm)->medge[index]; } MFace *CDDM_get_tessface(DerivedMesh *dm, int index) { return &((CDDerivedMesh *)dm)->mface[index]; } MLoop *CDDM_get_loop(DerivedMesh *dm, int index) { return &((CDDerivedMesh *)dm)->mloop[index]; } MPoly *CDDM_get_poly(DerivedMesh *dm, int index) { return &((CDDerivedMesh *)dm)->mpoly[index]; } /* array access functions */ MVert *CDDM_get_verts(DerivedMesh *dm) { return ((CDDerivedMesh *)dm)->mvert; } MEdge *CDDM_get_edges(DerivedMesh *dm) { return ((CDDerivedMesh *)dm)->medge; } MFace *CDDM_get_tessfaces(DerivedMesh *dm) { return ((CDDerivedMesh *)dm)->mface; } MLoop *CDDM_get_loops(DerivedMesh *dm) { return ((CDDerivedMesh *)dm)->mloop; } MPoly *CDDM_get_polys(DerivedMesh *dm) { return ((CDDerivedMesh *)dm)->mpoly; } void CDDM_tessfaces_to_faces(DerivedMesh *dm) { /* converts mfaces to mpolys/mloops */ CDDerivedMesh *cddm = (CDDerivedMesh *)dm; BKE_mesh_convert_mfaces_to_mpolys_ex(NULL, &cddm->dm.faceData, &cddm->dm.loopData, &cddm->dm.polyData, cddm->dm.numEdgeData, cddm->dm.numTessFaceData, cddm->dm.numLoopData, cddm->dm.numPolyData, cddm->medge, cddm->mface, &cddm->dm.numLoopData, &cddm->dm.numPolyData, &cddm->mloop, &cddm->mpoly); } void CDDM_set_mvert(DerivedMesh *dm, MVert *mvert) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; if (!CustomData_has_layer(&dm->vertData, CD_MVERT)) CustomData_add_layer(&dm->vertData, CD_MVERT, CD_ASSIGN, mvert, dm->numVertData); cddm->mvert = mvert; } void CDDM_set_medge(DerivedMesh *dm, MEdge *medge) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; if (!CustomData_has_layer(&dm->edgeData, CD_MEDGE)) CustomData_add_layer(&dm->edgeData, CD_MEDGE, CD_ASSIGN, medge, dm->numEdgeData); cddm->medge = medge; } void CDDM_set_mface(DerivedMesh *dm, MFace *mface) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; if (!CustomData_has_layer(&dm->faceData, CD_MFACE)) CustomData_add_layer(&dm->faceData, CD_MFACE, CD_ASSIGN, mface, dm->numTessFaceData); cddm->mface = mface; } void CDDM_set_mloop(DerivedMesh *dm, MLoop *mloop) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; if (!CustomData_has_layer(&dm->loopData, CD_MLOOP)) CustomData_add_layer(&dm->loopData, CD_MLOOP, CD_ASSIGN, mloop, dm->numLoopData); cddm->mloop = mloop; } void CDDM_set_mpoly(DerivedMesh *dm, MPoly *mpoly) { CDDerivedMesh *cddm = (CDDerivedMesh *)dm; if (!CustomData_has_layer(&dm->polyData, CD_MPOLY)) CustomData_add_layer(&dm->polyData, CD_MPOLY, CD_ASSIGN, mpoly, dm->numPolyData); cddm->mpoly = mpoly; }