/** * $Id$ * * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL/BL DUAL LICENSE BLOCK ***** */ #include #include #include "MEM_guardedalloc.h" #include "nla.h" #include "BLI_blenlib.h" #include "BLI_arithb.h" #include "DNA_armature_types.h" #include "DNA_constraint_types.h" #include "DNA_object_types.h" #include "DNA_action_types.h" #include "DNA_curve_types.h" #include "BKE_utildefines.h" #include "BKE_action.h" #include "BKE_armature.h" #include "BKE_blender.h" #include "BKE_constraint.h" #include "BKE_object.h" #include "BKE_ipo.h" #include "BKE_global.h" #include "BKE_library.h" #include "blendef.h" #ifdef HAVE_CONFIG_H #include #endif #ifndef M_PI #define M_PI 3.14159265358979323846 #endif /* Local function prototypes */ static void constraint_target_to_mat4 (Object *ob, const char *substring, float mat[][4], float size[3], float ctime); /* Functions */ bConstraintChannel *find_constraint_channel (ListBase *list, const char *name){ bConstraintChannel *chan; for (chan = list->first; chan; chan=chan->next){ if (!strcmp(name, chan->name)){ return chan; } } return NULL; } void do_constraint_channels (ListBase *conbase, ListBase *chanbase, float ctime) { bConstraint *con; bConstraintChannel *chan; IpoCurve *icu; for (con=conbase->first; con; con=con->next){ chan = find_constraint_channel(chanbase, con->name); if (chan && chan->ipo){ calc_ipo(chan->ipo, ctime); for (icu=chan->ipo->curve.first; icu; icu=icu->next){ switch (icu->adrcode){ case CO_ENFORCE: con->enforce = icu->curval; if (con->enforce<0) con->enforce=0; else if (con->enforce>1) con->enforce=1; break; } } } } } void Mat4BlendMat4(float out[][4], float dst[][4], float src[][4], float srcweight) { float squat[4], dquat[4], fquat[4]; float ssize[3], dsize[3], fsize[4]; float sloc[3], dloc[3], floc[3]; float mat3[3][3], dstweight; float qmat[3][3], smat[3][3]; int i; dstweight = 1.0F-srcweight; Mat3CpyMat4(mat3, dst); Mat3ToQuat(mat3, dquat); Mat3ToSize(mat3, dsize); VECCOPY (dloc, dst[3]); Mat3CpyMat4(mat3, src); Mat3ToQuat(mat3, squat); Mat3ToSize(mat3, ssize); VECCOPY (sloc, src[3]); /* Do the actual blend */ for (i=0; i<3; i++){ floc[i] = (dloc[i]*dstweight) + (sloc[i]*srcweight); fsize[i] = 1.0f + ((dsize[i]-1.0f)*dstweight) + ((ssize[i]-1.0f)*srcweight); fquat[i+1] = (dquat[i+1]*dstweight) + (squat[i+1]*srcweight); } /* Do one more iteration for the quaternions only and normalize the quaternion if needed */ fquat[0] = 1.0f + ((dquat[0]-1.0f)*dstweight) + ((squat[0]-1.0f)*srcweight); NormalQuat (fquat); QuatToMat3(fquat, qmat); SizeToMat3(fsize, smat); Mat3MulMat3(mat3, qmat, smat); Mat4CpyMat3(out, mat3); VECCOPY (out[3], floc); } static void constraint_target_to_mat4 (Object *ob, const char *substring, float mat[][4], float size[3], float ctime) { /* Update the location of the target object */ where_is_object_time (ob, ctime); /* Case OBJECT */ if (!strlen(substring)){ Mat4CpyMat4 (mat, ob->obmat); VECCOPY (size, ob->size); return; } /* Case BONE */ else { bArmature *arm; Bone *bone; float bmat[4][4]; float bsize[3]={1, 1, 1}; arm = get_armature(ob); /** * Locate the bone (if there is one) * Ensures that the bone's transformation is fully constrained * (Cyclical relationships are disallowed elsewhere) */ bone = get_named_bone(arm, substring); if (bone){ where_is_bone_time(ob, bone, ctime); get_objectspace_bone_matrix(bone, bmat, 1, 1); VECCOPY(bsize, bone->size); } else Mat4One (bmat); /** * Multiply the objectspace bonematrix by the skeletons's global * transform to obtain the worldspace transformation of the target */ VECCOPY(size, bsize); Mat4MulMat4 (mat, bmat, ob->obmat); return; } } void clear_object_constraint_status (Object *ob) { bConstraint *con; if (!ob) return; /* Clear the object's constraints */ for (con = ob->constraints.first; con; con=con->next){ con->flag &= ~CONSTRAINT_DONE; } /* Clear the object's subdata constraints */ switch (ob->type){ case OB_ARMATURE: { clear_pose_constraint_status (ob); } break; default: break; } } short get_constraint_target (bConstraint *con, short ownertype, void* ownerdata, float mat[][4], float size[3], float ctime) { short valid=0; switch (con->type){ case CONSTRAINT_TYPE_NULL: { Mat4One(mat); } break; case CONSTRAINT_TYPE_ACTION: { if (ownertype == TARGET_BONE){ bActionConstraint *data = (bActionConstraint*)con->data; bPose *pose=NULL; bPoseChannel *pchan=NULL; float tempmat[4][4], imat[4][4], ans[4][4], restmat[4][4], irestmat[4][4]; float tempmat3[3][3]; float eul[3], size[3]; float s,t; Bone *curBone; Bone tbone; int i; curBone = (Bone*)ownerdata; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, tempmat, size, ctime); valid=1; } else Mat4One (tempmat); /* If this is a bone, undo parent transforms */ if (strlen(data->subtarget)){ Bone* bone; Mat4Invert(imat, data->tar->obmat); bone = get_named_bone(get_armature(data->tar), data->subtarget); if (bone){ get_objectspace_bone_matrix(bone, restmat, 1, 0); Mat4Invert(irestmat, restmat); } } else{ Mat4One(imat); Mat4One(irestmat); } Mat4MulSerie(ans, imat, tempmat, irestmat, NULL, NULL, NULL, NULL, NULL); Mat3CpyMat4(tempmat3, ans); Mat3ToEul(tempmat3, eul); eul[0]*=(float)(180.0/M_PI); eul[1]*=(float)(180.0/M_PI); eul[2]*=(float)(180.0/M_PI); /* Target is the animation */ s = (eul[data->type]-data->min)/(data->max-data->min); if (s<0) s=0; if (s>1) s=1; t = ( s * (data->end-data->start)) + data->start; /* Get the appropriate information from the action */ pose = MEM_callocN(sizeof(bPose), "pose"); verify_pose_channel(pose, curBone->name); get_pose_from_action (&pose, data->act, t); /* Find the appropriate channel */ pchan = get_pose_channel(pose, curBone->name); if (pchan){ memset(&tbone, 0x00, sizeof(Bone)); VECCOPY (tbone.loc, pchan->loc); VECCOPY (tbone.size, pchan->size); for (i=0; i<4; i++) tbone.quat[i]=pchan->quat[i]; bone_to_mat4(&tbone, mat); } else{ Mat4One(mat); } /* Clean up */ clear_pose(pose); MEM_freeN(pose); } } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data = (bLocateLikeConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data; data = (bRotateLikeConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; data = (bTrackToConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid=1; } else Mat4One (mat); } break; case CONSTRAINT_TYPE_KINEMATIC: { bTrackToConstraint *data; data = (bTrackToConstraint*)con->data; if (data->tar){ constraint_target_to_mat4(data->tar, data->subtarget, mat, size, ctime); valid=1; } else Mat4One (mat); } break; default: Mat4One(mat); break; } return valid; } void relink_constraints (struct ListBase *list) { bConstraint *con; for (con = list->first; con; con=con->next){ switch (con->type){ case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_NULL: { } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data; data = con->data; ID_NEW(data->tar); } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data; data = con->data; ID_NEW(data->tar); } break; } } } void *copy_constraint_channels (ListBase *dst, ListBase *src) { bConstraintChannel *dchan, *schan; bConstraintChannel *newact=NULL; dst->first=dst->last=NULL; duplicatelist(dst, src); for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next){ dchan->ipo = copy_ipo(schan->ipo); } return newact; } bConstraintChannel *clone_constraint_channels (ListBase *dst, ListBase *src, bConstraintChannel *oldact) { bConstraintChannel *dchan, *schan; bConstraintChannel *newact=NULL; dst->first=dst->last=NULL; duplicatelist(dst, src); for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next){ id_us_plus((ID *)dchan->ipo); if (schan==oldact) newact=dchan; } return newact; } void copy_constraints (ListBase *dst, ListBase *src) { bConstraint *con; dst->first=dst->last=NULL; duplicatelist (dst, src); /* Update specific data */ if (!dst->first) return; for (con = dst->first; con; con=con->next){ switch (con->type){ case CONSTRAINT_TYPE_ACTION: { bActionConstraint *data; con->data = MEM_dupallocN (con->data); data = (bActionConstraint*) con->data; } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data; con->data = MEM_dupallocN (con->data); data = (bLocateLikeConstraint*) con->data; } break; case CONSTRAINT_TYPE_ROTLIKE: { bRotateLikeConstraint *data; con->data = MEM_dupallocN (con->data); data = (bRotateLikeConstraint*) con->data; } break; case CONSTRAINT_TYPE_NULL: { con->data = NULL; } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; con->data = MEM_dupallocN (con->data); data = (bTrackToConstraint*) con->data; } break; case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data; con->data = MEM_dupallocN (con->data); data = (bKinematicConstraint*) con->data; } break; default: con->data = MEM_dupallocN (con->data); break; } } } void evaluate_constraint (bConstraint *constraint, Object *ob, short ownertype, void *ownerdata, float targetmat[][4]) /* ob is likely to be a workob */ { float M_oldmat[4][4]; float M_identity[4][4]; float enforce = 1.0; if (!constraint || !ob) return; Mat4One (M_identity); /* We've already been calculated */ if (constraint->flag & CONSTRAINT_DONE){ return; } switch (constraint->type){ case CONSTRAINT_TYPE_ACTION: { float temp[4][4]; bActionConstraint *data; data = constraint->data; Mat4CpyMat4 (temp, ob->obmat); Mat4MulMat4(ob->obmat, targetmat, temp); } break; case CONSTRAINT_TYPE_LOCLIKE: { bLocateLikeConstraint *data; data = constraint->data; if (data->flag & LOCLIKE_X) ob->obmat[3][0] = targetmat[3][0]; if (data->flag & LOCLIKE_Y) ob->obmat[3][1] = targetmat[3][1]; if (data->flag & LOCLIKE_Z) ob->obmat[3][2] = targetmat[3][2]; } break; case CONSTRAINT_TYPE_ROTLIKE: { float tmat[4][4]; float size[3]; Mat4ToSize(ob->obmat, size); Mat4CpyMat4 (tmat, targetmat); Mat4Ortho(tmat); ob->obmat[0][0] = tmat[0][0]*size[0]; ob->obmat[0][1] = tmat[0][1]*size[1]; ob->obmat[0][2] = tmat[0][2]*size[2]; ob->obmat[1][0] = tmat[1][0]*size[0]; ob->obmat[1][1] = tmat[1][1]*size[1]; ob->obmat[1][2] = tmat[1][2]*size[2]; ob->obmat[2][0] = tmat[2][0]*size[0]; ob->obmat[2][1] = tmat[2][1]*size[1]; ob->obmat[2][2] = tmat[2][2]*size[2]; } break; case CONSTRAINT_TYPE_NULL: { } break; case CONSTRAINT_TYPE_TRACKTO: { bTrackToConstraint *data; float size[3]; data=(bTrackToConstraint*)constraint->data; if (data->tar){ Mat4ToSize (ob->obmat, size); Mat4CpyMat4 (M_oldmat, ob->obmat); // Clear the object's rotation ob->obmat[0][0]=ob->size[0]; ob->obmat[0][1]=0; ob->obmat[0][2]=0; ob->obmat[1][0]=0; ob->obmat[1][1]=ob->size[1]; ob->obmat[1][2]=0; ob->obmat[2][0]=0; ob->obmat[2][1]=0; ob->obmat[2][2]=ob->size[2]; solve_tracking(ob, targetmat); } } break; case CONSTRAINT_TYPE_KINEMATIC: { bKinematicConstraint *data; float imat[4][4]; float temp[4][4]; float totmat[4][4]; data=(bKinematicConstraint*)constraint->data; if (data->tar && ownertype==TARGET_BONE && ownerdata){ Bone *curBone = (Bone*)ownerdata; PoseChain *chain; Object *armob; /* Retrieve the owner armature object from the workob */ armob = ob->parent; /* Make an IK chain */ chain = ik_chain_to_posechain(armob, curBone); if (!chain) return; chain->iterations = data->iterations; chain->tolerance = data->tolerance; { float parmat[4][4]; /* Take the obmat to objectspace */ Mat4CpyMat4 (temp, curBone->obmat); Mat4One (curBone->obmat); get_objectspace_bone_matrix(curBone, parmat, 1, 1); Mat4CpyMat4 (curBone->obmat, temp); Mat4MulMat4 (totmat, parmat, ob->parent->obmat); Mat4Invert (imat, totmat); Mat4CpyMat4 (temp, ob->obmat); Mat4MulMat4 (ob->obmat, temp, imat); } /* Solve it */ if (chain->solver){ VECCOPY (chain->goal, targetmat[3]); solve_posechain(chain); } free_posechain(chain); { float parmat[4][4]; /* Take the obmat to worldspace */ Mat4CpyMat4 (temp, curBone->obmat); Mat4One (curBone->obmat); get_objectspace_bone_matrix(curBone, parmat, 1, 1); Mat4CpyMat4 (curBone->obmat, temp); Mat4MulMat4 (totmat, parmat, ob->parent->obmat); Mat4CpyMat4 (temp, ob->obmat); Mat4MulMat4 (ob->obmat, temp, totmat); } } } break; case CONSTRAINT_TYPE_FOLLOWPATH: break; default: printf ("Error: Unknown constraint type\n"); break; } } void free_constraint_data (bConstraint *con) { if (con->data){ switch (con->type){ default: break; }; MEM_freeN (con->data); } } void free_constraints (ListBase *conlist) { bConstraint *con; /* Do any specific freeing */ for (con=conlist->first; con; con=con->next) { free_constraint_data (con); }; /* Free the whole list */ BLI_freelistN(conlist); } void free_constraint_channels (ListBase *chanbase) { bConstraintChannel *chan; for (chan=chanbase->first; chan; chan=chan->next) { if (chan->ipo){ chan->ipo->id.us--; } } BLI_freelistN(chanbase); }